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Supplementary Figure 1: A flowchart for ORF selection.
Manual curation of ~9900 ORF loci from the indicated dataset sources were then filtered using
the indicated biological attributes and selection criteria. After selection, the 553 ORFs were then

evaluated by additional metrics as shown.

selection criteria.
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Supplementary Figure 2: Overlap and representation of datasets in the ORFeome library.

a) The fraction of ORF nominations in a given dataset that are also represented in an independent
dataset. Each dot represents a literature source for data. Box plots represent median and
interquartile ranges with whiskers indicating minimum and maximum values. b) A scatter plot
showing the number of nominated ORFs in a given study compared to the fraction of ORF
candidates overlapping an independent dataset. Datasets are color-coded as indicated. c) A
barplot showing the fraction of ORFs in the total 9,918 set that are represented in each dataset,
as well as the fraction of the 553 ORFeome candidates represented in each dataset. d) The
relative enrichment of representation in the ORFeome library for each dataset. Each dot
represents a dataset and the line shows the median value in the indicated group. Enrichment is
calculated as (ORF_fraction_of total assessed / ORF_fraction_of total included) for each
dataset. e) For each dataset, the fraction of tested ORFs that subsequently validated by either
V5-tag cDNA translation or independent peptide identification in a unique mass spectrometry
dataset. The line indicates the median for each group. Only datasets contributing >5 candidates
to the ORFeome library are included.



d 1o b 1.0+
® Low
o g ® High
% p value = 0.04 S
— | ]
2 05 ! 2
c 0.5+ | 5
'g | Y
[} | wnv
© ©
i I <
: -@- PhastCons_ORFeome e
0.04 | —©— PhastCons_all :
T T T T T T T T T 0.0 <« | —>>
0 0.2 0.4 0.6 0.8 1.0 381 ORFs 172 ORFs

PhastCons score

(@]
o

1.0 1 -@- PhyloCSF_ORFeome

" -©- PhyloCSF_all :
= | g
o ! S
Y— | wv
o lue =0.009
© 05+ p value : 5
(@)
B I el
g | £
[ | [a
|
0.0 | ¢ : >
B - | :
T T T T T T T T 1 o :
mw o n o w o w o w o -30- 5340RFs 19 ORFs
Y T T 5 02 2 3 35 9
2 2 2 ¢ & 45 5 2 2 2
o v o n 2 ! n =4 =)
o9 q in '
PhyloCSF score
e 1.0 @ Read/Length_ORFeome 256— o
-©- Read/Length_all g 64— ® Low
G \ s a
o p value = 0.02 22 16+
o S5 < 4
kS =5
0.5 ! c
5 I T o L
5 [ € g25]
© ! e
L | o O 0.063
' 57 00164 :
0.0- f oo i —
UPIBUR IR - S500RFs 2030
Ratio of read abundance/ORF length (bp)
| v 1.07
wn o ® Low
& b
o) c ® High
% i)
=
S 3
b4 o}
il : —@-Structural_score_ORFeome ©
| -6~ Structural_score_Random_150mers R R R SRS
! S :
| = H
004 (%175, : | : : 9 0,0- <« —>
00 02 04 06 08 1.0 408 ORFs ~ 145 ORFs

Stuctural confidence score

Supplementary Figure 3: Thresholds defined for ORF feature analysis.



a) The cumulative fraction of selected ORFeome ORFs (n=553) or all manually inspected ORF
candidates (n=2,395) scoring for the indicated PhastCons values. b) Raw PhastCons scores for
the 553 ORFs in the ORFeome, with the indicated threshold used for analysis. ¢) The cumulative
fraction of selected ORFeome ORFs (n=553) or all manually inspected ORF candidates (n=2,395)
scoring for the indicated PhyloCSF values. d) Raw PhyloCSF scores for the 553 ORFs in the
ORFeome, with the indicated threshold used for analysis. e) The cumulative fraction of selected
ORFeome ORFs (n=553) or all manually inspected ORF candidates (n=2,395) scoring for the
indicated read/length abundance ratio. f) Raw read/length ratios for the 553 ORFs in the
ORFeome, with the indicated threshold used for analysis. g) The cumulative fraction of selected
ORFeome ORFs (n=553) or randomly generated 150mer amino acid sequences (n=500) scoring
for the indicated structural confidence score. h) Raw structural confidence scores for the 553
ORFs in the ORFeome, with the indicated threshold used for analysis. All p values in this figure
were calculated by a two-sided Kolmogorov-Smirnov test.
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Supplementary Figure 4: Most detected peptides have multiple sources identifying them.

a) A pie chart showing the percentage of identified tryptic peptide sequences that map to a single
ORF or multiple ORFs, with multi-mapping peptides detailed on the right. b) Left, a Venn diagram
demonstrating the numbers of peptides found in literature datasets, PeptideAtlas, and Broad
datasets. Middle, a pie chart showing the fraction of trypic peptides in the Broad datasets for
which more than one source reports the peptide. Right, among the peptides with more than one
Broad source, the majority have at least 5 sources identifying the peptide. c) A scatter plot that
shows the specific number of identifying sources per peptide. Data plotted represents only
peptide spectrum processed at the Broad Institute (e.g. CPTAC), excluding public peptide

repositories (e.g. PeptideAtlas).
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Supplementary Figure 5: Pairwise analysis of ORF features and V5 translation in experimental
assays. For each pair of criteria, the fraction of ORFs with those two features that validated by
ORFeome V5 detection is plotted.
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Supplementary Figure 6: Stratification of validated ORFs by nomination type and cellular
phenotype.

a) A bar plot showing the fraction of ORFs within each indicated group that validated by V5 in
vitro translation assay, endogenous mass spectrometry peptides, or the summation of these. b)
A stacked bar plot showing the fraction of ORFs within each indicated group that validated when
stratified by ORF size. ORF size was stratified into ORFs that were >= 50 amino acids in length, or
<50 amino acids in length.
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Supplementary Figure 7: ORF gene expression data on the L1000 platform.

a) A L1000 perturbational plate layout showing locations of treatment ORFs, non-human
proteins, untreated wells, and technical positive control ORFs. b) A second L1000 perturbational
plate layout showing locations of treatment ORFs, non-human proteins, untreated wells, and
technical positive control ORFs. c) Level 5 L1000 data processing (“MODZ” score) and clustering
of L1000 signatures for positive control ORFs with a TAS score of >=0.2. Color red in cells denotes
a connectivity score of 95 percentile or greater (similar signatures); blue denotes <= -95
percentile (dissimilar signatures). d) Scatter plots of L1000 data for experimental ORFs. The Y
axis represents signature strength and the X axis represents reproducibility, the two metrics used
to calculate the TAS score. Each TAS score is indicated by the color code of each individual ORF.
Each data point represents one ORF. e) The distribution of replicate reproducibility scores across
all L1000 experiments. Red denotes signatures >= 0.2, which indicated that a signature was
present. Blue denotes signatures < 0.2, which denotes that a signature was not detected. f) The
distribution of transcriptional activation scores (TAS) across all L1000 experiments. Red denotes
signatures >= 0.2, which indicated that a signature was present. Blue denotes signatures < 0.2,
which denotes that a signature was not detected. g) Intersection of replicate reproducibility and
TAS scores shows a high degree of correlation. 360 signatures were considered positive for both
replicate reproducibility and high TAS score.
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Supplementary Figure 8: CRISPR screens for new ORFs.

a) A barplot and inset table showing the number of sgRNAs per ORF in the primary CRISPR screen.
b) Frequency distribution of putative CRISPR hits using a viability threshold of log fold change of
<=-1o0r<=-0.5in the primary CRISPR screen. c) The percentage of nominated CRISPR hits which
had minimal detectable expression or expressed above the threshold of >= 0.5 TPM. d) The
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correlation between log fold change values (n=385 independent measurements) for nominated
CRISPR hits and the CERES score for each gene, which integrates copy number data for each cell
line. Spearman and Pearson correlations are shown with a two-sided Spearman’s p value shown.
e) An example of the chr17g23 amplification locus in MCF7 cells. CRISPR knockout of genes (n=22
independent experiments) in the locus result in nonspecific cell death due to excessive genomic
cutting, regardless of gene expression level. Three putative ORFs were located in this genomic
region, indicated with red dots in the figure. f) A histogram showing the fraction of genes that
would score as a vulnerability gene from a randomly selected set of 500 annotated genes from
cell lines in the Cancer Dependency Map. The ORFeome CRISPR screen result is indicated. g) The
rate of genes scoring as viability genes in the canonical Avana gene library and the ORFeome
sgRNA library for the five cell lines shared between both screens. Barplots represent mean and
error bars represent standard deviation. h) The distribution of sgRNAs across various genome
regions in the secondary CRISPR screen. i) A histogram showing the number of sgRNAs per ORF
in the secondary CRISPR screen.
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Supplementary Figure 9: Specificity and off-target effects of primary CRISPR screen.

a) A comparison of the fraction of sgRNAs that demonstrated a viability phenotype in the primary
screen and secondary screen for genes (n=37) that had >5 sgRNAs in both screens. Significance
is by a two-sided Spearman’s Rho test. b) The number of off-target genomic effects of each
sgRNA (n=4391 independent experiments) compared to the fold change of sgRNA representation
at the Day 21 timepoint after lentiviral infection in the CRISPR screen. Three ORFs with off-target
sgRNAs are highlighted. c) A violin plot showing the median log2 fold change in sgRNA abundance
at Day 21 in the primary CRISPR screen for sgRNAs with =< 10 genomic cutting sites (n= 4355
independent experiments) predicted of >10 genomic cutting sites predicted (n=36 independent
experiments). Genomic cutting sites predicted by the Cas-OFFinder algorith. P value by a two-
tailed Student’s t test.
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Supplementary Figure 10: Discordant RNAi and CRISPR data for two overlapping ORFs.

a) The dependency profile for COG7 using RNAi or CRISPR data. b) A scatter plot comparing the
magnitude of dependency phenotype for individual cell lines in RNAi or CRISPR data. c) A
comparison of the log fold change in cell abundance using the average LFC of the two sgRNAs
targeting CTD-2270L9.4 and COG7, compared to two sgRNAs targeting COG7 alone. Only cell
lines with a viability phenotype in the CTD-2770L9.4 targeting sgRNAs are shown. N=132
independent cell lines. P value by a two-tailed Student’s t test. d) The dependency profile for
ZBTB11 in RNAi or CRISPR data. e) A scatter plot comparing the magnitude of dependency
phenotype for individual cell lines in RNAi or CRISPR data. f) A comparison of the log fold change
in cell abundance using the average LFC of the two sgRNAs targeting ZBTB11 and ZBTB11-AS1,
compared to two sgRNAs targeting ZBTB11 alone. Only cell lines with a viability phenotype in
the ZBTB11-AS1 targeting sgRNAs are shown. N=384 independent cell lines. P value by a two-
tailed Student’s t test.
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Supplementary Figure 11: Pooled GREP1 knockout across cell lines.

a) A table summarizing all input cell lines in the pool and filters applied to the data for final
analysis. b) All raw cell line viability data at Day +6 prior to data filtering. N=400 independent
cell lines, distributed among the indicated cancer types. Each dot represents one cell line. Lines
represent median +/- interquartile range. c) Cell line viability data at Day +6 after data filtering.
N=263 independent cell lines, distributed among the indicated cancer types. Each dot represents
one cell line. Lines represent median +/- interquartile range. d) All raw cell line viability data at
Day +15 prior to data filtering. N=400 independent cell lines, distributed among the indicated
cancer types. Each dot represents one cell line. Lines represent median +/- interquartile range.
e) Cell line viability data at Day +15 after data filtering. N=263 independent cell lines, distributed
among the indicated cancer types. Each dot represents one cell line. Lines represent median +/-
interquartile range. f) Correlation of GREP1 sgRNAs at Day +6 using filtered data. N=263
independent cell lines. P value for the two-sided Spearman’s rho is shown. g) Spearman’s
correlation of GREP1 sgRNAs at Day +15 using filtered data. N=263 independent cell lines. P
value for the two-sided Spearman’s rho is shown. h) GREP1 locus copy number profile across cell
line tumor types using Cancer Cell Line Encyclopedia data. No cell lineage harbors high-level
amplifications. N=731 independent cell lines, distributed among the indicated cancer types.
Each dot represents one cell line.
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A GREP1 sgRNA#1
sgRNA sequence: ACTCAAAATGGCTATAGACC
Amplicon:

GGCCTTAACCCTTTCTCTCCTCCACAGGCCCCACCACTCAAAATGG
CTATAGACCAGGTAGGGGCGGGGCTGGGGTTTGGGGAGGCCCAG
AGCTGGGGCCCCAGGTTCCTCACCTGCTCCCTGTCTCTCCACCAG
GCTATGTGGGGGCCGTCAAACCCCAGAAGCCAGGTGAGCCCTGCC
CCGGCCTGTCCCTCTGCCTCCCCAAAACCTGAGCTCCCTCCCCTC

ATTCATACCCCGCCTTGAT

GREP1 sgRNA #2
sgRNA sequence: AGGCTTTAGAGGGGACATGA
Amplicon:

TTCTGGGGTGGATCTGAGTTGGGGGCTCCTAGGTACCTCATCTGC
TCCCCATTTTCCCAAAGGCTTTAGAGGGGACATGAAGGCACAGGA

GCCAGGTAAGCCTGGCTCTCCCGGGCTTCTGTCTCCCCAGTGTTC

AGAGCCCCCTTCCCCCTCTCACCCCCACCTCCATCTGTCCCCCAG

GATTAGGGAATGGGAATGGG
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Supplementary Figure 12: Genome modifications observed with GREP1 sgRNAs.

a) GREP1 sgRNA sequences and genomic amplicon subjected to sequencing for modifications. b)
The fraction of modified reads from the GREP1 sgRNA amplicons in cells treated with either
c) The landscape of genomic amplicon
modifications for the sgGREP1 #1 locus in cells subjected to control sgCh2-2 knockout. d) The
landscape of genomic amplicon modifications for the sgGREP1 #1 locus in cells subjected to

control sgCh2-2 knockout of GREP1 knockout.
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GREP1 knockout with sgGREP1 #1. e) The landscape of genomic amplicon modifications for the
sgGREP1 #2 locus in cells subjected to control sgCh2-2 knockout. f) The landscape of genomic
amplicon modifications for the sgGREP1 #2 locus in cells subjected to GREP1 knockout with
sgGREP1 #2.
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Supplementary Figure 13: Increased GDF15 secretion is specific to GREP1 overexpression and
not changed by mutation of glycosylation sites.

a) Expression of GREP1 specifically increases GDF15 abundance with non-specific genome
cutting and specific genome cutting. Genomic cutting with the sgCh2-2 chromosome 2 locus
does not elevate GDF15 abundance in conjunction with GFP overexpression, but genomic cutting
with sgCh2-2 along with GREP1 overexpression increases GDF15 abundance. Genomic knockout
of GDF15 is partially rescued by GREP1 overexpression. N=3 technical replicates and N=2
independent biological replicates. Barplots represent mean +/- standard deviation. b) GDF15
abundance in cell culture media 24 hours after ectopic expression of GFP or GREP1, or treatment
with a toxic dose (10uM) of the indicated pharmacologic inhibitors. Pharmacologic inhibitors do
not elevate GDF15 levels. N=3 technical replicates and N=2 independent biological replicates.
Barplots represent mean +/- standard deviation. c) Ectopic expression of GREP1 glycosylation
mutants result in equivalent GDF15 accumulation compared to wild type GREP1. N=3 technical
replicates and N=2 independent biological replicates. Barplots represent mean +/- standard
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deviation. d) Left, Commassie stained gel demonstrating protein expression of GREP1 constructs
in the whole cell lysate for the experiment shown in c. Right, Commassie stained gel
demonstrated abundance of GREP1 in the conditioned media for the experiment shown inc. P
values in this figure determined by a two-tailed Student’s T test.
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Supplementary discussion

Historical perspectives on the human genome annotation

The human genome is now generally felt to have ~19,029 protein-coding genes (Homo sapiens
CCDS release 22 as of October 10, 2019). The single largest gene discovery project was the
Human Genome Project (HGP). The RefSeq database included approximately ~10,000 genes
prior to publication of the HGPY?, which had doubled from the 4,270 genes in the July 1995
GenBank Release 89.93. Many of these genes were known from positional cloning and other
techniques.

The initial HGP in 2001 postulated 30,000 - 40,000 human genes. By itself, this was a dramatic
reduction in the ~50,000 - ~100,000 anticipated genes*®. However, by the revision of the HGP
in 2004, this number had been decreased to 20,000 - 25,000’. It was subsequently reduced to
~19,000, with ~17,600 confidently observed by mass spectrometry®. This number has been the
current estimate for the past 10 years and the number used as the basis of all exome sequencing
studies.

Assumptions made during gene discovery

In the HGP, mRNAs were queried for the presence of an open reading frame that was >= 100
amino acids and began with a methionine start codon. If present, this ORF was reported as a
novel protein in the HGP. Such methods had basis in precedent, but were not without challenges:
the established noncoding RNA Xist was initially reported to have a 894 bp ORF® until it was
determined that this ORF was not actually coded?.

Proteins less than 100 amino acids were included in the HGP only if they had been previously
known, as such ORFs were difficult to predict due to noise from existing cDNA fragments at that
time. Therefore, ORFs less than 100 amino acids were not nominated solely based on
computational analyses™3,

Protein size and function

There is no specific scientific rationale for why smaller proteins would be less real. An analysis
by John Mattick and colleagues suggested that an ORF of >100 amino acids was approximately
two standard deviations above the average random ORF size in a random 1kb segment of genome
sequence'®. This is statistic, though, is not particularly meaningful as most genes are much longer
than 1000bp due to extended untranslated regions (UTRs). However, it highlights the challenge
in computationally separating signal from noise.

It is not clear whether there is a minimum size required for peptide/protein function. The
smallest known functional unit is a zinc finger, which is an aggregation of the Cys,-His, four amino
acid motif. It is typically thought that a minimum of four or five such motifs are required for
functional zinc finger DNA binding, thus suggesting that a peptide of 20 amino acids or greater
may be eligible for this function. Secondary structure for a peptide may exist with as few as four
or five amino acids®®, and enkephalins are five amino acid peptides found in the central nervous
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system and thought to be functional'®. An alpha helical peptide can be stably produced with 14
amino acids'’. There are also now known proteins less than 50 amino acids*®*.

Skew in the size distribution of annotated proteins
Most annotated proteins are >100 amino acids in most organisms. As shown below, the fraction
of the annotated proteome for humans, C. elegans, D. melanogaster and D. rerio.

Human Danio rerio Drosophila C.Elegans
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Among human proteins <100 amino acids, 61% are 90 - 99 amino acids large, and thus proteins
< 90 amino acids are very rare in annotated databases. Below these data are shown in figure
formation for H. sapiens.
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Fraction of proteins

Methods to validate a putative protein

Once a potential protein is identified, there are many possible ways to demonstrate its existence.
Mass spectrometry of endogenous peptides can provide evidence, though small proteins often
have few trypic sites and may not perform well by mass spectrometry. Also, many unannotated
proteins are likely lineage-restricted and may not be historically well represented in the mature
tissues profiled by mass spectrometry.

Tag-free biochemical transcription/translation with rabbit or wheat germ lysates can be used,
but these assays have a high false negative rate and are biochemical assays only. In vitro studies
can include ribosome profiling/polysome association to see if the mRNA is bound by ribosomes,
though this is not direct evidence of translation. Other in vitro studies are exogenously
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expressing an epitope-tagged plasmid construct. However, the epitope tags may destabilize
small proteins, leading to protein elimination.

Other approaches include development of a new antibody for a protein for experimental use.
This approach is limited as it is expensive and takes a significant amount of time. A genetic knock-
in of a fusion-tagged cDNA is also possible, but again costly and time-intensive.

Expression of the ORFeome compared to other IncRNAs

It is well-established that, in general, so-called IncRNAs are more tissue-restricted and lower
expressed than annotated human proteins?®?l. To evaluate the expression level of the ORFs in
our ORFeome, we were able to extract gene expression data for 13,049 ncRNA, 18,165 mRNA,
and 446 of our ORFs in the Cancer Cell Line Encyclopedia dataset??. We found that the ORFs were
significantly higher expressed than baseline ncRNAs, though less highly expressed than canonical
proteins. See figure below (p values by the Kolmogorov-Smirnov test):
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Features of the ORFeome amino acid sequences

For the 490 ORFeome ORFs with predicted amino acid sequences longer than 40 amino acids, we
evaluated several biophysical properties, including protein sequence length, number of protein
binding-sites, aggregation propensity, disorder and number of Pfam-annotated protein domains.
First, the amino acid sequences of these ORFs suggest that they have a large proportion of their
outer surface exposed to water (73% + 0.4%), have a high number of predicted protein-binding
sites (12.79 * 0.2 per 100 aa) and disorder (0.98 + 0.04 per 100 aa), and that have few Pfam-
annotated protein domains (0.08 + 0.01 per 100 aa). In contrast, average mammalian genes,
including human genes, encode much longer proteins of ~¥500 aa that have a low amount of
disorder and high aggregation propensity?324.

Distinguishing a predictive structural model from background signal

Predicting protein structure was performed with the PHYRE2 server? for the 530 ORFs that were
>= 40 amino acids in length. To control for the chance of randomly predicted protein structure,
we created a score to distinguish background signal. Each amino acid sequence was given a
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percent confidence score and an alignment coverage percentage by the PHYRE2 server. We
multiplied these two numbers together to create a protein structure score. We then
computationally generated a list of 500 random 150 amino acid peptides with a methionine start
site, and analyzed these in the same manner. We used the distribution of these datasets to
define a threshold for determining the presence of a robust structural prediction.

Updated annotation status of the ORFs in this manuscript

This project was initiated in January 2016 and therefore we employed databases available at that
time. Over the past several years, these gene annotation databases have been updated, but our
study was not able to accommodate changes in annotation status due to the nature of large-
scale ORF and CRISPR library generation for functional genomics. Therefore, a subset of the
genes included in this study are now annotated in the recent versions of GENCODE. A few of the
ORFs in this study have now been functionally characterized and published in other studies as
well.

We have now re-evaluated the annotation status of our ORFs in GENCODE v31. There are 61
ORFs that are now annotated as protein-coding in GENCODE v31. 43 of these 61 (70.5%) are
annotated as the same ORF in GENCODE v31 as in our ORFeome. 2 of the 61 are annotated as
different ORFs in the two databases. 44 of the 61 (74%) validated in our V5 western blot assay
as a translated protein. The table below shows a list of ORFs that are now annotated as protein-
coding, along with the current transcript name and a publication investigating that ORF, if
available.

Name GENCODE v31 name Validation Validated? Publications
percentile

LINCO1420 NBDY 1 Yes 8,26-28

LINCOO116 MTLN 0.998 Yes 27,29,30

CHTF8 DERPC 0.996 Yes 31

ASNSD1 ASDURF 0.989 Yes 8,28

RPP14_ORF1 HTD2 0.972 Yes

RP11-429)17.8 IQANK1 0.971 Yes

LINC00693 AC098650.1 0.967 Yes

LOC105371267 AC007906.2 0.965 Yes

AATK1-AS1 PVALEF 0.961 Yes

LINCO1314 CTXND1 0.958 Yes

LOC284023 RNF227 0.956 Yes
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LINC0O0371 C13o0rf42 0.954 Yes

LOC93622 AC093323.1 0.945 Yes 32
LOC728743 AC073111.4 0.943 Yes

PIGBOS1 PIGBOS1 0.932 Yes

RP11-680F20.6 VSIG10L2 0.929 Yes

EFCAB10 EFCAB10 0.923 Yes

G029442 LINCO0514 0.916 Yes

LOC389332 SMIM32 0.902 Yes

LINCO0176 C200rf204 0.882 Yes

RP11-195B21.3 RP11-195B21.3 0.869 Yes

MIEF1 AL022312.1 0.865 Yes 8,28,33
SLC35A4_ORF1 SLC34A4 0.856 Yes 8,28
ERVK3-1 ERVK3-1 0.831 Yes

LINCO0094 BRD30S 0.822 Yes

ZNF525 ZNF525 0.818 Yes

LOC100133315 AP002495.1 0.817 Yes

AP000783.1 GRAM1B 0.809 Yes

TINCR TINCR 0.8 Yes

C5o0rf56 AC116366.3 0.798 Yes

MKKS AL034430.2 0.789 Yes 8,28,34
NCBP2-AS2 NCBP2AS2 0.784 Yes

FAM83H-AS1 IQANK1 0.782 Yes

TOPORS-AS1 SMIM27 0.78 Yes

RP11-689K5.3 part of RASGEF1B 0.759 Yes

LINCO0961 SPAAR 0.74 Yes 35
CTD-3088G3.8 AC099489.1 0.73 Yes
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LINC00493 SMIM26 0.719 Yes
LINC00998 SMIM30 0.684 Yes
LINC01272 SMIM25 0.679 Yes
G086960 PRRT1B 0.641 Yes
ZNF738 ZNF738 0.548 Yes
RP11-53915.1 part of HSPA12A 0.536 Yes
RP11-166B2.1 NPIPB2 0.516 No
SNHG3 Part of RCC1 0.512 No
DDIT3 AC022506.1 0.51 No
AP000783.2 GRAM1B 0.503 No
PNRC2 PNRC2 0.498 No
TCONS_I2_00007040 CFAP97D2 0.465 No
ZNF66 ZNF66 0.413 No
FAM220A AC009412.1 0.409 No
LOC100507002 Part of RGS9 0.369 No
RP11-345F18.1 EXOC1L 0.269 No
SPTY2D1-AS1 SPTY2D10S 0.24 No
MMP24-AS1 MMP240S 0.192 No
LINCO0617 TUNAR 0.13 No
LOC105372440 AC010325.1 0.092 No
PTP4A1 AL135905.2 0.056 No
FTCDNL1 FTCDNL1 0.027 No
LINCO0634 LINC00634, but it is a 0.039 No
different ORF
RP11-295G20.2 AL445524.2, but itis a 0.728 Yes

different ORF
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