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Supplementary Figure 1: A flowchart for ORF selection. 
Manual curation of ~9900 ORF loci from the indicated dataset sources were then filtered using 
the indicated biological attributes and selection criteria.  After selection, the 553 ORFs were then 
evaluated by additional metrics as shown.  Please see the Methods for additional details on 
selection criteria.   
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Supplementary Figure 2: Overlap and representation of datasets in the ORFeome library. 
a) The fraction of ORF nominations in a given dataset that are also represented in an independent 
dataset.  Each dot represents a literature source for data.  Box plots represent median and 
interquartile ranges with whiskers indicating minimum and maximum values.  b) A scatter plot 
showing the number of nominated ORFs in a given study compared to the fraction of ORF 
candidates overlapping an independent dataset.  Datasets are color-coded as indicated.  c) A 
barplot showing the fraction of ORFs in the total 9,918 set that are represented in each dataset, 
as well as the fraction of the 553 ORFeome candidates represented in each dataset.  d) The 
relative enrichment of representation in the ORFeome library for each dataset.  Each dot 
represents a dataset and the line shows the median value in the indicated group.  Enrichment is 
calculated as (ORF_fraction_of_total_assessed / ORF_fraction_of_total_included) for each 
dataset.  e) For each dataset, the fraction of tested ORFs that subsequently validated by either 
V5-tag cDNA translation or independent peptide identification in a unique mass spectrometry 
dataset.  The line indicates the median for each group.  Only datasets contributing >5 candidates 
to the ORFeome library are included. 
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Supplementary Figure 3: Thresholds defined for ORF feature analysis.   
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a) The cumulative fraction of selected ORFeome ORFs (n=553) or all manually inspected ORF 
candidates (n=2,395) scoring for the indicated PhastCons values.  b) Raw PhastCons scores for 
the 553 ORFs in the ORFeome, with the indicated threshold used for analysis.  c) The cumulative 
fraction of selected ORFeome ORFs (n=553) or all manually inspected ORF candidates (n=2,395) 
scoring for the indicated PhyloCSF values.  d) Raw PhyloCSF scores for the 553 ORFs in the 
ORFeome, with the indicated threshold used for analysis.  e) The cumulative fraction of selected 
ORFeome ORFs (n=553) or all manually inspected ORF candidates (n=2,395) scoring for the 
indicated read/length abundance ratio.  f) Raw read/length ratios for the 553 ORFs in the 
ORFeome, with the indicated threshold used for analysis.  g) The cumulative fraction of selected 
ORFeome ORFs (n=553) or randomly generated 150mer amino acid sequences (n=500) scoring 
for the indicated structural confidence score.  h) Raw structural confidence scores for the 553 
ORFs in the ORFeome, with the indicated threshold used for analysis.  All p values in this figure 
were calculated by a two-sided Kolmogorov-Smirnov test.  
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Supplementary Figure 4: Most detected peptides have multiple sources identifying them.   
a) A pie chart showing the percentage of identified tryptic peptide sequences that map to a single 
ORF or multiple ORFs, with multi-mapping peptides detailed on the right. b) Left, a Venn diagram 
demonstrating the numbers of peptides found in literature datasets, PeptideAtlas, and Broad 
datasets.  Middle, a pie chart showing the fraction of trypic peptides in the Broad datasets for 
which more than one source reports the peptide. Right, among the peptides with more than one 
Broad source, the majority have at least 5 sources identifying the peptide. c) A scatter plot that 
shows the specific number of identifying sources per peptide.  Data plotted represents only 
peptide spectrum processed at the Broad Institute (e.g. CPTAC), excluding public peptide 
repositories (e.g. PeptideAtlas). 
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Supplementary Figure 5: Pairwise analysis of ORF features and V5 translation in experimental 
assays.  For each pair of criteria, the fraction of ORFs with those two features that validated by 
ORFeome V5 detection is plotted. 
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Supplementary Figure 6: Stratification of validated ORFs by nomination type and cellular 
phenotype.   
a) A bar plot showing the fraction of ORFs within each indicated group that validated by V5 in 
vitro translation assay, endogenous mass spectrometry peptides, or the summation of these. b) 
A stacked bar plot showing the fraction of ORFs within each indicated group that validated when 
stratified by ORF size.  ORF size was stratified into ORFs that were >= 50 amino acids in length, or 
<50 amino acids in length.   
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Supplementary Figure 7: ORF gene expression data on the L1000 platform. 
a) A L1000 perturbational plate layout showing locations of treatment ORFs, non-human 
proteins, untreated wells, and technical positive control ORFs.   b) A second L1000 perturbational 
plate layout showing locations of treatment ORFs, non-human proteins, untreated wells, and 
technical positive control ORFs.  c) Level 5 L1000 data processing (“MODZ” score) and clustering 
of L1000 signatures for positive control ORFs with a TAS score of >= 0.2. Color red in cells denotes 
a connectivity score of 95 percentile or greater (similar signatures); blue denotes <= -95 
percentile (dissimilar signatures).  d) Scatter plots of L1000 data for experimental ORFs.  The Y 
axis represents signature strength and the X axis represents reproducibility, the two metrics used 
to calculate the TAS score.  Each TAS score is indicated by the color code of each individual ORF.  
Each data point represents one ORF.  e) The distribution of replicate reproducibility scores across 
all L1000 experiments.  Red denotes signatures >= 0.2, which indicated that a signature was 
present. Blue denotes signatures < 0.2, which denotes that a signature was not detected.  f) The 
distribution of transcriptional activation scores (TAS) across all L1000 experiments.  Red denotes 
signatures >= 0.2, which indicated that a signature was present. Blue denotes signatures < 0.2, 
which denotes that a signature was not detected.  g) Intersection of replicate reproducibility and 
TAS scores shows a high degree of correlation.  360 signatures were considered positive for both 
replicate reproducibility and high TAS score. 
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Supplementary Figure 8: CRISPR screens for new ORFs. 
a) A barplot and inset table showing the number of sgRNAs per ORF in the primary CRISPR screen.  
b) Frequency distribution of putative CRISPR hits using a viability threshold of log fold change of 
<= -1 or <= -0.5 in the primary CRISPR screen.  c) The percentage of nominated CRISPR hits which 
had minimal detectable expression or expressed above the threshold of >= 0.5 TPM.  d)  The 
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correlation between log fold change values (n=385 independent measurements) for nominated 
CRISPR hits and the CERES score for each gene, which integrates copy number data for each cell 
line. Spearman and Pearson correlations are shown with a two-sided Spearman’s p value shown.  
e) An example of the chr17q23 amplification locus in MCF7 cells.  CRISPR knockout of genes (n=22 
independent experiments) in the locus result in nonspecific cell death due to excessive genomic 
cutting, regardless of gene expression level.  Three putative ORFs were located in this genomic 
region, indicated with red dots in the figure.  f) A histogram showing the fraction of genes that 
would score as a vulnerability gene from a randomly selected set of 500 annotated genes from 
cell lines in the Cancer Dependency Map.  The ORFeome CRISPR screen result is indicated.  g) The 
rate of genes scoring as viability genes in the canonical Avana gene library and the ORFeome 
sgRNA library for the five cell lines shared between both screens.  Barplots represent mean and 
error bars represent standard deviation.  h) The distribution of sgRNAs across various genome 
regions in the secondary CRISPR screen.  i) A histogram showing the number of sgRNAs per ORF 
in the secondary CRISPR screen. 
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Supplementary Figure 9: Specificity and off-target effects of primary CRISPR screen. 
a) A comparison of the fraction of sgRNAs that demonstrated a viability phenotype in the primary 
screen and secondary screen for genes (n=37) that had >5 sgRNAs in both screens.  Significance 
is by a two-sided Spearman’s Rho test.  b) The number of off-target genomic effects of each 
sgRNA (n=4391 independent experiments) compared to the fold change of sgRNA representation 
at the Day 21 timepoint after lentiviral infection in the CRISPR screen.  Three ORFs with off-target 
sgRNAs are highlighted.  c) A violin plot showing the median log2 fold change in sgRNA abundance 
at Day 21 in the primary CRISPR screen for sgRNAs with =< 10 genomic cutting sites (n= 4355 
independent experiments) predicted of >10 genomic cutting sites predicted (n=36 independent 
experiments).  Genomic cutting sites predicted by the Cas-OFFinder algorith.  P value by a two-
tailed Student’s t test. 
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Supplementary Figure 10: Discordant RNAi and CRISPR data for two overlapping ORFs.  
a) The dependency profile for COG7 using RNAi or CRISPR data.  b) A scatter plot comparing the 
magnitude of dependency phenotype for individual cell lines in RNAi or CRISPR data.  c) A 
comparison of the log fold change in cell abundance using the average LFC of the two sgRNAs 
targeting CTD-2270L9.4 and COG7, compared to two sgRNAs targeting COG7 alone.  Only cell 
lines with a viability phenotype in the CTD-2770L9.4 targeting sgRNAs are shown.  N=132 
independent cell lines.  P value by a two-tailed Student’s t test.  d) The dependency profile for 
ZBTB11 in RNAi or CRISPR data.  e) A scatter plot comparing the magnitude of dependency 
phenotype for individual cell lines in RNAi or CRISPR data.  f) A comparison of the log fold change 
in cell abundance using the average LFC of the two sgRNAs targeting ZBTB11 and ZBTB11-AS1, 
compared to two sgRNAs targeting ZBTB11 alone.  Only cell lines with a viability phenotype in 
the ZBTB11-AS1 targeting sgRNAs are shown.  N=384 independent cell lines.  P value by a two-
tailed Student’s t test. 
 
  



15 

 
 

 
 
 



16 

Supplementary Figure 11: Pooled GREP1 knockout across cell lines. 
a) A table summarizing all input cell lines in the pool and filters applied to the data for final 
analysis.  b) All raw cell line viability data at Day +6 prior to data filtering.  N=400 independent 
cell lines, distributed among the indicated cancer types.  Each dot represents one cell line.  Lines 
represent median +/- interquartile range.  c) Cell line viability data at Day +6 after data filtering.  
N=263 independent cell lines, distributed among the indicated cancer types.  Each dot represents 
one cell line.  Lines represent median +/- interquartile range.   d) All raw cell line viability data at 
Day +15 prior to data filtering. N=400 independent cell lines, distributed among the indicated 
cancer types.  Each dot represents one cell line.  Lines represent median +/- interquartile range.  
e) Cell line viability data at Day +15 after data filtering.  N=263 independent cell lines, distributed 
among the indicated cancer types.  Each dot represents one cell line.  Lines represent median +/- 
interquartile range.   f) Correlation of GREP1 sgRNAs at Day +6 using filtered data.  N=263 
independent cell lines.  P value for the two-sided Spearman’s rho is shown.  g) Spearman’s 
correlation of GREP1 sgRNAs at Day +15 using filtered data.  N=263 independent cell lines.  P 
value for the two-sided Spearman’s rho is shown.  h) GREP1 locus copy number profile across cell 
line tumor types using Cancer Cell Line Encyclopedia data.  No cell lineage harbors high-level 
amplifications.  N=731 independent cell lines, distributed among the indicated cancer types.  
Each dot represents one cell line.  
  
 
 
 
  



17 

 
 
 
Supplementary Figure 12: Genome modifications observed with GREP1 sgRNAs.  
a) GREP1 sgRNA sequences and genomic amplicon subjected to sequencing for modifications.  b) 
The fraction of modified reads from the GREP1 sgRNA amplicons in cells treated with either 
control sgCh2-2 knockout of GREP1 knockout.  c) The landscape of genomic amplicon 
modifications for the sgGREP1 #1 locus in cells subjected to control sgCh2-2 knockout. d) The 
landscape of genomic amplicon modifications for the sgGREP1 #1 locus in cells subjected to 
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GREP1 knockout with sgGREP1 #1.  e) The landscape of genomic amplicon modifications for the 
sgGREP1 #2 locus in cells subjected to control sgCh2-2 knockout.  f)  The landscape of genomic  
amplicon modifications for the sgGREP1 #2 locus in cells subjected to GREP1 knockout with 
sgGREP1 #2. 
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Supplementary Figure 13: Increased GDF15 secretion is specific to GREP1 overexpression and 
not changed by mutation of glycosylation sites.   
a)  Expression of GREP1 specifically increases GDF15 abundance with non-specific genome 
cutting and specific genome cutting.  Genomic cutting with the sgCh2-2 chromosome 2 locus 
does not elevate GDF15 abundance in conjunction with GFP overexpression, but genomic cutting 
with sgCh2-2 along with GREP1 overexpression increases GDF15 abundance. Genomic knockout 
of GDF15 is partially rescued by GREP1 overexpression. N=3 technical replicates and N=2 
independent biological replicates.  Barplots represent mean +/- standard deviation. b)  GDF15 
abundance in cell culture media 24 hours after ectopic expression of GFP or GREP1, or treatment 
with a toxic dose (10uM) of the indicated pharmacologic inhibitors. Pharmacologic inhibitors do 
not elevate GDF15 levels.  N=3 technical replicates and N=2 independent biological replicates.  
Barplots represent mean +/- standard deviation.  c) Ectopic expression of GREP1 glycosylation 
mutants result in equivalent GDF15 accumulation compared to wild type GREP1.  N=3 technical 
replicates and N=2 independent biological replicates. Barplots represent mean +/- standard 
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deviation.  d) Left, Commassie stained gel demonstrating protein expression of GREP1 constructs 
in the whole cell lysate for the experiment shown in c.  Right, Commassie stained gel 
demonstrated abundance of GREP1 in the conditioned media for the experiment shown in c.  P 
values in this figure determined by a two-tailed Student’s T test. 
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Supplementary Figure 14: A graphical model 
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Supplementary discussion 
 
Historical perspectives on the human genome annotation 
The human genome is now generally felt to have ~19,029 protein-coding genes (Homo sapiens 
CCDS release 22 as of October 10, 2019).  The single largest gene discovery project was the 
Human Genome Project (HGP).  The RefSeq database included approximately ~10,000 genes 
prior to publication of the HGP1,2, which had doubled from the 4,270 genes in the July 1995 
GenBank Release 89.93.  Many of these genes were known from positional cloning and other 
techniques.   
 
The initial HGP in 2001 postulated 30,000 - 40,000 human genes.  By itself, this was a dramatic 
reduction in the ~50,000 - ~100,000 anticipated genes4–6.   However, by the revision of the HGP 
in 2004, this number had been decreased to 20,000 - 25,0007.  It was subsequently reduced to 
~19,000, with ~17,600 confidently observed by mass spectrometry8.  This number has been the 
current estimate for the past 10 years and the number used as the basis of all exome sequencing 
studies. 
 
Assumptions made during gene discovery 
In the HGP, mRNAs were queried for the presence of an open reading frame that was >= 100 
amino acids and began with a methionine start codon.  If present, this ORF was reported as a 
novel protein in the HGP.  Such methods had basis in precedent, but were not without challenges: 
the established noncoding RNA Xist was initially reported to have a 894 bp ORF9 until it was 
determined that this ORF was not actually coded10. 
 
Proteins less than 100 amino acids were included in the HGP only if they had been previously 
known, as such ORFs were difficult to predict due to noise from existing cDNA fragments at that 
time.  Therefore, ORFs less than 100 amino acids were not nominated solely based on 
computational analyses11–13.   
 
Protein size and function 
There is no specific scientific rationale for why smaller proteins would be less real.  An analysis 
by John Mattick and colleagues suggested that an ORF of >100 amino acids was approximately 
two standard deviations above the average random ORF size in a random 1kb segment of genome 
sequence14.  This is statistic, though, is not particularly meaningful as most genes are much longer 
than 1000bp due to extended untranslated regions (UTRs).  However, it highlights the challenge 
in computationally separating signal from noise. 
 
It is not clear whether there is a minimum size required for peptide/protein function.  The 
smallest known functional unit is a zinc finger, which is an aggregation of the Cys2-His2 four amino 
acid motif.  It is typically thought that a minimum of four or five such motifs are required for 
functional zinc finger DNA binding, thus suggesting that a peptide of 20 amino acids or greater 
may be eligible for this function.  Secondary structure for a peptide may exist with as few as four 
or five amino acids15, and enkephalins are five amino acid peptides found in the central nervous 
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system and thought to be functional16.  An alpha helical peptide can be stably produced with 14 
amino acids17.  There are also now known proteins less than 50 amino acids18,19.   
 
Skew in the size distribution of annotated proteins 
Most annotated proteins are >100 amino acids in most organisms.  As shown below, the fraction 
of the annotated proteome for humans, C. elegans, D. melanogaster and D. rerio. 
 

 
 
Among human proteins <100 amino acids, 61% are 90 - 99 amino acids large, and thus proteins 
< 90 amino acids are very rare in annotated databases.  Below these data are shown in figure 
formation for H. sapiens. 
 

 
 
Methods to validate a putative protein 
Once a potential protein is identified, there are many possible ways to demonstrate its existence.  
Mass spectrometry of endogenous peptides can provide evidence, though small proteins often 
have few trypic sites and may not perform well by mass spectrometry.  Also, many unannotated 
proteins are likely lineage-restricted and may not be historically well represented in the mature 
tissues profiled by mass spectrometry. 
 
Tag-free biochemical transcription/translation with rabbit or wheat germ lysates can be used, 
but these assays have a high false negative rate and are biochemical assays only.  In vitro studies 
can include ribosome profiling/polysome association to see if the mRNA is bound by ribosomes, 
though this is not direct evidence of translation.  Other in vitro studies are exogenously 
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expressing an epitope-tagged plasmid construct.  However, the epitope tags may destabilize 
small proteins, leading to protein elimination. 
 
Other approaches include development of a new antibody for a protein for experimental use.  
This approach is limited as it is expensive and takes a significant amount of time.  A genetic knock-
in of a fusion-tagged cDNA is also possible, but again costly and time-intensive. 
 
Expression of the ORFeome compared to other lncRNAs 
It is well-established that, in general, so-called lncRNAs are more tissue-restricted and lower 
expressed than annotated human proteins20,21.  To evaluate the expression level of the ORFs in 
our ORFeome, we were able to extract gene expression data for 13,049 ncRNA, 18,165 mRNA, 
and 446 of our ORFs in the Cancer Cell Line Encyclopedia dataset22.  We found that the ORFs were 
significantly higher expressed than baseline ncRNAs, though less highly expressed than canonical 
proteins.  See figure below (p values by the Kolmogorov-Smirnov test): 
 

 
 
Features of the ORFeome amino acid sequences 
For the 490 ORFeome ORFs with predicted amino acid sequences longer than 40 amino acids, we 
evaluated several biophysical properties, including protein sequence length, number of protein 
binding-sites, aggregation propensity, disorder and number of Pfam-annotated protein domains. 
First, the amino acid sequences of these ORFs suggest that they have a large proportion of their 
outer surface exposed to water (73% ± 0.4%), have a high number of predicted protein-binding 
sites (12.79 ± 0.2 per 100 aa) and disorder (0.98 ± 0.04 per 100 aa), and that have few Pfam-
annotated protein domains (0.08 ± 0.01 per 100 aa). In contrast, average mammalian genes, 
including human genes, encode much longer proteins of ~500 aa that have a low amount of 
disorder and high aggregation propensity23,24. 
 
Distinguishing a predictive structural model from background signal 
Predicting protein structure was performed with the PHYRE2 server25 for the 530 ORFs that were 
>= 40 amino acids in length.  To control for the chance of randomly predicted protein structure, 
we created a score to distinguish background signal.  Each amino acid sequence was given a 
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percent confidence score and an alignment coverage percentage by the PHYRE2 server.  We 
multiplied these two numbers together to create a protein structure score.  We then 
computationally generated a list of 500 random 150 amino acid peptides with a methionine start 
site, and analyzed these in the same manner.  We used the distribution of these datasets to 
define a threshold for determining the presence of a robust structural prediction.  
 
Updated annotation status of the ORFs in this manuscript 
This project was initiated in January 2016 and therefore we employed databases available at that 
time.  Over the past several years, these gene annotation databases have been updated, but our 
study was not able to accommodate changes in annotation status due to the nature of large-
scale ORF and CRISPR library generation for functional genomics.  Therefore, a subset of the 
genes included in this study are now annotated in the recent versions of GENCODE.  A few of the 
ORFs in this study have now been functionally characterized and published in other studies as 
well.  
 
We have now re-evaluated the annotation status of our ORFs in GENCODE v31.  There are 61 
ORFs that are now annotated as protein-coding in GENCODE v31.  43 of these 61 (70.5%) are 
annotated as the same ORF in GENCODE v31 as in our ORFeome.  2 of the 61 are annotated as 
different ORFs in the two databases.  44 of the 61 (74%) validated in our V5 western blot assay 
as a translated protein.  The table below shows a list of ORFs that are now annotated as protein-
coding, along with the current transcript name and a publication investigating that ORF, if 
available. 
 
 

Name GENCODE v31 name Validation 
percentile 

Validated? Publications 

LINC01420 NBDY 1 Yes 8,26–28 

LINC00116 MTLN 0.998 Yes 27,29,30  

CHTF8 DERPC 0.996 Yes 31 

ASNSD1 ASDURF 0.989 Yes 8,28  

RPP14_ORF1 HTD2 0.972 Yes   

RP11-429J17.8 IQANK1 0.971 Yes   

LINC00693 AC098650.1 0.967 Yes   

LOC105371267 AC007906.2 0.965 Yes   

AATK1-AS1 PVALEF 0.961 Yes   

LINC01314 CTXND1 0.958 Yes   

LOC284023 RNF227 0.956 Yes   
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LINC00371 C13orf42 0.954 Yes   

LOC93622 AC093323.1 0.945 Yes 32 

LOC728743 AC073111.4 0.943 Yes   

PIGBOS1 PIGBOS1 0.932 Yes   

RP11-680F20.6 VSIG10L2 0.929 Yes   

EFCAB10 EFCAB10 0.923 Yes   

G029442 LINC00514 0.916 Yes   

LOC389332 SMIM32 0.902 Yes   

LINC00176 C20orf204 0.882 Yes   

RP11-195B21.3 RP11-195B21.3 0.869 Yes   

MIEF1 AL022312.1 0.865 Yes 8,28,33 

SLC35A4_ORF1 SLC34A4 0.856 Yes 8,28 

ERVK3-1 ERVK3-1 0.831 Yes   

LINC00094 BRD3OS 0.822 Yes   

ZNF525 ZNF525 0.818 Yes   

LOC100133315 AP002495.1 0.817 Yes   

AP000783.1 GRAM1B 0.809 Yes   

TINCR TINCR 0.8 Yes   

C5orf56 AC116366.3 0.798 Yes   

MKKS AL034430.2 0.789 Yes 8,28,34 

NCBP2-AS2 NCBP2AS2 0.784 Yes   

FAM83H-AS1 IQANK1 0.782 Yes   

TOPORS-AS1 SMIM27 0.78 Yes   

RP11-689K5.3 part of RASGEF1B 0.759 Yes   

LINC00961 SPAAR 0.74 Yes 35 

CTD-3088G3.8 AC099489.1 0.73 Yes   
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LINC00493 SMIM26 0.719 Yes   

LINC00998 SMIM30 0.684 Yes   

LINC01272 SMIM25 0.679 Yes   

G086960 PRRT1B 0.641 Yes   

ZNF738 ZNF738 0.548 Yes   

RP11-539I5.1 part of HSPA12A 0.536 Yes   

RP11-166B2.1 NPIPB2 0.516 No   

SNHG3 Part of RCC1 0.512 No   

DDIT3 AC022506.1 0.51 No   

AP000783.2 GRAM1B 0.503 No   

PNRC2 PNRC2 0.498 No   

TCONS_I2_00007040 CFAP97D2 0.465 No   

ZNF66 ZNF66 0.413 No   

FAM220A AC009412.1 0.409 No   

LOC100507002 Part of RGS9 0.369 No   

RP11-345F18.1 EXOC1L 0.269 No   

SPTY2D1-AS1 SPTY2D1OS 0.24 No   

MMP24-AS1 MMP24OS 0.192 No   

LINC00617 TUNAR 0.13 No   

LOC105372440 AC010325.1 0.092 No   

PTP4A1 AL135905.2 0.056 No   

FTCDNL1 FTCDNL1 0.027 No   

LINC00634 LINC00634, but it is a 
different ORF 

0.039 No   

RP11-295G20.2 AL445524.2, but it is a 
different ORF 

0.728 Yes   
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