Supplementary Materials

Plasma biomarkers of Alzheimer's disease improve prediction of cognitive decline in cognitively unimpaired elderly populations

Nicholas C. Cullen, B.S.¹, Antoine Leuzy, Ph.D.¹, Shorena Janelidze, Ph.D.¹, Sebastian Palmqvist, M.D.^{1,2}, Anna L. Svenningsson, M.D.^{1,2}, Erik Stomrud, M.D.^{1,2}, Jeffrey L. Dage, Ph.D.³, Niklas Mattsson-Carlgren, M.D.^{1,4,5,†}, Oskar Hansson, M.D.^{1,2,†}

¹Lund University, Clinical Memory Research Unit, Lund, Sweden; ²Memory Clinic, Skåne University Hospital, Lund, Sweden; ³Eli Lilly and Company, Indianapolis, IN, USA; ⁴Department of Neurology, Skåne University Hospital, Lund, Sweden; ⁵Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden

[†]Contributed equally as senior authors

Supplementary Tables

Supplementary Table 1. Association between plasma biomarkers and longitudinal

		Beta Coefficient	,	R ² Ref: Basic M		e Model
Model	Plasma Aβ42/Aβ40	Plasma P-tau217	Plasma NfL	[95% CI]	P value	ΑΙCΔ
ATN	-0.15 [0.05, 0.24] (P=0.0025)	-0.15 [-0.25, -0.06] (P=0.0020)	-0.12 [-0.21, -0.02] (P=0.0142)	0.15 [0.12, 0.17]	<0.0001	-28
А	-0.19 [0.09, 0.28] (P=0.0001)			0.11 [0.09, 0.14]	0.0002	-14
Т		-0.20 [-0.30, -0.11] (P<0.0001)		0.10 [0.08, 0.13]	0.0001	-14
N			-0.15 [-0.25, -0.06] (P=0.0017)	0.10 [0.09, 0.14]	0.0016	-9

PACC with additional covariate adjustment for APOE e4 status

This table shows the results from fitting linear mixed effects models with longitudinal PACC as outcome and plasma biomarkers added separately or all together to a basic model consisting of age, sex, education, and *APOE* status. Beta coefficients are presented in terms of "PACC points / year per standard deviation change in biomarker value." R² values were evaluated at the four-year follow-up point, and confidence intervals were calculated using 1000 bootstrapped samples. The basic model consisting of only demographics had R² = 0.07 (95% CI [0.07, 0.11]) and AIC = 6700. Legend: P-values represent an ANOVA comparison to the basic model; AIC_Δ values represent the change in AIC compared to the basic model and an AIC_Δ value of -2 or lower implies a better fit than the basic model. All statistical tests were two-sided with no adjustment for multiple comparisons.

Supplementary Table 2. Association between plasma biomarkers and longitudinal

MMSE

		Beta Coefficient	,	R ²	Ref: Basic	e Model
Model	Plasma Aβ42/Aβ40	Plasma P-tau217	Plasma NfL	[95% CI]	P value	ΑΙCΔ
ATN	-0.05 [-0.10, -0.01] (P=0.0238)	-0.06 [-0.11, -0.01] (P=0.0122)	-0.07 [-0.12, -0.03] (P=0.0026)	0.10 [0.06, 0.11]	<0.0001	-21
А	-0.07 [-0.12, -0.03] (P=0.0022)			0.06 [0.04, 0.07]	0.0015	-10
Т		-0.09 [-0.13, -0.04] (P=0.0004)		0.07 [0.03, 0.08]	0.001	-10
N			-0.09 [-0.14, -0.04] (P=0.0003)	0.06 [0.03, 0.09]	0.001	-10

This table shows the results from fitting linear mixed effects models with longitudinal MMSE as outcome and plasma biomarkers added separately or all together to a basic model consisting of age, sex, and education. Beta coefficients are presented in terms of "MMSE points / year per standard deviation change in biomarker value." R² values were evaluated at the four-year follow-up point, and confidence intervals were calculated using 1000 bootstrapped samples. The basic model consisting of only demographics had R² = 0.04 (95% CI [0.02, 0.05]) and AIC = 4702. Legend: P-values represent an ANOVA comparison to the basic model; AIC_Δ values represent the change in AIC compared to the basic model and an AIC_Δ value of -2 or lower implies a better fit than the basic model. All statistical tests were two-sided with no adjustment for multiple comparisons.

Supplementary Table 3. Association between plasma biomarkers and longitudinal

		Beta Coefficient		R ²	Ref: Basic	e Model
Model	Plasma Aβ42/Aβ40	Plasma P-tau217	Plasma NfL	[95% CI]	P value	ΑΙCΔ
ATN	-0.14 [-0.24, -0.05] (P=0.0029)	-0.16 [-0.25, -0.06] (P=0.0011)	-0.13 [-0.23, -0.04] (P=0.0056)	0.22 [0.18, 0.26]	<0.0001	-30
А	-0.19 [-0.28, -0.09] (P=0.0001)			0.20 [0.16, 0.24]	0.0001	-14
Т		-0.21 [-0.30, -0.12] (P<0.0001)		0.18 [0.15, 0.22]	0.0001	-15
N			-0.17 [-0.26, -0.07] (P=0.0005)	0.19 [0.15, 0.23]	0.0006	-11

PACC with additional covariate adjustment for diagnostic status

This table shows the results from fitting linear mixed effects models with longitudinal PACC as outcome and plasma biomarkers added separately or all together to a basic model consisting of age, sex, and education, along with additional adjustment for diagnostic status on both baseline and change in PACC. Beta coefficients are presented in terms of "PACC points / year per standard deviation change in biomarker value." R² values were evaluated at the four-year follow-up point, and confidence intervals were calculated using 1000 bootstrapped samples. The basic model consisting of only demographics had R² = 0.17 (95% CI [0.13, 0.21]) and AIC = 6644. Legend: P-values represent an ANOVA comparison to the basic model; AIC_Δ values represent the change in AIC compared to the basic model and an AIC_Δ value of -2 or lower implies a better fit than the basic model. All statistical tests were two-sided with no adjustment for multiple comparisons.

		Beta Coefficient		R ²	Ref: Basic	e Model
Model	Plasma Aβ42/Aβ40	Plasma P-tau217	Plasma NfL	[95% CI]	P value	ΑΙCΔ
ATN	-0.26 [-0.34, -0.17] (P<0.0001)	-0.20 [-0.30, -0.10] (P=0.0001)	-0.20 [-0.30, -0.11] (P<0.0001)	0.25 [0.21, 0.28]	<0.0001	-98
A	-0.25 [-0.34, -0.16] (P<0.0001)			0.13 [0.11, 0.17]	<0.0001	-30
Т		-0.28 [-0.37, -0.18] (P<0.0001)		0.14 [0.12, 0.17]	<0.0001	-34
N			-0.30 [-0.39, -0.21] (P<0.0001)	0.18 [0.14, 0.21]	<0.0001	-52

Supplementary Table 4. Association between CSF biomarkers and longitudinal PACC

This table shows the results from fitting linear mixed effects models with longitudinal PACC as outcome and CSF biomarkers added separately or all together to a basic model consisting of age, sex, and education. Beta coefficients are presented in terms of "PACC points / year per standard deviation change in biomarker value." R^2 values were evaluated at the four-year follow-up point, and confidence intervals were calculated using 1000 bootstrapped samples. The basic model consisting of only demographics had $R^2 = 0.07$ (95% CI [0.06, 0.11]) and AIC = 6699. Legend: P-values represent an ANOVA comparison to the basic model; AIC_Δ values represent the change in AIC compared to the basic model and an AIC_Δ value of -2 or lower implies a better fit than the basic model. All statistical tests were two-sided with no adjustment for multiple comparisons.

Supplementary Table 5. Association between plasma biomarkers and conversion to AD dementia with additional covariate adjustment for APOE e4 status

	Hazard Ratio			AUC	Ref: Basi	c Model
Model	Plasma Aβ42/Aβ40	Plasma P-tau217	Plasma NfL	[95% CI]	P value	ΑΙCΔ
ATN	1.57 [1.02, 2.43] (P=0.0423)	2.71 [1.44, 5.10] (P=0.0021)	1.09 [0.67, 1.78] (P=0.7202)	0.86 [0.82, 0.93]	0.0002	-14
А	1.69 [1.13, 2.55] (P=0.0114)			0.81 [0.77, 0.89]	0.0141	-4
Т		2.99 [1.64, 5.48] (P=0.0004)		0.84 [0.75, 0.91]	0.0001	-13
N			1.47 [0.95, 2.29] (P=0.0859)	0.79 [0.72, 0.89]	0.0918	-1

This table shows the results from fitting Cox regression models with conversion to AD as outcome and plasma biomarkers added separately or all together to a basic model consisting of age, sex, education, and *APOE* status. Hazard ratios are presented in terms of "increased risk of converting to AD for each standard deviation change in biomarker value." AUC values were evaluated at the four-year follow-up point, and confidence intervals were calculated using 1000 bootstrapped samples. The basic model consisting of only demographics had AUC = 0.78 (95% CI [0.70, 0.91]) and AIC = 253. Legend: P-values represent an ANOVA comparison to the basic model; AIC_Δ values represent the change in AIC compared to the basic model and an AIC_Δ value of -2 or lower implies a better fit than the basic model. All statistical tests were two-sided with no adjustment for multiple comparisons.

Supplementary Table 6. Association between plasma biomarkers and conversion to all-

cause	dementi	a

	Hazard Ratio			AUC	Ref: Basi	c Model
Model	Plasma Aβ42/Aβ40	Plasma P-tau217	Plasma NfL	[95% CI]	P value	ΑΙCΔ
ATN	1.72 [1.22, 2.42] (P=0.0019)	1.93 [1.21, 3.07] (P=0.0055)	1.25 [0.85, 1.85] (P=0.2617)	0.75 [0.68, 0.84]	<0.0001	-21
А	1.84 [1.34, 2.53] (P=0.0002)			0.73 [0.67, 0.82]	0.0002	-11
Т		2.36 [1.50, 3.71] (P=0.0002)		0.72 [0.63, 0.82]	<0.0001	-14
N			1.54 [1.06, 2.24] (P=0.0246)	0.68 [0.60, 0.78]	0.0274	-3

This table shows the results from fitting Cox regression models with conversion to all-cause dementia as outcome and plasma biomarkers added separately or all together to a basic model consisting of age, sex, and education. Hazard ratios are presented in terms of "increased risk of converting to all-cause dementia for each standard deviation change in biomarker value." AUC values were evaluated at the four-year follow-up point, and confidence intervals were calculated using 1000 bootstrapped samples. The basic model consisting of only demographics had AUC = 0.66 (95% CI [0.57, 0.75]) and AIC = 368. Legend: P-values represent an ANOVA comparison to the basic model; AIC_{Δ} values represent the change in AIC compared to the basic model and an AIC_{Δ} value of -2 or lower implies a better fit than the basic model. All statistical tests were two-sided with no adjustment for multiple comparisons.

Supplementary Table 7. Association between plasma biomarkers and conversion to AD

		Hazard Ratio		AUC	Ref: Basi	c Model
Model	Plasma Aβ42/Aβ40	Plasma P-tau217	Plasma NfL	[95% CI]	P value	AIC
ATN	1.76 [1.13, 2.75] (P=0.0119)	3.27 [1.75, 6.11] (P=0.0002)	1.12 [0.64, 1.97] (P=0.6808)	0.92 [0.89, 0.95]	<0.0001	-27
А	1.90 [1.28, 2.82] (P=0.0014)			0.89 [0.85, 0.93]	0.0015	-8
Т		3.83 [2.10, 6.97] (P<0.0001)		0.91 [0.87, 0.95]	<0.0001	-24
N			1.60 [1.00, 2.55] (P=0.0493)	0.86 [0.81, 0.91]	0.0558	-2

dementia with additional covariate adjustment for diagnostic status

This table shows the results from fitting Cox regression models with conversion to AD as outcome and plasma biomarkers added separately or all together to a basic model consisting of age, sex, education, and *APOE* status, along with additional adjustment for diagnostic status. Hazard ratios are presented in terms of "increased risk of converting to AD for each standard deviation change in biomarker value." AUC values were evaluated at the four-year follow-up point, and confidence intervals were calculated using 1000 bootstrapped samples. The basic model consisting of only demographics had AUC = 0.86 (95% CI [0.80, 0.92]) and AIC = 243. Legend: P-values represent an ANOVA comparison to the basic model; AIC_Δ values represent the change in AIC compared to the basic model and an AIC_Δ value of -2 or lower implies a better fit than the basic model. All statistical tests were two-sided with no adjustment for multiple comparisons.

Trial Endpoint	Biomarker	Sample Size Reduction (%)	P-value
	Plasma Aβ42/Aβ40	45 [20, 63]	0.0032
Change in PACC	Plasma P-tau217	47 [16, 65]	0.0072
	Plasma NfL	41 [5, 63]	0.028
	Combined Model	70 [54, 81]	< 0.001
	Plasma Aβ42/Aβ40	48 [38, 56]	< 0.001
Conversion to AD	Plasma P-tau217	50 [35, 60]	0.0008
	Plasma NfL	24 [-10, 45]	0.2096
	Combined Model	63 [53, 70]	< 0.001

Supplementary Table 8. Power analysis for a theoretical clinical trial

This tables shows the reduction in sample size resulting from using plasma biomarkers for inclusion enrichment in theoretical clinical trials aimed at slowing decline in PACC or reducing risk of conversion to AD dementia in a CU population. Sample sizes were estimated for a clinical trial in which pre-defined cutoffs for each biomarker were used as a screening inclusion threshold. Sample size reductions presented in the table are for the enriched trial relative to a trial which does not use any biomarkers for screening/enrichment. Pre-defined threshold values are described in the methods section. Confidence intervals were derived using 1000 bootstrapped trials. All statistical tests were two-sided with no adjustment for multiple comparisons.

Supplementary Table 9. Power analysis for a theoretical clinical trial in SCD

individuals only

Trial Endnoint	Biomarker	Sample Size	P-value	
	Diomarker	Reduction (%)	I -value	
	Plasma Aβ42/Aβ40	51 [17, 75]	0.0072	
Change in PACC	Plasma P-tau217	44 [-10, 70]	0.0976	
enunge in Tree	Plasma NfL	61 [25, 82]	0.0096	
	Combined Model	73 [53, 87]	< 0.001	
	Plasma Aβ42/Aβ40	48 [37, 58]	< 0.001	
Conversion to AD	Plasma P-tau217	45 [25, 58]	0.004	
	Plasma NfL	29 [-10, 50]	0.1528	
	Combined Model	61 [50, 70]	< 0.001	

This tables shows the reduction in sample size resulting from using plasma biomarkers for inclusion enrichment in theoretical clinical trials aimed at slowing decline in PACC or reducing risk of conversion to AD dementia in a CU population which has already been screened for subjective cognitive decline (SCD). Sample sizes were estimated for a clinical trial in which pre-defined cutoffs for each biomarker were used as a screening inclusion threshold. Sample size reductions presented in the table are for the enriched trial relative to a trial which does not use any biomarkers for screening/enrichment. Pre-defined threshold values are described in the methods section. Confidence intervals were derived using 1000 bootstrapped trials. All statistical tests were two-sided with no adjustment for multiple comparisons.

Supplementary Figures

This figure shows the relationship between each pair of plasma biomarkers in the study population. All biomarkers were natural log-transformed and statistical associations were tested using Spearman correlation. The upper panels show the histogram distributions for each corresponding biomarker labelled on the x-axis and each individual is colored based on biomarker status (positive or negative; defined using pre-defined

cutoffs) for the biomarker on the x-axis. All statistical tests were two-sided with no adjustment for multiple comparisons. Shaded areas represent 95% confidence intervals of the regression lines.

This figure shows the longitudinal MMSE trajectory estimated for a CU individual with average age, average education, female sex and either biomarker-negative or biomarker-positive. Beta coefficients at the top left of each panel are presented in terms of "points / year per standard deviation change in biomarker value" and are derived from linear mixed effects models with longitudinal MMSE as outcome and age, sex,

education, plus each plasma biomarker included separately from each other. All statistical tests were two-sided with no adjustment for multiple comparisons. Shaded areas represent 95% confidence intervals of the regression lines.

Supplementary Figure 3. Relationship between plasma biomarkers and conversion to all-cause dementia

This figure shows the conversion to all-cause dementia estimated for a CU individual with average age, average education, female sex and either biomarker-negative or biomarker-positive. Hazard ratios at the top left of each panel are presented in terms of "increased risk of converting to all-cause dementia per standard deviation change in biomarker value" and are derived from Cox regression models with conversion to all-cause dementia as outcome and age, sex, education, plus each plasma biomarker included separately from each other. All statistical tests were two-sided with no adjustment for multiple comparisons. Shaded areas represent 95% confidence intervals of the regression lines.