SUPPLEMENTARY INFORMATION

Chemoenzymatic Modular Assembly of O-GalNAc Glycans for Functional Glycomics

Shuaishuai Wang¹, Congcong Chen^{1,2,3}, Madhusudhan Reddy Gadi¹, Varma Saikam¹, Ding Liu¹, He Zhu¹, Roni Bollag⁴, Kebin Liu⁵, Xi Chen⁶, Fengshan Wang⁷, Peng George Wang^{1,8*}, Peixue Ling^{2,3,7*}, Wanyi Guan^{9*}, and Lei Li^{1*}

¹Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA

²National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China

³Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan, Shandong 250101, China

⁴Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA

⁵Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA

⁶Department of Chemistry, University of California, Davis, CA 95616, USA

⁷Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Science, Shandong University, Jinan, Shandong 250012, China

⁸Present Address: School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

⁹College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China

These authors contributed equally: Shuaishuai Wang, Congcong Chen, Madhusudhan Reddy Gadi, Varma Saikam

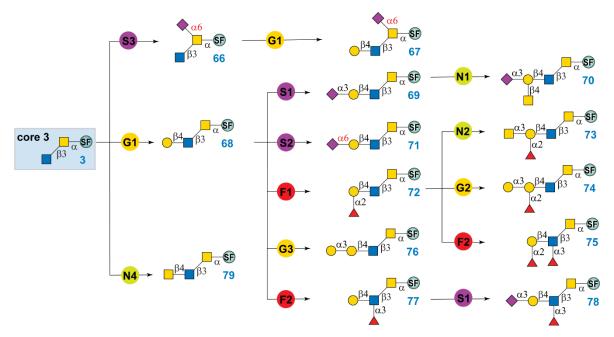
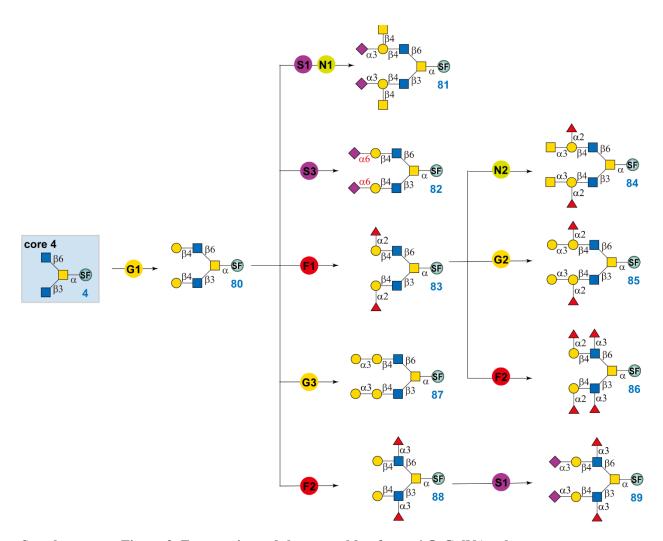
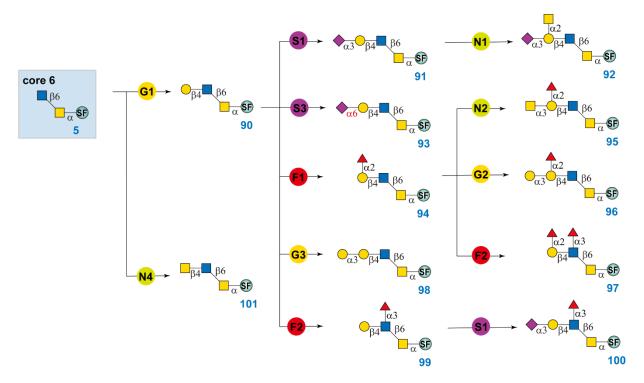

*Correspondence should be addressed to L.L. (email: <u>lli22@gsu.edu</u>) or to W.G. (email: guanwanyi@hebtu.edu.cn) or to P.L. (email: lpxsdf@163.com) or to P.G.W (email: wangp6@sustech.edu.cn)

Table of contents

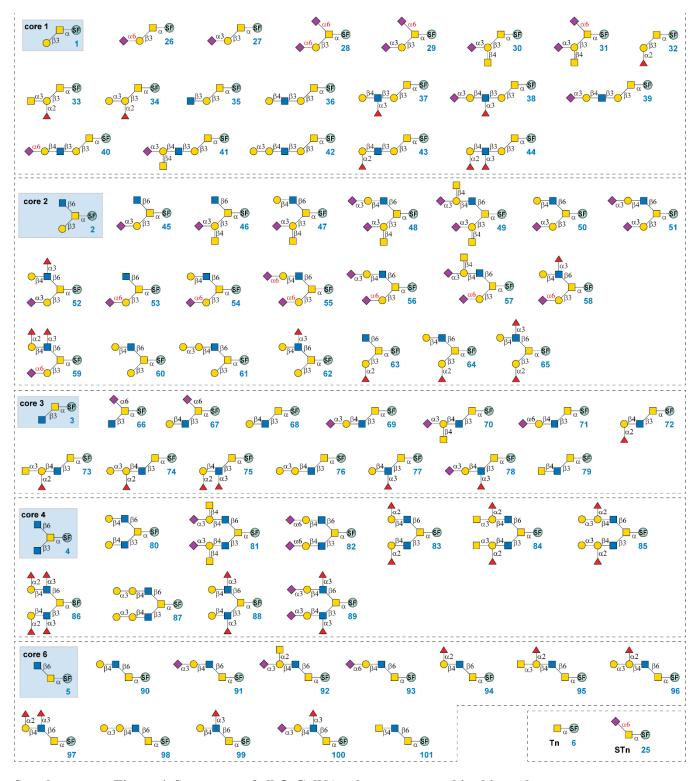
I. Supplementary Figures and Tables	3
Supplementary Figure 1. Enzymatic modular assembly of core 3 O-GalNAc glycans	3
Supplementary Figure 2. Enzymatic modular assembly of core 4 O-GalNAc glycans	4
Supplementary Figure 3. Enzymatic modular assembly of core 6 O-GalNAc glycans	5
Supplementary Figure 4. Structures of all O-GalNAc glycans prepared in this study	6
Supplementary Figure 5. Binding profile of Fuc-specific lectins towards the O-GalNAc glycan microa	rray7
Supplementary Figure 6. Binding profile of Sia-specific lectins towards the O-GalNAc glycan microal	rray8


GalNAc glycan microarrayGalNAc glycan microarray	
Supplementary Figure 8. Binding profile of GalNAc-specific lectins towards the O-GalNAc glycan m	icroarray10
Supplementary Figure 9. Binding profile of anti-glycan antibodies towards the O-GalNAc glycan mid	eroarray11
Supplementary Figure 10. Binding profile of recombinant HA proteins towards the O-GalNAc glyca	n microarray12
Supplementary Figure 11. Binding profile of lectins towards the O-GalNAc glycans (Supplementary	Table 4) on the
CFG microarray.	13
Supplementary Figure 12. Heatmap of lgG bindings on the O-GalNAc glycan microarray in sera from	m colorectal
cancer patients and healthy control people	14
Supplementary Table 1. Glycan microarray information based on MIRAGE.	15
Supplementary Table 2. Glycan binding proteins used in this study.	16
Supplementary Table 3. Summary of binding specificity and fine details of tested GBPs towards O-G	. ·
Supplementary Table 4. List of O-glycans from the CFG glycan microarray	
Supplementary Table 5. Colorectal cancer patients and healthy control people serum specimens used	
	_
II. Chemical Modular Assembly of cores 1–4 and 6	21
General information	21
Chemical procedures with analytical data for the synthesis of O-GalNAc cores 1–4 and 6	21
III. Enzymatic Modular Assembly to Diversify O-GalNAc Glycans	35
Materials	35
General HPLC methods	35
Enzyme Modules	35
IV. Glycan Microarray Fabrication and Assay	39
Method for removing Fmoc	39
Method for microarray fabrication	39
Method for microarray assay	39
V. HPLC, Mass Spectrometry, and NMR Data of Enzymatically Assembled Glycans	
VI. NMR Spectra	
VII Supplementary Defendance	100

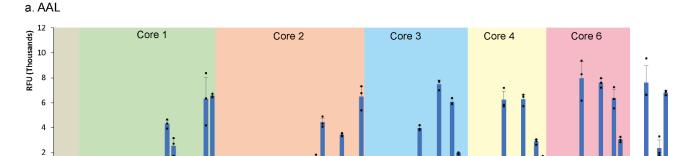
I. Supplementary Figures and Tables


Supplementary Figure 1. Enzymatic modular assembly of core 3 O-GalNAc glycans.

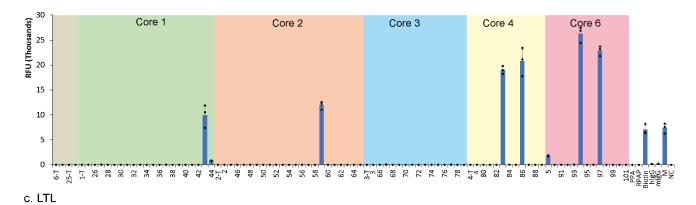
Enzyme modules: G stands for galactosylation, S stands for sialylation, N stands for N-acetylhexosaminylation, F stands for fucosylation. G1: β1-4 galactosylation with *Neisseria meningitidis* β1-4 galactosyltransferase (NmLqtB) and donor uridine 5'-diphosphogalactose (UDP-Gal); G2: α1-3 galactosylation with human GTB and UDP-Gal; G3: α 1-3 galactosylation with bovine α 1-3 GalT (B α 3GalT) and UDP-Gal; S1: α 2-3 sialylation with *Pasteurella multocida* α2-3 sialyltransferase 1 mutant M144D (PmST1-M144D), N. meningitidis CMP-sialic acid synthetase (NmCSS), cytidine 5'-triphosphate (CTP), and N-acetylneuraminic acid (Neu5Ac); S2: α2-6 sialylation with PmST1-P34H/M144L, NmCSS, CTP, and Neu5Ac; S3: α2-6 sialylation with *Photobacterium damselae* α2-6 sialyltransferase (Pd2,6ST), NmCSS, CTP, and Neu5Ac; N1: β1-4 N-acetylgalactosaminylation with Campylobacter jejuni β1-4 N-acetylgalatosaminyltransferase (CjCgtA) and UDP-GalNAc; N2: α1-3 Nacetylgalactosaminylation with Helicobacter mustelae α 1-3 N-acetyl-galactosaminyltransferase (HmBgtA) and UDP-GalNAc; N4: β1-4 N-acetylgalactosaminylation with b4GalT-Y289L/C342T (b4GalTm) and UDP-GalNAc; F1: α1-2 fucosylation with H. mustelae α1-2 fucosyltransferase (Hm2FT) and guanosine 5'-diphospho-L-fucose (GDP-Fuc); F2: α 1-3 fucosylation with *H. pylori* α 1-3 fucosyltransferase C-terminal 66 amino acid truncation (Hp3FT) and GDP-Fuc. Abbreviations: Gal, galactose; Fuc, L-fucose; GlcNAc, N-acetylglucosamine; GalNAc, Nacetylgalactosamine; Neu5Ac, N-acetylneuraminic acid; SF, Fmoc protected Ser.

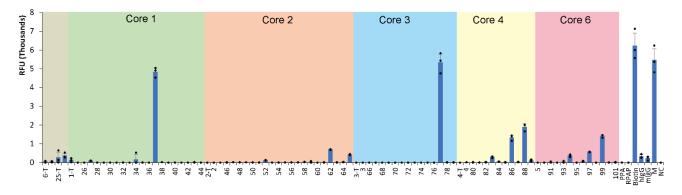

Supplementary Figure 2. Enzymatic modular assembly of core 4 O-GalNAc glycans.

Enzyme modules: G stands for galactosylation, S stands for sialylation, N stands for *N*-acetylhexosaminylation, F stands for fucosylation. G1: β 1-4 galactosylation with *Neisseria meningitidis* β 1-4 galactosyltransferase (NmLgtB) and donor uridine 5'-diphosphogalactose (UDP-Gal); G2: α 1-3 galactosylation with human GTB and UDP-Gal; G3: α 1-3 galactosylation with bovine α 1-3 GalT (B α 3GalT) and UDP-Gal; S1: α 2-3 sialylation with *Pasteurella multocida* α 2-3 sialyltransferase 1 mutant M144D (PmST1-M144D), *N. meningitidis* CMP-sialic acid synthetase (NmCSS), cytidine 5'-triphosphate (CTP), and *N*-acetylneuraminic acid (Neu5Ac); S3: α 2-6 sialylation with *Photobacterium damselae* α 2-6 sialyltransferase (Pd2,6ST), NmCSS, CTP, and Neu5Ac; N1: β 1-4 *N*-acetylgalactosaminylation with *Campylobacter jejuni* β 1-4 *N*-acetylgalatosaminyltransferase (CjCgtA) and UDP-GalNAc; N2: α 1-3 *N*-acetylgalactosaminylation with *Helicobacter mustelae* α 1-3 *N*-acetyl-galactosaminyltransferase (HmBgtA) and UDP-GalNAc; F1: α 1-2 fucosylation with *H. mustelae* α 1-2 fucosyltransferase (Hm2FT) and guanosine 5'-diphospho-L-fucose (GDP-Fuc); F2: α 1-3 fucosylation with *H. pylori* α 1-3 fucosyltransferase C-terminal 66 amino acid truncation (Hp3FT) and GDP-Fuc. SF, Fmoc protected Ser.

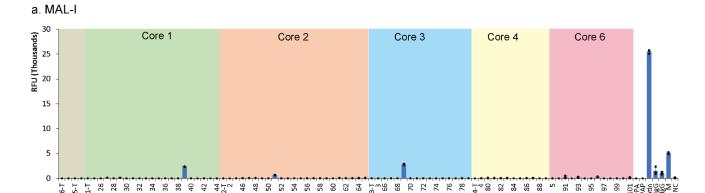

Supplementary Figure 3. Enzymatic modular assembly of core 6 O-GalNAc glycans.

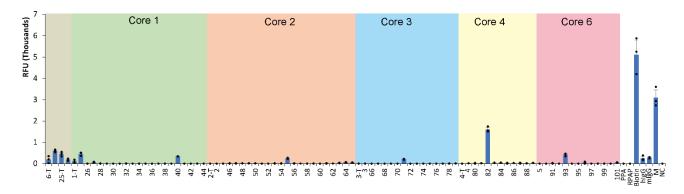
Enzyme modules: G stands for galactosylation, S stands for sialylation, N stands for *N*-acetylhexosaminylation, F stands for fucosylation. G1: β 1-4 galactosylation with *Neisseria meningitidis* β 1-4 galactosyltransferase (NmLgtB) and donor uridine 5'-diphosphogalactose (UDP-Gal); G2: α 1-3 galactosylation with human GTB and UDP-Gal; G3: α 1-3 galactosylation with bovine α 1-3 GalT (B α 3GalT) and UDP-Gal; S1: α 2-3 sialylation with *Pasteurella multocida* α 2-3 sialyltransferase 1 mutant M144D (PmST1-M144D), *N. meningitidis* CMP-sialic acid synthetase (NmCSS), cytidine 5'-triphosphate (CTP), and *N*-acetylneuraminic acid (Neu5Ac); S3: α 2-6 sialylation with *Photobacterium damselae* α 2-6 sialyltransferase (Pd2,6ST), NmCSS, CTP, and Neu5Ac; N1: β 1-4 *N*-acetylgalactosaminylation with *Campylobacter jejuni* β 1-4 *N*-acetylgalatosaminyltransferase (CjCgtA) and UDP-GalNAc; N2: α 1-3 *N*-acetylgalactosaminylation with *Helicobacter mustelae* α 1-3 *N*-acetyl-galactosaminyltransferase (HmBgtA) and UDP-GalNAc; N4: β 1-4 *N*-acetylgalactosaminylation with b4GalT-Y289L/C342T (b4GalTm) and UDP-GalNAc; F1: α 1-2 fucosylation with *H. mustelae* α 1-2 fucosyltransferase (Hm2FT) and guanosine 5'-diphospho-L-fucose (GDP-Fuc); F2: α 1-3 fucosylation with *H. pylori* α 1-3 fucosyltransferase C-terminal 66 amino acid truncation (Hp3FT) and GDP-Fuc. SF, Fmoc protected Ser.


Supplementary Figure 4. Structures of all O-GalNAc glycans prepared in this study.


Microarray Results

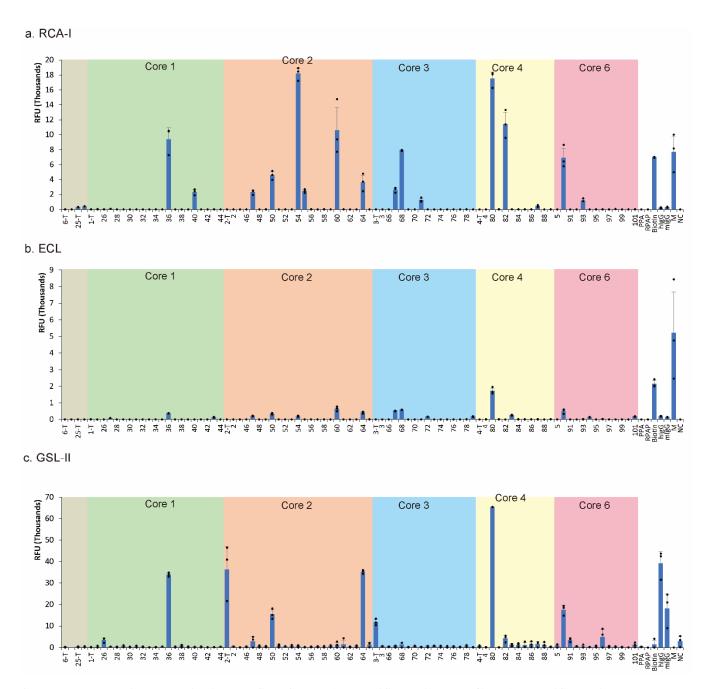
b. UEA-I


25-T 1-T

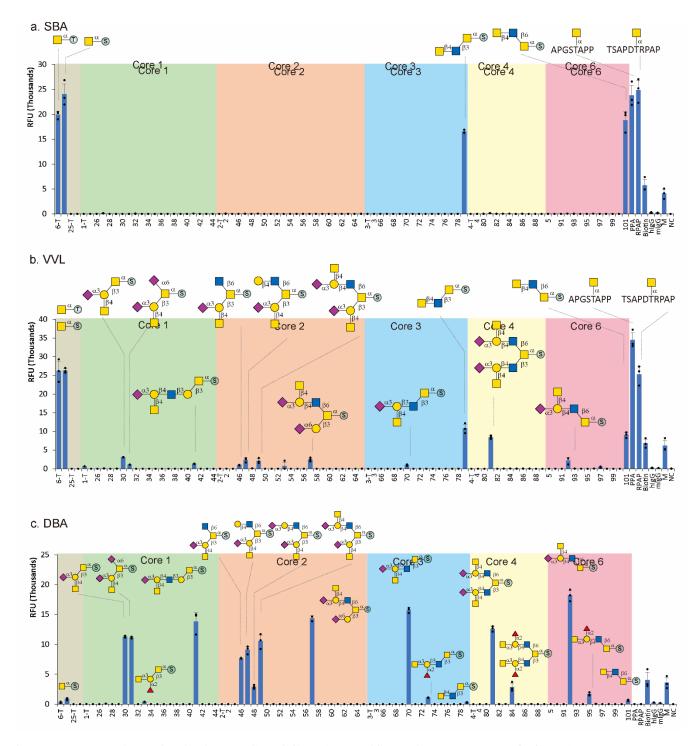


Supplementary Figure 5. Binding profile of Fuc-specific lectins towards the O-GalNAc glycan microarray

The x-axis shows the glycans, and the y-axis shows the relative fluorescence (readout by Cy5-streptavidin, 1 μ g/mL). PPA = APGS(GalNAc α -)TAPP (100 μ M); RPAP = TSAPD(GalNAc α -)TRPAP (100 μ M); Biotin = biotinylated PEG amine (0.01 mg/mL); hIgG = human IgG (0.1 mg/mL), mIgG = mouse IgG (0.1 mg/mL); M = Marker (0.01 mg/mL Cy3-conjugated anti-Human IgG + 0.01 mg/mL Alexs647-conjugated anti-Human IgG; NC = printing buffer. n=3 independent replicates. The individual data points are shown as dots. Data are presented as mean values; error bars represent standard deviation. Source data are provided as a Source Data file.

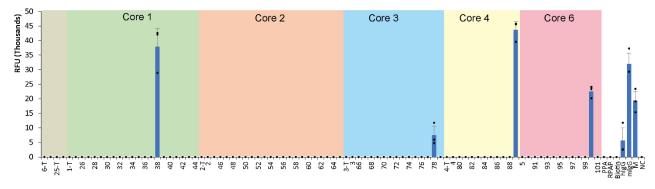


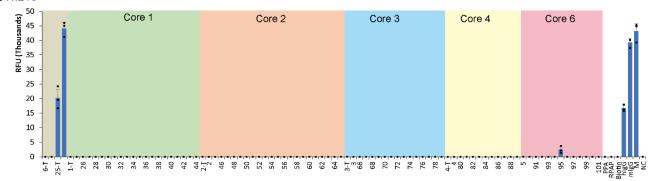
b. SNA


Supplementary Figure 6. Binding profile of Sia-specific lectins towards the O-GalNAc glycan microarray

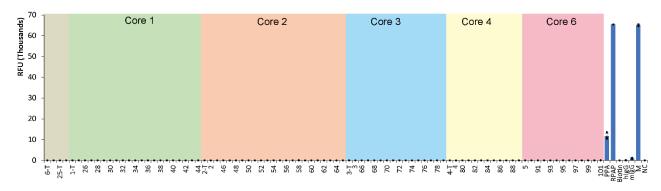
The x-axis shows the glycans, and the y-axis shows the relative fluorescence (readout by Cy5-streptavidin, 1 μ g/mL). PPA = APGS(GalNAc α -)TAPP (100 μ M); RPAP = TSAPD(GalNAc α -)TRPAP (100 μ M); Biotin = biotinylated PEG amine (0.01mg/mL); hIgG = human IgG (0.1 mg/mL), mIgG = mouse IgG (0.1 mg/mL); M = Marker (0.01 mg/mL Cy3-conjugated anti-Human IgG + 0.01 mg/mL Alexs647-conjugated anti-Human IgG; NC = printing buffer. n=3 independent replicates. The individual data points are shown as dots. Data are presented as mean values; error bars represent standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 7. Binding profile of LacNAc-specific lectins and GlcNAc-specific lectin towards the O-GalNAc glycan microarray

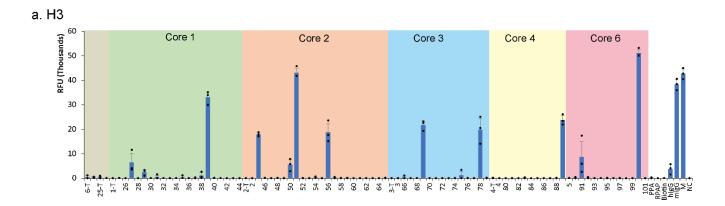

The x-axis shows the glycans, and the y-axis shows the relative fluorescence (readout by Cy5-streptavidin, 1 μ g/mL). PPA = APGS(GalNAc α -)TAPP (100 μ M); RPAP = TSAPD(GalNAc α -)TRPAP (100 μ M); Biotin = biotinylated PEG amine (0.01mg/mL); hIgG = human IgG (0.1 mg/mL), mIgG = mouse IgG (0.1 mg/mL); M = Marker (0.01 mg/mL Cy3-conjugated anti-Human IgG + 0.01 mg/mL Alexs647-conjugated anti-Human IgG; NC = printing buffer. n=3 independent replicates. The individual data points are shown as dots. Data are presented as mean values; error bars represent standard deviation. Source data are provided as a Source Data file.


Supplementary Figure 8. Binding profile of GalNAc-specific lectins towards the O-GalNAc glycan microarray

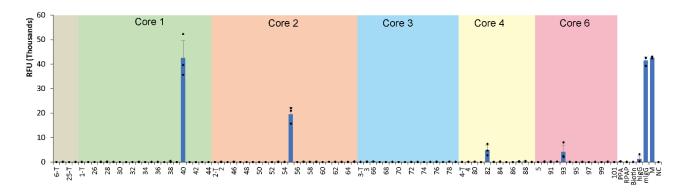
The x-axis shows the glycans, and the y-axis shows the relative fluorescence (readout by Cy5-streptavidin, 1 μ g/mL). PPA = APGS(GalNAc α -)TAPP (100 μ M); RPAP = TSAPD(GalNAc α -)TRPAP (100 μ M); Biotin = biotinylated PEG amine (0.01mg/mL); hIgG = human IgG (0.1 mg/mL), mIgG = mouse IgG (0.1 mg/mL); M = Marker (0.01 mg/mL Cy3-conjugated anti-Human IgG + 0.01 mg/mL Alexs647-conjugated anti-Human IgG; NC = printing buffer. n=3 independent replicates. The individual data points are shown as dots. Data are presented as mean values; error bars represent standard deviation. Source data are provided as a Source Data file.


a. Anti-CD15s

b. STn219

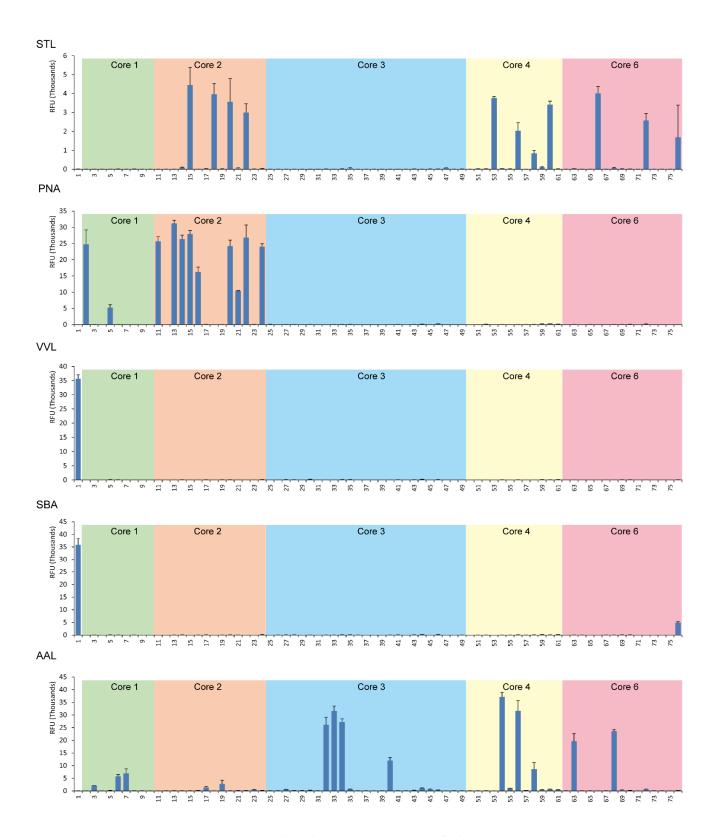


c. Anti-MUC-1

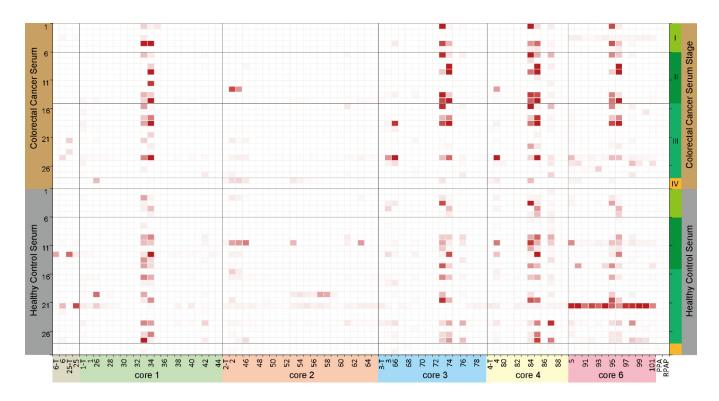


Supplementary Figure 9. Binding profile of anti-glycan antibodies towards the O-GalNAc glycan microarray

The x-axis shows the glycans, and the y-axis shows the relative fluorescence (readout by goat anti-mouse IgG-Alexa Fluor 647 conjugate, anti-Sheep IgG (H+L) CFTM 633 antibody produced in donkey, 5 µg/mL). PPA = APGS(GalNAc α -)TAPP (100 µM); RPAP = TSAPD(GalNAc α -)TRPAP (100 µM); Biotin = biotinylated PEG amine (0.01 mg/mL); hIgG = human IgG (0.1 mg/mL), mIgG = mouse IgG (0.1 mg/mL); M = Marker (0.01 mg/mL Cy3-conjugated anti-Human IgG + 0.01 mg/mL Alexs647-conjugated anti-Human IgG; NC = printing buffer. n=3 independent replicates. The individual data points are shown as dots. Data are presented as mean values; error bars represent standard deviation. Source data are provided as a Source Data file.



b. H1


Supplementary Figure 10. Binding profile of recombinant HA proteins towards the O-GalNAc glycan microarray

The x-axis shows the glycans, and the y-axis shows the relative fluorescence (readout by mouse anti-His-tag antibody and goat anti-mouse IgG antibody with Alexa Fluor 647). PPA = APGS(GalNAc α -)TAPP (100 μ M); RPAP = TSAPD(GalNAc α -)TRPAP (100 μ M); Biotin = biotinylated PEG amine (0.01mg/mL); hIgG = human IgG (0.1 mg/mL), mIgG = mouse IgG (0.1 mg/mL); M = Marker (0.01 mg/mL Cy3-conjugated anti-Human IgG + 0.01 mg/mL Alexs647-conjugated anti-Human IgG; NC = printing buffer. n=3 independent replicates. The individual data points are shown as dots. Data are presented as mean values; error bars represent standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 11. Binding profile of lectins towards the O-GalNAc glycans (Supplementary Table 4) on the CFG microarray.

Data were obtained from NCFG website (https://ncfg.hms.harvard.edu/ncfg-data/microarray-data/lectin-quality-assurancequality-control).

Supplementary Figure 12. Heatmap of lgG bindings on the O-GalNAc glycan microarray in sera from colorectal cancer patients and healthy control people

PPA = APGS(GalNAc α -)TAPP (100 μ M); RPAP = TSAPD(GalNAc α -)TRPAP (100 μ M); Biotin = biotinylated PEG amine (0.01mg/mL); NC = printing buffer. n=3 independent replicates. Data are presented as mean values. Source data are provided as a Source Data file.

Supplementary Table 1. Glycan microarray information based on MIRAGE.

Classification	Guidelines	
1. Sample: Glycan Binding Samp		
Description of Sample	Human serum samples from colorectal cancer patients and healthy people were provided by Georgia Cancer Center at Augusta University. All lectins and antibodies were purchased as described in Section III. Method for microarray assay.	
Sample modifications	Not applicable.	
Assay protocol	Microarray analyses were performed essentially as described Section III. Method for microarray assay.	
2. Glycan Library		
Glycan description for defined glycans	All glycans were synthesized as described in main text.	
Glycan description for undefined glycans		
Glycan modifications	Glycans were linked with Ser.	
3. Printing Surface; e.g., Microarray S	1	
Description of surface	Nexterion slide H-3D hydrogel coated glass microarray slides.	
Manufacturer	Applied Microarrays Inc (Tempe, AZ, USA)	
Custom preparation of surface	Not relevant.	
Covalent Immobilization	Glycans were linked with Ser for robotically arraying and the amine group could covalently be immobilized on NHS ester coated glass slide.	
4. Arrayer (Printer)		
Description of Arrayer	sciFLEXARRAYER S3 spotter (Scienion) with two PDC 80 Piezo Dispense Capillary, and 16 subarrays were printed on each slide	
Dispensing mechanism	Non-contact liquid delivery.	
Glycan deposition	Each glycan probe was printed at 1 deposit in 3 replicates.	
Printing conditions	Samples were prepared at a concentration of $100 \mu M$ in the printing buffer (300 mM phosphate, pH 8.5), printing was performed at room temperature and relative humidity of 60% .	
5. Glycan Microarray with "Map"		
Array layout	Each array slide contained 16 identical subarrays (pads). Each subarray contained up to 94 unique samples.	
Glycan identification and QC	Quality control included analyses with plant lectins.	
6. Detector and Data Processing		
Scanning hardware	GenePix 4000B Microarray Scanner (Molecular Devices, LLC)	
Scanner settings	Laser channel: wavelength 635 nm or 535 nm PMT gain: 600 Scan power:100%	
Image analysis software	GnePix Pro (Molecular Devices, LLC)	
Data processing	The gpr files were processed with in-house excel macro to obtain basic descriptive statistics. No particular normalization method or statistical analysis was used.	
7. Glycan Microarray Data Presentation		
Data presentation	The microarray binding results are in Figures 6,7, Supplementary Figures 5-11, and Supplementary Table 3. Binding results are presented as relative fluorescence intensity units (RFU) of binding in mean and S.D. The individual data points are shown as dots.	
8. Interpretation and Conclusion from	Microarray Data	
Data interpretation	No software or algorithms were used to interpret processed data.	
Conclusions	Described in Results parts.	

Supplementary Table 2. Glycan binding proteins used in this study.

GBPs		Concentration	Binding Residues	
AAL	Vector Lab	0.1μg/mL		
UEA-I	Vector Lab	20 μg/mL	Fucose	
LTL	Vector Lab	20 μg/mL		
MAL-I	Vector Lab	10 μg/mL	Sialic acid	
SNA	Vector Lab	20 μg/mL	Static acid	
RCA-I	Vector Lab	20 μg/mL	LacNAc	
ECL	Vector Lab	1 μg/mL	LacinAc	
GSL-II	EYLabs	10 μg/mL	GleNAc	
STL	Vector Lab	20 μg/mL	GICNAC	
PNA	Vector Lab	20 μg/mL	T antigen	
Jacalin	Vector Lab	20 μg/mL	(Gal β1-3GalNAc α-)	
SBA	Vector Lab	20 μg/mL	T	
VVL	Vector Lab	2 μg/mL	Tn antigen (GalNAc α -)	
DBA	Vector Lab	20 μg/mL	(GanvAc u -)	
Anti-CD15s antibody	BD	20 μg/mL	SLe ^X	
STn219	Fisher	1:10	STn antigen	
MUC1 antibody	R&D Systems	1:50	MUC	
H3 of A/Brisbane/10/2007	BEI resources	10 μg/mL	Sialic acid	
H1 of A/NewYork/18/2009	BEI resources	10 μg/mL		

Supplementary Table 3. Summary of binding specificity and fine details of tested GBPs towards O-GalNAc glycans

GBPs	Primary Fine details (towards tested O-GalNAc glycans)		O-GalNAc core				
	Ligand		1	2	3	4	6
AAL	α-Fuc	Bind α1-2/3Fuc; exclude A- and B-antigen	+a	+	+	+	+
UEA-I	α-Fuc	Specific to α1-2Fuc; exclude A- and B-antigen; strongly prefer	+	++	_c	++	++
		β1-6GlcNAc branch		b			
LTL	α-Fuc	Strongly prefer a1-3Fuc	+	+	+	+	+
MAL I	3SLN	Prefer β1-3Gal/GlcNAc branch	Weak binding				
SNA	6SLN	Specific for 6SLN	Weak binding				
RCA-I	LacNAc	Tolerate modification on β 1-3Gal branch when β 1-6GlcNAc branch presents LacNAc	++	++	++	++	++
ECL	LacNAc	Tolerate modification on β1-3Gal branch (excluding α2-	+	+	+	+	+
		6sialylation) when β1-6branch presents LacNAc					
GSL-II	GlcNAc	Specific for terminal GlcNAc; in core 2 glycans with a free β1-	++	++	+	++	+
		6GlcNAc, α 2-6Neu5Ac or β 1-3GlcNAc on β 1-3Gal branch					
		blocks binding					
STL	LacNAc	Specific for ligands on β1-6GlcNAc branch; tolerate all	-	++	-	++	++
	LDN	modifications on ligands excluding $\alpha 2\text{-}6$ sialylation and $\alpha 1\text{-}3$					
		fucosylation					
PNA	T antigen	Require free Gal on the Gal β 1-3GalNAc α unit; tolerate β 1-	++	++	-	-	-
		6GlcNAc branch modifications					
Jacalin	Tn	Any O-GalNAc glycans without modification on C6-OH of the	++	-	++	-	-
	antigen	initiating GalNAc					
SBA	GalNAc	Terminal α/β-linked GalNAc excluding Cad/Sda and A-antigen	-	-	+	-	-
VVL	GalNAc	Terminal α/β-linked GalNAc excluding A-antigen; weak	+	+	+	+	+
		binding to Cad/Sd ^a					
DBA	GalNAc	Strong binding to Cad/Sda; weak binding to Tn antigen, A-	++	++	++	++	++
		antigen and LDN					
Anti-CD15s	SLe ^X	Specific for SLe ^X	++	-	+	++	++
H3N2 (A/Brisb-	Neu5Ac	Bind to nearly all O-glycans with Neu5Acα2-3Gal,	++	++	++	++	++
ane/10/2007)	α2-3Gal	modifications on opposing branch could affect binding					
H1N1 (A/New	6SLN	Specific for 6SLN	++	++	-	+	+
York/18/2009)							

^aweak to moderate binding, ^bstrong binding, ^cno binding based on tested O-GalNAc glycans.

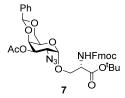
Supplementary Table 4. List of O-glycans from the CFG glycan microarray.

Number	Structures	
1	GalNAcα-Sp8	
2	Galβ1-3GalNAcα-Sp14	
3	KDNα2-3Galβ1-3GalNAcα-Sp14	
4	Neu5Acα2-3Galβ1-3GalNAcα-Sp14	
5	Neu5Acα2-6(Galβ1-3)GalNAcα-Sp14	
6	Neu5Acα2-6(Neu5Acα2-3Galβ1-3)GalNAcα-Sp14	
7	Fucα1-2Galβ1-3GalNAcα-Sp14	
8	GlcNAcα1-4Galβ1-3GalNAc-Sp14	
9	GlcNAβ1-3Galβ1-3GalNAc-Sp14	
10	Galβ1-4GlcNAcβ1-3Galβ1-3GalNAcα-Sp14	
11	GlcNAcβ1-6(Galβ1-3)GalNAcα-Sp14	
12	GlcNAcβ1-6(Neu5Acα2-3Galβ1-3)GalNAcα-Sp14	
13	Galβ1-3GlcNAcβ1-6(Galβ1-3)GalNAc-Sp14	
14	Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAc-Sp14	
15	Neu5Acα2-3Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-Sp14	
16	Neu5Acα2-6Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-Sp14	
17	$Neu5Ac\alpha 2-3Gal\beta 1-4(Fuc\alpha 1-3)GlcNAc\beta 1-6(Gal\beta 1-3)GalNAc\alpha -Sp14$	
18	Neu5Acα2-3Galβ1-4GlcNAcβ1-6(Neu5Acα2-3Galβ1-3)GalNAcα-Sp14	
19	$Neu5Ac\alpha 2-3Gal\beta 1-4(Fuc\alpha 1-3)GlcNAc\beta 1-6(Neu5Ac\alpha 2-3Gal\beta 1-3)GalNAc-Sp14$	
20	$Neu5Ac\alpha 2-3Gal\beta 1-4GlcNAc\beta 1-3Gal\beta 1-4GlcNAc\beta 1-6(Gal\beta 1-3)GalNAc\alpha -Sp14$	
21	Neu5Aca2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAca-Sp14	
22	GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAca-Sp14	
23	GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(GlcNAcβ1-3Galβ1-3)GalNAca-Sp14	
24	Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAca-Sp14	
25	GlcNAcβ1-3GalNAca-Sp14	
26	Galβ1-3GlcNAcβ1-3GalNAca-Sp14	
27	Galβ1-4GlcNAcβ1-3GalNAc-Sp14	
28	Neu5Aca2-3Galβ1-3GlcNAcβ1-3GalNAca-Sp14	
29	Neu5Aca2-3Galβ1-4GlcNAcβ1-3GalNAc-Sp14	
30	Neu5Aca2-6Galβ1-4GlcNAcβ1-3GalNAc-Sp14	
31	Fucα1-2Galβ1-3GlcNAcβ1-3GalNAc-Sp14	
32	Fuca1-2Galβ1-4GlcNAcβ1-3GalNAcα–Sp14	
33	Galβ1-4(Fucα1-3)GlcNAcβ1-3GalNAcα–Sp14	
35	Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ1-3GalNAcα–Sp14	
36	Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-3GalNAcα–Sp14	
37	Galα1-3Galβ1-3GlcNAcβ1-3GalNAc-Sp14	
38	Galα1-3Galβ1-4GlcNAcβ1-3GalNAcα–Sp14 Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-3GalNAc-Sp14	
39	Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-3GalNAc-Sp14 $Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-3GalNAcα-Sp14$	
40	Galα1-3(Fucα1-2)Galβ1-4(Fucα1-3)GlcNAcβ1-3GalNAc-Sp14 Galα1-3(Fucα1-2)Galβ1-4(Fucα1-3)GlcNAcβ1-3GalNAc-Sp14	
41	GalNAcα1-3(Fucα1-2)Galp1-4(Fucα1-3)GicNAcp1-3GalNAc-Sp14 GalNAcα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-3GalNAc-Sp14	
42	GalNAc α 1-3(Fuc α 1-2)Galp1-3GlcNAcp1-3GalNAc α -Sp14	
43	GalNAcα1-3(Fucα1-2)Galβ1-4(Fucα1-3)GlcNAcβ1-3GalNAc-Sp14	
44	GalNAc α 1-3(Fuc α 1-2)Galp1-4(Fuc α 1-3)GicNAc β 1-3GalNAc α 5p14 GalNAc β 1-4(Neu5Ac α 2-3)Gal β 1-4GlcNAc β 1-3GalNAc α -Sp14	
45	GlcNAcβ1-3Galβ1-4GlcNAcβ1-3GalNAcα–Sp14	
46	Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3GalNAcα–Sp14	
70	Gaipt-4GichAcpt-3Gaipt-4GichAcpt-3GainAca—Sp14	

47	Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3GalNAcα-Sp14
48	Neu5Acα2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3GalNAcα-Sp14
49	GlcNAcβ1-3Galβ1-4GlcNAcβ1-3GalNAcα-Sp14
50	GlcNAcβ1-6(GlcNAcβ1-3)GalNAcα–Sp14
51	Galβ1-4GlcNAcβ1-6(Galβ1-4GlcNAcβ1-3)GalNAc-Sp14
52	GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(GlcNAcβ1-3Galβ1-4GlcNAcβ1-3)GalNAcα–Sp14
53	Neu5Acα2-3Galβ1-4GlcNAcβ1-6(Neu5Acα2-3Galβ1-4GlcNAcβ1-3)GalNAcα–Sp14
54	Neu5Acα2-6Galβ1-4 GlcNAcβ1-6(Neu5Acα2-6Galβ1-4GlcNAcβ1-3)GalNAcα-Sp14
55	Fucα1-2Galβ1-3GlcNAcβ1-6(Fucα1-2Galβ1-3GlcNAcβ1-3)GalNAcα-Sp14
56	Fucα1-2Galβ1-4GlcNAcβ1-6(Fucα1-2Galβ1-4GlcNAcβ1-3)GalNAc-Sp14
57	Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-6(Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-3)GalNAc-Sp14
58	GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-6(GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-3)GalNAc-Sp14
59	Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3)GalNAcα-Sp14
60	Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-
	4GlcNAcβ1-3)GalNAcα–Sp14
61	Neu5Acα2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Neu5Acα2-6Galβ1-4GlcNAcβ1-3Galβ1-
	4GlcNAcβ1-3)GalNAcα–Sp14
62	GlcNAcβ1-6GalNAcα–Sp14
63	Galβ1-4GlcNAcβ1-6GalNAc-Sp14
64	Galβ1-3GlcNAcβ1-6GalNAcα-Sp14
65	Neu5Acα2-3Galβ1-3GlcNAcβ1-6GalNAcα–Sp14
66	Neu5Acα2-3Galβ1-4GlcNAcβ1-6GalNAcα–Sp14
67	Neu5Acα2-6Galβ1-4GlcNAcβ1-6GalNAcα–Sp14
68	Fucα1-2Galβ1-4GlcNAcβ1-6GalNAcα-Sp14
69	Galβ1-3(Fucα1-4)GlcNAcβ1-6GalNAcα–Sp14
70	Galβ1-4(Fucα1-3)GlcNAcβ1-6GalNAc-Sp14
71	Galα1-3Galβ1-3GlcNAcβ1-6GalNAcα–Sp14
72	Galα1-3Galβ1-4GlcNAcβ1-6GalNAcα–Sp14
73	Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-6GalNAc-Sp14
74	Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-6GalNAcα–Sp14
75	GalNAcα1-3(Fucα1-2)Galβ1-3GlcNAcβ1-6GalNAcα-Sp14
76	GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-6GalNAc-Sp14

Supplementary Table 5. Colorectal cancer patients and healthy control people serum specimens used in this study.

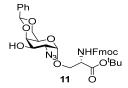
#	TNM Stage	Stage Group
C01	no final	I
	staging	1
C02	pT1N0Mx	I
C03	pT2N0Mx	I
C04	pT2N0Mx	I
C05	pT2N0Mx	I
C06	pT2N0Mx	I
C07	pT3N0Mx	IIA
C08	pT3N0Mx	IIA
C09	pT3N0Mx	IIA
C10	pT3N0Mx	IIA
C11	pT3N0Mx	IIA
C12	pT3N0Mx	IIA
C13	pT3N0Mx	IIA
C14	pT3N0Mx	IIA
C15	pT4bN0	IIC
C16	pT2N1aMx	IIIA
C17	pT3N1aMx	IIIB
C18	pT3N1aMx	IIIB
C19	pT3N1aMx	IIIB
C20	pT3N1aMx	IIIB
C21	pT3N1aMx	IIIB
C22	pT3N1bMx	IIIB
C23	pT3N2aMx	IIIB
C24	pT3N2aMx	IIIB
C25	pT3N2bMx	IIIC
C26	pT4aN2bMx	IIIC
C27	pT4aN2bMx	IIIC
C28	pT3N1cM1	IVA
C29	pT4bN2bM1a	IVA


II. Chemical Modular Assembly of cores 1-4 and 6

General information

ESI-mass spectrometry were performed on an LTQ-Orbitrap Elite mass spectrometer (Thermo Fisher) equipped with EASY-spray source and nano-LC UltiMate 3000 high-performance liquid chromatography system (Thermo Fisher). Samples were transmitted into MS with a silica column. LTQ-Orbitrap Elite mass spectrometer was operated in the data-dependent mode. A full-scan survey MS experiment (m/z range was set according to the molecular weight of O-glycan; automatic gain control target, 1,000,000 ions; resolution at $400 \, m/z$, 240,000; maximum ion accumulation time, 200 ms) was acquired by the Orbitrap mass spectrometer. MALDI-TOF MS analyses were performed on UltrafleXtreme MALDI TOF/TOF Mass Spectrometer (Bruker). Scan range of MS was set according to the molecular weight of O-glycans, and reflector mode was used for O-glycan analysis. Mass spectra were obtained in both positive and negative extraction mode with the following voltage settings: ion source 1 (19.0 kV), ion source 2 (15.9 kV), and lens (9.3 kV). The reflector voltage was set to 20 kV. The laser was pulsed at 7 Hz and the pulsed ion extraction time was set at 400 ns. The laser power was kept in the range of 40-90%. Anhydrous dichloromethane, TMSOTf, PTSA.H₂O, solid sodium methoxide and FmocOSu was purchased from Sigma Aldrich. TFA was purchased from Alfa Aesar. H and 13C NMR spectra were recorded on a Bruker AVANCE 400 (400 MHz) or Bruker AVANCE 600 (600 MHz) spectrometer at 25 °C. All ¹H Chemical shifts (in ppm) were assigned according to CDCl₃ (δ = 7.24 ppm) and D₂O (δ = 4.79 ppm) and all ¹³C NMR was calibrated with CDCl₃ ($\delta = 77.00$ ppm).

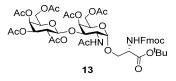
Chemical procedures with analytical data for the synthesis of O-GalNAc cores 1-4 and 6


Compound 7:

The mixture of thio glycosyl donor 10^1 (24.6 g, 55.3 mmol) and Fmoc-Ser-O¹Bu² (16.4 g, 48.3 mmol) acceptor was co-evaporated with anhydrous toluene twice (2×30 mL) and dried under high vacuum for a period of 3 h. The above mixture was dissolved in anhydrous dichloromethane (250 mL). To the above solution, NIS (16.3 g, 72.5 mmol) and TMSOTf (2.2 g, 9.6 mmol) was added successively at room temperature and stirred until completion. The reaction was quenched with aq. NaHCO₃ (5 mL) slowly and washed with 400 mL of 1:1 aq. NaHCO₃/Na₂S₂O₃. The aq. layer was extracted with dichloromethane (2×150 mL) and finally the combined organic layers was washed the brine and concentrated. The crude liquid thus obtained was purified by silica gel flash column chromatography to obtain the α -glycosyl amino acid 7 (20.9 g, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.5 Hz, 2H), 7.67 (t, J = 6.3 Hz, 2H), 7.54 (dd, J = 7.3, 1.7 Hz, 2H), 7.41 (td, J = 13.3, 7.5 Hz, 7H), 5.92 (d, J = 7.7 Hz, 1H), 5.53 (s, 1H), 5.31 (dd, J = 11.1, 2.9 Hz, 1H), 5.08 (d, J = 3.0 Hz, 1H), 4.51 – 4.38 (m, 4H), 4.31 – 4.21 (m, 2H), 4.15 (dd, J = 10.6, 2.7 Hz, 1H), 4.06 – 3.93 (m, 3H), 3.83 (s, 1H), 2.20 (s, 3H), 1.56 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.25, 168.61, 155.76, 143.66, 143.61, 141.14, 141.11, 137.30, 128.95, 128.06, 127.60, 127.00, 126.97, 125.95, 125.03, 124.97, 119.88, 100.49, 99.56, 82.91, 77.20, 73.09, 69.65, 69.06, 68.78, 67.12, 62.80, 57.05, 54.82, 46.89, 27.80, 20.81. HRMS calcd for 7 C₃₇H₄₀N₄O₁₀ [M + Na]⁺ m/z = 723.2642, found: 723.2644.

S21

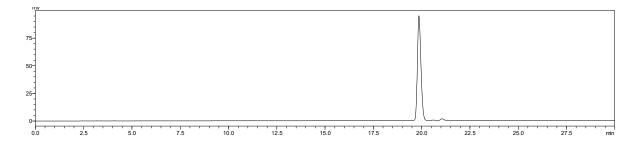
Compound 11:

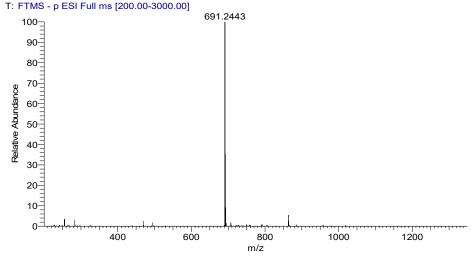


To a solution of compound 7 (10 g, 14.2 mmol) in anhydrous methanol (100 mL), solid sodium methoxide was added until the pH reaches 8.5 at 0 °C and stirred at room temperature until completion. The reaction was neutralized using Amberlite® IRC120 H acidic resin and filtered over Celite® 545. The solution was concentrated and purified by silica gel flash column chromatography to obtain compound **11** (8.9 g, 95%) as a white solid. 1 H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.0 Hz, 2H), 7.47 (dd, J = 6.6, 3.0 Hz, 2H), 7.38 (dd, J = 12.7, 5.3 Hz, 3H), 7.36 – 7.29 (m, 4H), 5.86 (d, J = 7.8 Hz, 1H), 5.50 (s, 1H), 4.95 (d, J = 3.1 Hz, 1H), 4.42 (dd, J = 10.5, 7.1 Hz, 2H), 4.33 (dd, J = 10.4, 7.3 Hz, 1H), 4.21 (dd, J = 8.4, 5.1 Hz, 3H), 4.12 – 4.02 (m, 3H), 3.96 (dd, J = 10.7, 2.6 Hz, 1H), 3.90 (d, J = 12.5 Hz, 1H), 3.72 (s, 1H), 3.58 (dd, J = 10.6, 3.4 Hz, 1H), 1.50 (s, 9H). 13 C NMR (101 MHz, CDCl₃) δ 168.82, 155.92, 143.86, 143.74, 141.33, 137.32, 129.37, 128.35, 127.82, 127.17, 127.14, 126.23, 125.18, 125.07, 120.10, 101.17, 99.88, 83.10, 77.35, 75.37, 69.68, 69.06, 67.22, 63.27, 60.61, 54.99, 47.09, 27.99. HRMS calcd for **11** C₃₅H₃₈N₄O₉ [M + Na] + m/z = 681.2536, found: 681.2504.

Compound 12:

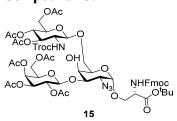
A mixture of glycosyl donor 8^3 (1.23 g, 2.5 mmol) and glycosyl acceptor 11 (1.5 g, 2.3 mmol) was co-evaporated with anhydrous toluene (2×5 mL) and dried under high vacuum over 6 h. The mixture was dissolved in anhydrous dichloromethane (30 mL) and powdered dry 4 Å molecular sieves (2 g) was added and stirred for 1 h under argon atmosphere. The solution was cooled to -78 °C and TMSOTf (50.4 mg, 0.2 mmol) was added slowly using a micro syringe. The reaction was stirred for 1 h and quenched with 50 μ L of DIPEA. The reaction was allowed to reach room temperature over 30 min, filtered over Celite® 545 and concentrated. The crude thus obtained was purified by silica gel flash column chromatography to obtain the disaccharide 12 (1.8 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.5 Hz, 2H), 7.63 – 7.57 (m, 2H), 7.52 – 7.47 (m, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.33 (dd, J = 16.6, 7.5 Hz, 5H), 5.78 (d, J = 7.8 Hz, 1H), 5.50 (s, 1H), 5.34 (d, J = 2.9 Hz, 1H), 5.25 (dd, J = 10.3, 8.0 Hz, 1H), 5.01 – 4.95 (m, 2H), 4.64 (d, J = 7.9 Hz, 1H), 4.45 – 4.38 (m, 2H), 4.35 (dd, J = 11.1, 5.1 Hz, 2H), 4.21 (dd, J = 13.5, 9.9 Hz, 2H), 4.14 – 4.03 (m, 3H), 4.02 – 3.91 (m, 3H), 3.84 – 3.73 (m, 2H), 3.71 (s, 1H), 2.13 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H), 1.97 (s, 3H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.27, 170.19, 170.11, 169.35, 168.72, 155.82, 143.65, 141.25, 137.51, 128.86, 128.10, 127.82, 127.12, 126.05, 125.07, 125.02, 120.09, 102.38, 100.55, 99.92, 83.04, 75.69, 75.53, 70.93, 70.81, 69.51, 68.97, 68.55, 67.16, 66.90, 63.47, 61.40, 58.70, 54.95, 47.03, 27.92, 20.65, 20.54. HRMS calcd for 12 C₄₉H₅₆N₄O₁₈ [M + H]⁺ m/z = 989.3668, found: 989.3658.


Compound 13:


To a solution of compound 12 (1.5 g, 1.5 mmol) in anhydrous methanol, PTSA.H₂O (57.7 mg, 0.3 mmol) was added and stirred at 30 °C until completion. The reaction was quenched with DIPEA (50 µL), concentrated and dried under vacuum for 2 h. The crude was dissolved in a mixture of anhydrous dichloromethane (8 mL), AcOH (2 mL) and activated Zn (0.9 g, 15.0 mmol) dust was added and stirred until completion. The reaction mixture was filtered over Celite® 545 and concentrated to dryness and dried over high vacuum for 2 h. The crude was dissolved in pyridine (5 mL) and acetic anhydride (2 mL) was added slowly over 10 min at 0 °C. The reaction was allowed to stir at room temperature until completion. The solvent was evaporated and dissolved in EtOAc (150 mL) and washed with aq. NaHCO₃ (50 mL), 1N HCl (50 mL), and brine (50 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated. The crude thus obtained was purified using silica gel flash column chromatography to obtain protected disaccharide 13 (1 g, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H, 7.57 (d, J = 7.4 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 5.76 (d, J = 8.8 Hz, 1H),5.69 (s, 1H), 5.33 (s, 2H), 5.13 - 5.05 (m, 1H), 4.93 (d, J = 10.8 Hz, 1H), 4.84 (s, 1H), 4.58 - 4.33 (m, 5H), 4.22(t, J = 6.6 Hz, 1H), 4.14 - 4.08 (m, 3H), 4.02 (d, J = 7.3 Hz, 1H), 3.98 - 3.90 (m, 2H), 3.84 (d, J = 6.0 Hz, 2H),3.73 (s, 1H), 2.14 (s, 3H), 2.11 (s, 3H), 2.04 (s, 3H), 2.00 (s, 6H), 1.95 (s, 3H), 1.92 (s, 3H), 1.47 (s, 9H). 13 C NMR (101 MHz, CDCl₃) δ 170.49, 170.40, 170.35, 170.13, 170.09, 169.68, 169.05, 155.81, 143.65, 141.32, 141.29, 127.87, 127.10, 124.86, 120.11, 100.54, 98.53, 83.13, 77.20, 73.04, 70.86, 70.71, 68.65, 68.57, 67.81, 67.16, 66.72, 62.65, 61.06, 54.82, 48.65, 47.08, 28.00, 23.24, 20.70, 20.66, 20.54. HRMS calcd for 13 $C_{48}H_{60}N_2O_{21}[M + Na]^+ m/z = 1023.3587$, found: 1023.3570.

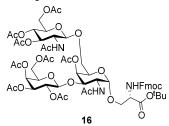
Compound 1 (core 1):

To the purified compound **13** (0.5 g, 0.5 mmol), a mixture of TFA/Anisole (9:1) (5 mL) was added at 0 °C and stirred until completion (15 min). The reaction mixture was concentrated below 30 °C and co-evaporated with toluene (2×5 mL) and dried under high vacuum for 1 h. The crude was dissolved in anhydrous MeOH (5 mL) and solid NaOMe was added slowly at 0 °C until the pH reached 8.5. The reaction was allowed to stir at room temperature until completion. The reaction was neutralized using Amberlite® IRC120 H acidic resin and filtered over Celite® 545. The solution was concentrated and purified by C18 reverse phase flash column chromatography using H₂O and acetonitrile to obtain compound **1** (0.27 g, 78% over two steps) as a white solid. ¹H NMR (400 MHz, D₂O) δ 7.76 (d, J = 7.3 Hz, 2H), 7.60 (dd, J = 14.3, 7.3 Hz, 2H), 7.36 (dt, J = 15.3, 7.3 Hz, 4H), 4.44 (dd, *J* = 9.9, 5.9 Hz, 2H), 4.31 (d, *J* = 7.4 Hz, 1H), 4.25 (dd, *J* = 11.0, 3.6 Hz, 1H), 4.10 (d, *J* = 17.3 Hz, 3H), 3.85 (dt, *J* = 20.1, 12.7 Hz, 4H), 3.75 – 3.39 (m, 9H), 1.93 (s, 3H). ¹³C NMR (101 MHz, D₂O) δ 176.24, 174.53, 157.47, 143.75, 140.86, 127.92, 127.41, 127.37, 124.91, 120.08, 104.62, 97.88, 77.25, 74.73, 72.45, 70.61, 70.53, 68.85, 68.60, 68.49, 66.26, 60.99, 60.78, 56.23, 48.39, 46.76, 22.07. HRMS (m/z): calcd for C₃₂H₄₀N₂O₁₅ [M-H]⁻ 691.2429; found [M-H]⁻ 691.2433. Compound was characterized by HPLC, T_R =19.859 min.

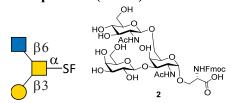

OG100 #771-809 RT: 6.54-6.82 AV: 6 NL: 9.97E6

Compound 14:

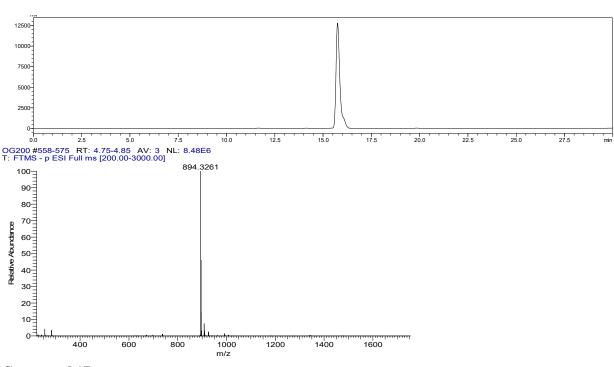
To a solution of compound **12** (1.5 g, 1.5 mmol) in anhydrous methanol, PTSA.H₂O (57.7 mg, 0.3 mmol) was added and stirred at 30 °C until completion. The reaction was quenched with DIPEA (50 μL), concentrated and purified by silica gel flash column chromatography to obtain diol **14** (1.2 g, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 7.4 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 5.95 (d, J = 7.9 Hz, 1H), 5.35 (s, 1H), 5.24 (dd, J = 10.3, 8.0 Hz, 1H), 4.98 (dd, J = 10.5, 3.3 Hz, 1H), 4.88 (d, J = 3.2 Hz, 1H), 4.58 (d, J = 8.0 Hz, 1H), 4.48 – 4.32 (m, 3H), 4.20 (t, J = 6.8 Hz, 1H), 4.13 – 4.00 (m, 4H), 3.93 (dd, J = 24.1, 10.8 Hz, 2H), 3.87 – 3.78 (m, 3H), 3.73 (dd, J = 14.2, 7.5 Hz, 1H), 3.60 (dd, J = 10.5, 3.4 Hz, 1H), 2.14 (s, 3H), 2.05 (s, 3H), 1.98 (d, J = 5.8 Hz, 6H), 1.49 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.40, 170.10, 170.05, 169.54, 168.87, 155.86, 143.81, 143.68, 141.33, 127.78, 127.12, 125.16, 120.07, 101.78, 99.67, 83.06, 78.08, 77.20, 71.28, 70.61, 70.05, 69.91, 69.03, 68.28, 66.93, 62.66, 61.55, 58.41, 55.02, 47.17, 27.93, 20.62, 20.53. HRMS calcd for **14** C₄₂H₅₂N₄O₁₈ [M + Na] + m/z = 923.3175, found: 923.3157.


Compound 15:

A mixture of glycosyl donor 9^4 (1.1 g, 1.8 mmol) and glycosyl acceptor 14 (1.5 g, 1.6 mmol) was co-evaporated with anhydrous toluene (2×5 mL) and dried under high vacuum over 6 h. The mixture was dissolved in anhydrous dichloromethane (30 mL) and powdered dry 4 Å molecular sieves (2 g) was added and stirred for 1 h under argon atmosphere. The solution was cooled to -40 °C and TMSOTf (53.3 mg, 0.2 mmol) was added slowly. The reaction was allowed to stir for 1 h and quenched with DIPEA (50 μ L). The reaction was allowed to reach room


temperature, filtered over Celite® 545 and concentrated. The crude thus obtained was purified by silica gel flash column chromatography to obtain the trisaccharide **15** (1.8 g, 82%). 1 H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.5 Hz, 2H), 7.65 (d, J = 7.4 Hz, 2H), 7.50 – 7.31 (m, 4H), 6.19 (d, J = 7.5 Hz, 1H), 5.92 (d, J = 7.3 Hz, 1H), 5.65 (t, J = 10.0 Hz, 1H), 5.40 (d, J = 3.3 Hz, 1H), 5.26 (dd, J = 10.5, 7.9 Hz, 1H), 5.12 – 4.94 (m, 3H), 4.91 – 4.75 (m, 3H), 4.64 (dd, J = 13.6, 9.9 Hz, 2H), 4.51 – 4.39 (m, 2H), 4.28 (t, J = 7.1 Hz, 1H), 4.22 – 4.02 (m, 6H), 4.02 – 3.86 (m, 5H), 3.79 – 3.65 (m, 2H), 3.60 (dd, J = 10.5, 3.7 Hz, 1H), 3.36 (q, J = 8.8 Hz, 1H), 2.17 (s, 3H), 2.08 (s, 3H), 2.06 – 1.98 (m, 15H), 1.52 (s, 9H). 13 C NMR (101 MHz, CDCl₃) δ 170.50, 170.29, 170.06, 169.97, 169.56, 169.47, 168.59, 155.72, 153.76, 143.82, 143.47, 141.30, 141.22, 127.84, 127.74, 127.19, 127.02, 124.99, 120.10, 101.70, 100.01, 98.15, 95.54, 83.19, 78.00, 77.32, 77.20, 77.00, 76.68, 74.22, 71.51, 71.09, 70.89, 70.61, 69.77, 69.26, 69.01, 68.26, 67.99, 67.08, 66.76, 62.06, 61.23, 60.32, 58.30, 56.86, 54.47, 47.03, 27.87, 20.57, 20.56, 20.48. HRMS calcd for **15** C₅₇H₇₀Cl₃N₅O₂₇ [M + Na] + m/z = 1384.3222, found: 1384.3201.

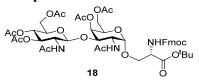
Compound 16:



Compound 15 (1 g, 0.7 mmol) was dissolved in a mixture of anhydrous dichloromethane (15 mL), AcOH (5 mL) and activated Zn (0.72 g, 11.0 mmol) dust was added and stirred at 40 °C until completion (12 h). The reaction mixture was filtered over Celite® 545 and concentrated to dryness and dried over high vacuum for 2 h. The crude was dissolved in pyridine (10 mL) and acetic anhydride (5 mL) was added slowly over 10 min at 0 °C. The reaction was allowed to stir at room temperature until completion. The solvent was evaporated and dissolved in EtOAc (150 mL) and washed with aq. NaHCO₃ (50 mL), 1N HCl (50 mL), and brine (50 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated. The crude thus obtained was purified using silica gel flash column chromatography to obtain protected trisaccharide 16 (0.8 g, 85%). ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 4.9 Hz, 2H), 7.39 (t, J = 7.1 Hz, 2H), 7.31 (t, J = 6.7 Hz, 2H), 6.11 (d, J = 6.5 Hz, 1H), 6.00 (d, J = 7.1 Hz, 1H), 5.81 (d, J = 8.4 Hz, 1H), 5.44 (t, J = 9.3 Hz, 1H), 5.32 (d, J = 2.6 Hz, 1H), 5.24 (s, 1H), 5.06 (dd, J = 10.0, 8.2 Hz, 1H), 5.01 – 4.88 (m, 2H), 4.84 – 4.69 (m, 2H), 4.53 (d, J = 7.8 Hz, 1H), 4.47 (s, 2H), 4.36 (d, J = 4.2 Hz, 2H), 4.23 (d, J = 6.6 Hz, 2H), 4.12 - 4.00 (m, 3H), 3.93 (s, 2H), 3.88 - 3.78 (m, 3H), 3.62 (dd, J = 44.9, 9.1 Hz, 3H), 3.43 - 3.35 (m, 1H), 2.13 (s, 3H), 2.09 (s, 3H), 2.03 (s, 3H), 2.02 - 1.97 (m, 12H),1.94 (d, J = 10.7 Hz, 6H), 1.88 (s, 3H), 1.47 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 170.64, 170.46, 170.39, 170.29, 170.23, 170.11, 169.69, 169.48, 169.27, 156.00, 143.67, 141.29, 127.80, 127.14, 124.95, 120.06, 100.65, 100.15, 97.85, 82.90, 77.21, 77.00, 76.79, 73.24, 71.63, 70.81, 70.68, 69.09, 68.79, 68.69, 67.07, 66.70, 61.97, 61.00, 55.58, 54.73, 48.69, 47.05, 28.00, 23.27, 20.74, 20.69, 20.65, 20.62, 20.51. HRMS calcd for 16 $C_{60}H_{77}N_3O_{28} [M + Na]^+ m/z = 1310.4592$, found: 1310.4570.

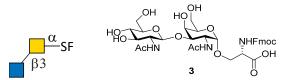
Compound 2 (core 2):

To the purified compound 16 (0.7 g, 0.5 mmol), a mixture of TFA/Anisole (9:1) (7 mL) was added at 0 °C and stirred until completion (15 min). The reaction mixture was concentrated below 30 °C and co-evaporated with toluene (2×5 mL) and dried under high vacuum for 1 h. The crude was dissolved in anhydrous MeOH (5 mL) and solid NaOMe was added slowly at 0 °C until the pH reached 8.5. The reaction was allowed to stir at room temperature until completion. The reaction was neutralized using Amberlite® IRC120 H acidic resin and filtered over Celite® 545. The solution was concentrated and dissolved in a mixture of acetone (6 mL) and H₂O (3 mL). To the vigorously stirring solution, NaHCO₃ (63 mg, 0.75 mmol) and Fmoc-OSu (168 mg, 0.5 mmol) were added successively and stirred at room temperature until completion. The solution was concentrated and purified by C18 reverse phase flash column chromatography using H_20 and acetonitrile to obtain compound 2 (0.37 g, 77% over three steps) as a white solid. ¹H NMR (600 MHz, D₂O) δ 7.86 (t, J = 7.7 Hz, 2H), 7.73 – 7.61 (m, 2H), 7.48 (dt, J = 7.7 Hz, 2H), 7.73 – 7.61 (m, 2H), 7.84 (dt, J = 7.7 Hz, 2H), 7.73 – 7.61 (m, 2H), 7.84 (dt, J = 7.7 Hz, 2H), 7.74 (dt, J = 7.7 Hz, 2H), 7.75 = 14.7, 7.4 Hz, 2H, 7.45 - 7.36 (m, 2H), 4.77 (d, J = 2.9 Hz, 3H), 4.58 (dd, J = 10.7, 5.6 Hz, 1H), 4.49 (d, J = 8.3 Hz, 1.0 Hz)Hz, 2H), 4.37 (d, J = 7.8 Hz, 1H), 4.30 - 4.20 (m, 2H), 4.12 (d, J = 9.1 Hz, 2H), 3.91 (dd, J = 22.9, 12.6 Hz, 4H), 3.83 - 3.70 (m, 5H), 3.57 (dddd, J = 30.7, 25.5, 21.8, 10.6 Hz, 7H), 3.36 (d, J = 3.8 Hz, 2H), 1.97 (s, 6H). ¹³C NMR (151 MHz, D_2O) δ 176.26, 174.57, 174.27, 157.45, 143.88, 140.93, 128.02, 127.52, 125.02, 120.18, 120.13, 104.63, 101.23, 97.89, 76.87, 75.80, 74.82, 73.81, 72.49, 70.57, 69.93, 69.37, 69.03, 68.79, 68.53, 66.31, 60.84, 60.69, 56.13, 55.66, 48.37, 46.90, 22.21, 22.11. HRMS, calcd for $C_{40}H_{53}N_3O_{20}$ 895.3222; found [M-H] 894.3261. Compound was characterized by HPLC, $T_R = 15.749$ min.

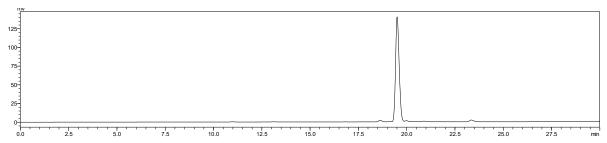


Compound 17:

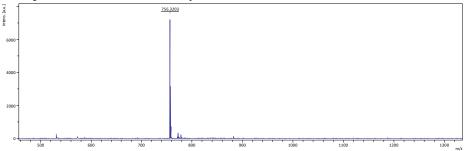
A mixture of glycosyl donor 9^4 (1.6 g, 2.6 mmol) and glycosyl acceptor 11 (1.4 g, 2.1 mmol) was co-evaporated with anhydrous toluene (2×5 mL) and dried under high vacuum over 6 h. The mixture was dissolved in anhydrous dichloromethane (30 mL) and powdered dry 4 Å molecular sieves (2 g) was added and stirred for 1 h under argon atmosphere. The solution was cooled to -78 °C and TMSOTf (94 mg, 0.4 mmol) was added slowly. The reaction


was allowed to stir for 1 h and quenched with DIPEA (100 μL). The reaction was allowed to reach room temperature, filtered over Celite® 545 and concentrated. The crude thus obtained was purified by silica gel flash column chromatography to obtain the disaccharide **17** (2.1 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.4 Hz, 2H), 7.62 (dd, J = 7.1, 4.2 Hz, 2H), 7.47 (d, J = 6.4 Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.37 – 7.30 (m, 5H), 5.74 (d, J = 8.0 Hz, 1H), 5.50 (s, 1H), 5.21 (t, J = 9.9 Hz, 1H), 5.02 – 4.91 (m, 3H), 4.70 (d, J = 12.0 Hz, 1H), 4.59 (dd, J = 23.4, 10.1 Hz, 2H), 4.48 – 4.40 (m, 2H), 4.37 (d, J = 2.2 Hz, 1H), 4.34 – 4.16 (m, 4H), 4.05 – 3.96 (m, 3H), 3.95 – 3.91 (m, 1H), 3.86 (dd, J = 10.7, 3.2 Hz, 1H), 3.74 (s, 1H), 3.59 (dd, J = 18.5, 8.8 Hz, 1H), 3.36 (d, J = 8.3 Hz, 1H), 2.01 (s, 3H), 1.98 (d, J = 4.9 Hz, 6H), 1.49 (s, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 170.42, 170.31, 169.40, 168.63, 155.89, 153.86, 143.75, 143.48, 141.24, 137.57, 128.87, 128.10, 127.89, 127.27, 127.18, 126.05, 125.34, 125.10, 120.28, 101.64, 100.55, 99.51, 95.28, 83.09, 76.34, 75.39, 74.50, 71.67, 71.58, 69.44, 68.99, 68.28, 67.21, 63.46, 61.40, 58.69, 56.09, 54.90, 47.06, 27.94, 20.71, 20.62, 20.59. HRMS calcd for **17** C₅₀H₅₆Cl₃N₅O₁₈ [M + H]⁺ m/z = 1120.2764, found: 1120.2750.

Compound 18:


To a solution of compound 17 (2.0 g, 1.7 mmol) in anhydrous methanol (20 mL), PTSA.H₂O (68 mg, 0.3 mmol) was added and stirred at 30 °C until completion. The reaction was quenched with DIPEA (60 μL), concentrated and dried under vacuum for 2 h. The crude was dissolved in a mixture of anhydrous dichloromethane (10 mL), AcOH (5 mL) and activated Zn (1.6 g, 25.5 mmol) dust was added and stirred at 40 °C until completion. The reaction mixture was filtered over Celite® 545 and concentrated to dryness and dried over high vacuum for 2 h. The crude was dissolved in pyridine (10 mL) and acetic anhydride (5 mL) was added slowly over 10 min at 0 °C. The reaction was allowed to stir at RT until completion. The solvent was evaporated and dissolved in EtOAc (150 mL) and washed with aq. NaHCO₃ (50 mL), 1N HCl (50 mL), and brine (50 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated. The crude thus obtained was purified using silica gel flash column chromatography to obtain protected disaccharide 18 (1.4 g, 79%). ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, J = 7.2Hz, 2H), 7.57 (s, 2H), 7.36 (t, J = 7.3 Hz, 2H), 7.28 (t, J = 7.3 Hz, 2H), 6.18 (d, J = 7.7 Hz, 1H), 6.02 (d, J = 5.5Hz, 1H), 5.85 (d, J = 8.0 Hz, 1H), 5.31 (dd, J = 21.6, 6.4 Hz, 2H), 5.00 (t, J = 9.7 Hz, 1H), 4.89 (dd, J = 11.6, 5.7 Hz, 2H), 4.48 - 4.41 (m, 1H), 4.37 (d, J = 4.2 Hz, 3H), 4.26 - 4.16 (m, 2H), 4.11 - 4.05 (m, 2H), 4.03 - 3.98 (m, 1H), 3.95 - 3.83 (m, 3H), 3.77 (d, J = 9.0 Hz, 1H), 3.63 (d, J = 9.5 Hz, 1H), 3.51 (d, J = 8.8 Hz, 1H), 2.06 (s, 3H), 2.03 (s, 3H), 1.99 – 1.97 (m, 9H), 1.92 (s, 3H), 1.90 (s, 3H), 1.44 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 171.11, 170.73, 170.62, 170.41, 169.89, 169.23, 168.94, 155.85, 143.63, 141.17, 127.73, 127.02, 124.85, 119.98, 99.25, 98.34, 82.88, 72.88, 71.87, 68.87, 68.55, 68.32, 67.57, 66.95, 62.50, 61.35, 55.31, 54.79, 48.81, 47.01, 27.90, 23.22, 23.12, 20.60, 20.55, 20.51. HRMS calcd for **18** $C_{48}H_{61}N_3O_{20}$ [M+H]⁺ m/z = 1000.3927, found: 1000.3925.

Compound 3 (core 3):



To the purified compound **18** (1.0 g, 1.0 mmol), a mixture of TFA/Anisole (9:1) (10 mL) was added at 0 °C and stirred until completion (15 min). The reaction mixture was concentrated below 30 °C and coevaporated with toluene (2×5 mL) and dried under high vacuum for 1 h. The crude was dissolved in anhydrous MeOH (5 mL) and solid NaOMe was added slowly at 0 °C until the pH reached 8.5. The reaction was allowed to stir at room temperature until completion. The reaction was neutralized using Amberlite® IRC120 H acidic resin and filtered over Celite® 545. The solution was concentrated and purified by C18 reverse phase flash column chromatography

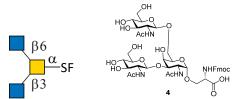
using H_2O and acetonitrile to obtain compound **3** (0.6 g, 90% over two steps) as a white solid. 1H NMR (400 MHz, D_2O) δ 7.31 – 7.12 (m, 4H), 7.08 – 6.89 (m, 4H), 4.65 (s, 1H), 4.38 (d, J = 8.1 Hz, 1H), 4.06 (dd, J = 41.3, 11.9 Hz, 4H), 3.83 – 3.33 (m, 13H), 3.17 (s, 1H), 1.91 (d, J = 7.6 Hz, 6H). ^{13}C NMR (101 MHz, D_2O) δ 176.18, 174.33, 173.60, 157.18, 143.45, 140.69, 127.66, 127.16, 124.76, 119.85, 102.41, 97.84, 76.84, 75.43, 73.54, 70.42, 69.31, 68.59, 61.04, 60.10, 56.18, 55.49, 48.89, 48.20, 46.55, 22.28, 22.22. HRMS, calcd $C_{34}H_{43}N_3O_{15}$ for : 733.2694; found $[M+Na]^+$ 756.3203.

Compound was characterized by HPLC, $T_R = 19.507$ min

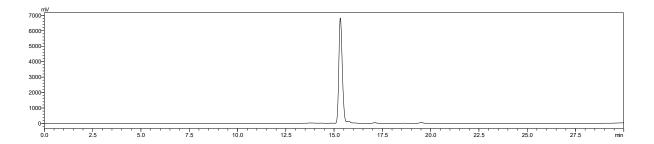
Compound 19:

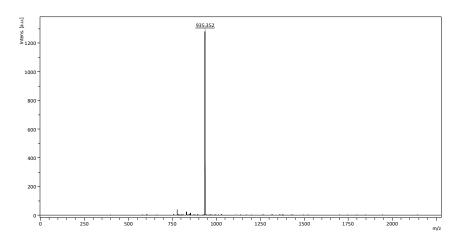
To a solution of compound **17** (3.0 g, 2.6 mmol) in anhydrous methanol (20 mL), PTSA.H₂O (101 mg, 0.5 mmol) was added and stirred at 30 °C until completion. The reaction was quenched with DIPEA (100 µL), concentrated and purified by silica gel flash column chromatography to obtain diol **19** (2.3 g, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.4 Hz, 2H), 7.61 (t, J = 7.9 Hz, 2H), 7.39 (dd, J = 13.8, 6.9 Hz, 2H), 7.31 (dt, J = 11.6, 5.9 Hz, 2H), 5.97 (d, J = 8.2 Hz, 1H), 5.32 (d, J = 8.6 Hz, 1H), 5.24 (t, J = 10.0 Hz, 1H), 4.97 – 4.85 (m, 2H), 4.71 (d, J = 11.5 Hz, 2H), 4.58 (d, J = 12.0 Hz, 1H), 4.49 – 4.40 (m, 2H), 4.35 – 4.27 (m, 1H), 4.21 (t, J = 7.0 Hz, 1H), 4.10 (t, J = 9.0 Hz, 3H), 4.02 (dd, J = 11.0, 4.0 Hz, 1H), 3.95 – 3.82 (m, 4H), 3.77 – 3.71 (m, 1H), 3.69 – 3.59 (m, 2H), 3.54 – 3.47 (m, 1H), 3.07 (s, 1H), 2.02 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.63, 170.33, 169.42, 168.79, 155.88, 154.13, 143.82, 143.52, 141.18, 127.75, 127.14, 125.31, 125.08, 120.09, 100.85, 99.36, 95.23, 82.95, 77.94, 74.46, 71.93, 71.21, 69.91, 68.75, 68.47, 67.00, 62.41, 61.82, 58.47, 56.04, 54.93, 47.08, 27.88, 20.55. HRMS calcd for **19** C₄₃H₅₂Cl₃N₅O₁₈ [M+H]⁺ m/z = 1032.2451, found: 1032.2430.

Compound 20:


A mixture of glycosyl donor 9⁴ (0.6 g, 1.0 mmol) and glycosyl acceptor 19 (1.0 g, 0.97 mmol) was coevaporated with anhydrous toluene (2×5 mL) and dried under high vacuum over 6 h. The mixture was dissolved in anhydrous dichloromethane (20 mL) and powdered dry 4 Å molecular sieves (1.5 g) was added and stirred for 1 h under argon atmosphere. The solution was cooled to -78 °C and TMSOTf (43 mg, 0.19 mmol) was added slowly. The reaction was allowed to stir for 1 h and quenched with DIPEA (40 µL). The reaction was allowed to reach room temperature, filtered over Celite® 545 and concentrated. The crude thus obtained was purified by silica gel flash column chromatography to obtain the trisaccharide **20** (1.0 g, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 7.4 Hz, 2H), 7.69 - 7.58 (m, 2H), 7.44 - 7.29 (m, 4H), 6.34 (d, J = 7.0 Hz, 1H), 5.91 (d, J = 7.0 Hz, 1H), 5.69 (t, J = 7.0 Hz, 1.0 Hz, = 9.7 Hz, 1H), 5.32 (s, 1H), 5.22 (d, J = 8.9 Hz, 1H), 5.18 – 5.10 (m, 1H), 4.99 (ddd, J = 23.7, 14.5, 7.0 Hz, 2H), 4.92 - 4.78 (m, 3H), 4.73 (d, J = 12.1 Hz, 1H), 4.64 - 4.54 (m, 2H), 4.51 - 4.40 (m, 2H), 4.35 (dd, J = 17.6, 7.1Hz, 1H), 4.23 (ddd, J = 22.3, 19.5, 7.5 Hz, 3H), 4.16 - 4.06 (m, 2H), 4.06 - 3.97 (m, 3H), 3.91 (dd, J = 30.1, 10.3Hz, 3H), 3.71 - 3.54 (m, 3H), 3.49 (d, J = 8.9 Hz, 1H), 3.30 (dd, J = 18.6, 9.2 Hz, 1H), 3.23 (dd, J = 17.9, 8.2 Hz, 1H), 2.06 (s, 4H), 2.04 (s, 3H), 2.00 (d, J = 5.0 Hz, 9H), 1.96 (s, 3H), 1.49 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.74, 170.61, 170.56, 170.11, 169.61, 169.35, 155.87, 154.07, 153.76, 143.81, 143.51, 141.28, 127.85, 127.25, 127.125.18, 125.00, 120.22, 101.14, 97.73, 95.64, 95.44, 83.24, 77.47, 77.35, 77.15, 76.83, 75.02, 74.90, 74.49, 74.20, 71.74, 71.39, 70.67, 69.75, 69.18, 68.19, 67.25, 61.99, 61.42, 59.41, 56.95, 56.16, 54.47, 53.50, 47.03, 27.95, 20.68, 20.60. HRMS calcd for **20** C₅₈H₇₀Cl₆N₆O₂₇ [M+H]⁺ m/z = 1493.2498, found: 1493.2463.

Compound 21:


Compound **20** (1 g, 0.67 mmol) was dissolved in a mixture of anhydrous dichloromethane (15 mL), AcOH (5 mL) and activated Zn (0.7 g, 10.0mmol) dust was added and stirred at 40 °C until completion. The reaction mixture was filtered over Celite® 545 and concentrated to dryness and dried over high vacuum for 2 h. The crude was dissolved in pyridine (10 mL) and acetic anhydride (5 mL) was added slowly over 10 min at 0 °C. The reaction was allowed to stir at room temperature until completion. The solvent was evaporated and dissolved in EtOAc (150 mL) and washed with aq. NaHCO₃ (50 mL), 1N HCl (50 mL), and brine (50 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated. The crude thus obtained was purified using silica gel flash column chromatography to obtain protected trisaccharide **21** (0.6 g, 76%). ¹H NMR (400 MHz, MeOD) δ 7.81 (d, J = 7.6 Hz, 2H), 7.74 – 7.65 (m, 2H), 7.41 (t, J = 7.1 Hz, 2H), 7.34 (t, J = 7.4 Hz, 2H), 5.49 (dd, J = 12.9, 6.8 Hz, 1H), 5.25 (t, J = 9.9 Hz, 1H), 5.10 – 4.92 (m, 3H), 4.71 (dd, J = 13.1, 5.8 Hz, 2H), 4.55 – 4.36 (m, 3H), 4.36 – 4.27 (m, 2H), 4.27 – 4.19 (m, 3H), 4.19 – 4.06 (m, 3H), 3.98 – 3.83 (m, 4H), 3.78 (dd, J = 17.7, 6.4 Hz, 4H), 3.63 – 3.48 (m, 2H), 2.01 (dt, J = 12.2, 5.7 Hz, 24H), 1.90 (d, J = 11.3 Hz, 6H), 1.47 (s, 9H). ¹³C NMR (101 MHz,


MeOD) δ 171.86, 171.75, 171.62, 170.81, 170.74, 170.44, 170.38, 169.86, 157.07, 149.85, 148.76, 143.89, 141.26, 137.08, 127.55, 126.95, 124.83, 124.25, 119.76, 101.33, 100.94, 98.37, 82.12, 76.37, 72.68, 71.67, 71.52, 71.37, 71.16, 70.28, 69.62, 68.90, 66.91, 66.54, 62.05, 61.44, 55.47, 55.23, 54.20, 47.07, 29.51, 27.10, 22.14, 21.78, 19.67, 19.53, 19.40, 19.37, 19.34. HRMS calcd for **21** C₆₀H₇₈N₄O₂₇ [M+H]⁺ m/z = 1287.4932, found: 1287.4930.

Compound 4 (core 4):

To the purified compound 21 (0.5 g, 0.39 mmol), a mixture of TFA/Anisole (9:1) (5 mL) was added at 0 °C and stirred until completion (15 min). The reaction mixture was concentrated below 30 °C and coevaporated with toluene (2×5 mL) and dried under high vacuum for 1 h. The crude was dissolved in anhydrous MeOH (5 mL) and solid NaOMe was added slowly at 0 oC until the pH reached 8.5. The reaction was allowed to stir at room temperature until completion. The reaction was neutralized using Amberlite® IRC120 H acidic resin and filtered over Celite® 545. The solution was concentrated and dissolved in a mixture of acetone (3 mL) and H₂O (1.5 mL). To the vigorously stirring solution, NaHCO3 (49 mg, 0.58 mmol) and FmocOSu (131 mg, 0.39 mmol) were added successively and stirred at room temperature until completion. The solution was concentrated and purified by C18 reverse phase flash column chromatography using H₂O and acetonitrile to obtain compound 4 (0.33 g, 92% over three steps) as a white solid. ¹H NMR (600 MHz, D_2O) δ 8.23 (d, J = 7.0 Hz, 2H), 8.04 (s, 2H), 7.82 (d, J = 7.8 Hz, 2H, 7.79 - 7.71 (m, 2H), 4.66 (d, J = 4.5 Hz, 2H), 4.50 (d, J = 7.8 Hz, 2H), 4.44 (s, 1H), 4.32 - 4.06 (s, 1H)(m, 7H), 4.03 - 3.91 (m, 4H), 3.85 (t, J = 8.8 Hz, 2H), 3.83 - 3.76 (m, 1H), 3.70 (s, 3H), 2.32 (s, 3H), 2.29 (s3H), 2.27 (s, 3H). 13 C NMR (101 MHz, D₂O) δ 174.32, 174.11, 173.63, 173.59, 157.23, 143.55, 140.75, 127.82, 127.30, 124.79, 120.00, 102.38, 101.23, 97.77, 75.76, 75.44, 73.78, 73.47, 69.90, 69.37, 69.13, 69.08, 68.73, 66.25, 61.20, 60.66, 60.18, 55.47, 48.09, 46.62, 22.23. HRMS, calcd for C₄₂H₅₆N₄O₂₀: 936.3488; found [M-H]⁻ 935.352. HPLC, $T_R = 15.324 \text{ min.}$

Compound 22:

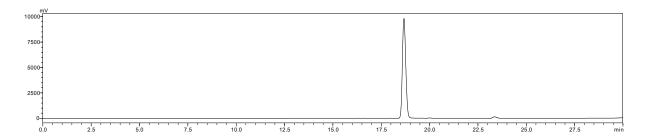
To a solution of compound 7 (2.0 g, 3.0 mmol) in anhydrous methanol (20 mL), PTSA.H₂O (115 mg, 0.6 mmol) was added and stirred at 30 °C until completion. The reaction was quenched with DIPEA (100 μ L), concentrated and purified by silica gel flash column chromatography to obtain diol **22** (1.71 g, 92%). ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 7.4 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.34 – 7.29 (m, 2H), 6.02 (d, J = 8.1 Hz, 1H), 5.15 (dd, J = 11.0, 2.8 Hz, 1H), 4.90 (d, J = 3.5 Hz, 1H), 4.40 (ddd, J = 8.1, 6.1, 2.7 Hz, 3H), 4.23 – 4.18 (m, 2H), 4.16 (dd, J = 11.1, 3.0 Hz, 1H), 3.88 (dd, J = 10.7, 3.1 Hz, 2H), 3.80 – 3.73 (m, 3H), 2.15 (s, 3H), 1.48 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 169.92, 168.84, 155.92, 143.77, 141.31, 127.69, 127.12, 125.15, 125.10, 119.97, 99.96, 83.15, 70.78, 70.43, 69.80, 68.95, 66.92, 63.24, 57.27, 55.09, 47.13, 27.91, 20.93. HRMS calcd for **22** C₃₀H₃₆N₄O₁₀ [M+H]⁺ m/z = 613.2501, found: 613.2492.

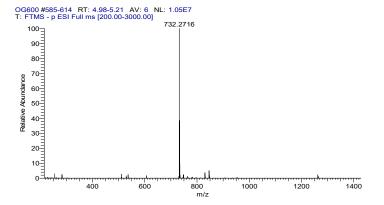
Compound 23:

A mixture of glycosyl donor 9^4 (0.71 g, 1.1 mmol) and glycosyl acceptor 22 (0.64 g, 1.0 mmol) was coevaporated with anhydrous toluene (2×5 mL) and dried under high vacuum over 6 h. The mixture was dissolved in anhydrous dichloromethane (20 mL) and powdered dry 4 Å molecular sieves (1.5 g) was added and stirred for 1 h under argon atmosphere. The solution was cooled to -78 °C and TMSOTf (44.4 mg, 0.2 mmol) was added slowly. The reaction was allowed to stir for 1 h and quenched with DIPEA (50 μ L). The reaction was allowed to reach room temperature, filtered over Celite® 545 and concentrated. The crude thus obtained was purified by silica gel flash column chromatography to obtain the disaccharide 23 (1.0 g, 89%). ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.62 (dd, J = 13.1, 7.4 Hz, 2H), 7.39 (td, J = 7.3, 3.6 Hz, 2H), 7.33 (dd, J = 13.7, 6.9 Hz, 2H), 5.89 (d, J = 7.2 Hz, 1H), 5.49 (d, J = 7.8 Hz, 1H), 5.39 (t, J = 9.8 Hz, 1H), 5.16 (dd, J = 11.0, 2.7 Hz, 1H), 4.97 – 4.87 (m, 2H), 4.70 (dd, J = 23.3, 10.1 Hz, 2H), 4.58 (d, J = 12.1 Hz, 1H), 4.46 – 4.38 (m, 2H), 4.34 – 4.29 (m, 1H), 4.25 (t,

J = 7.3 Hz, 1H), 4.14 (d, J = 12.2 Hz, 1H), 4.08 (s, 1H), 4.05 – 3.99 (m, 2H), 3.96 (d, J = 8.4 Hz, 1H), 3.92 (t, J = 5.6 Hz, 1H), 3.90 – 3.85 (m, 1H), 3.74 (d, J = 10.9 Hz, 1H), 3.66 (dd, J = 9.8, 5.7 Hz, 1H), 3.61 – 3.56 (m, 1H), 3.25 (dd, J = 18.2, 8.4 Hz, 1H), 2.16 (s, 3H), 2.01 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H), 1.49 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 170.76, 170.31, 169.88, 169.46, 168.58, 155.82, 153.92, 143.93, 143.69, 141.23, 141.16, 127.79, 127.25, 125.27, 120.02, 100.21, 98.67, 95.44, 83.20, 74.30, 71.69, 71.06, 70.52, 68.91, 68.68, 68.36, 67.27, 66.69, 61.79, 57.27, 56.26, 54.69, 47.07, 27.93, 20.98, 20.60. HRMS calcd for **23** C₄₅H₅₄Cl₃N₅O₁₉ [M + Na]⁺ m/z = 1096.2377, found: 1096.2356.

Compound 24:

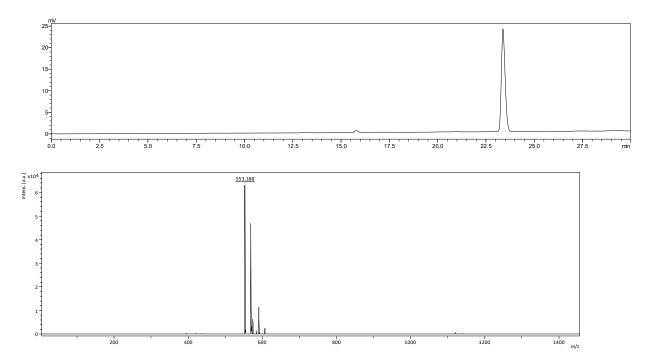

Compound 23 (0.85 g, 0.79 mmol) was dissolved in a mixture of anhydrous dichloromethane (15 mL), AcOH (5 mL) and activated Zn (0.77 g, 11.8 mmol) dust was added and stirred at 40 °C until completion. The reaction mixture was filtered over Celite® 545 and concentrated to dryness and dried over high vacuum for 2 h. The crude was dissolved in pyridine (10 mL) and acetic anhydride (5 mL) was added slowly over 10 min at 0 °C. The reaction was allowed to stir at room temperature until completion. The solvent was evaporated and dissolved in EtOAc (150 mL) and washed with aq. NaHCO3 (50 mL), 1N HCl (50 mL), and brine (50 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated. The crude thus obtained was purified using silica gel flash column chromatography to obtain protected disaccharide 24 (0.67 g, 85%). ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 7.5 Hz, 2H), 7.61 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.31 (dd, J = 13.5, 6.7 Hz, 2H), 6.07 (d, J = 7.5Hz, 1H), 5.92 (d, J = 7.6 Hz, 1H), 5.72 (d, J = 9.6 Hz, 1H), 5.48 (t, J = 9.8 Hz, 1H), 5.29 (d, J = 2.9 Hz, 1H), 5.05(d, J = 11.2 Hz, 1H), 4.93 (t, J = 9.5 Hz, 1H), 4.89 - 4.76 (m, 2H), 4.54 (t, J = 8.8 Hz, 1H), 4.45 - 4.41 (m, 1H),4.38 (d, J = 5.9 Hz, 2H), 4.26 - 4.19 (m, 2H), 4.04 (s, 1H), 4.00 (d, J = 12.0 Hz, 1H), 3.95 (d, J = 7.1 Hz, 1H), $3.74 \text{ (dd, } J = 10.1, 5.0 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 6.4 \text{ Hz, 1H)}, 3.52 \text{ (dd, } J = 10.4, 7.4 \text{ Hz, 1H)}, 3.42 \text{ (d, } J = 9.4 \text{ Hz, 1H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 1H)}, 3.52 \text{ (dd, } J = 10.4, 7.4 \text{ Hz, 1H)}, 3.42 \text{ (d, } J = 9.4 \text{ Hz, 1H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz, 2H)}, 3.63 \text{ (d, } J = 9.4 \text{ Hz,$ 2.11 (s, 3H), 1.99 (s, 3H), 1.97 (d, J = 3.1 Hz, 9H), 1.91 (s, 5H), 1.87 (s, 3H), 1.47 (s, 9H). ¹³C NMR (151 MHz, $CDC1_3$) δ 170.84, 170.64, 170.55, 170.41, 170.23, 170.00, 169.47, 169.01, 155.98, 143.70, 141.26, 127.79, 127.16, 127.14, 125.06, 120.02, 99.70, 98.21, 82.98, 77.21, 77.00, 76.79, 71.64, 71.42, 68.82, 68.62, 68.36, 68.17, 67.67, 67.23, 62.00, 55.79, 54.69, 47.53, 47.03, 28.01, 23.22, 20.72, 20.69, 20.63, 20.59. HRMS calcd for **24** $C_{48}H_{61}N_3O_{20} [M+H]^+ m/z = 1022.3927$, found: 1000.3897.


Compound 5 (core 6):

$$\begin{array}{c} \text{OH} \\ \text{HO} \\ \text{OO} \\ \text{AcHN} \\ \text{HO} \\ \text{AcHN} \\ \text{OH} \\ \end{array}$$

To the purified compound **24** (0.5 g, 0.5 mmol), a mixture of TFA/Anisole (9:1) (5 mL) at 0 °C was added and stirred until completion (15 min). The reaction mixture was concentrated below 30 °C and coevaporated with toluene (2×5 mL) and dried under high vacuum for 1 h. The crude was dissolved in anhydrous MeOH (5 mL) and

solid NaOMe was added slowly at 0 °C until the pH reached 8.5. The reaction was allowed to stir at room temperature until completion. The reaction was neutralized using Amberlite® IRC120 H acidic resin and filtered over Celite® 545. The solution was concentrated and purified by C18 reverse phase flash column chromatography using H_2O and acetonitrile to obtain compound 5 (0.33 g, 90% over two steps) as a white solid. ¹H NMR (600 MHz, D_2O) δ 8.19 (s, 2H), 7.99 (s, 2H), 7.85 – 7.63 (m, 4H), 4.98 (s, 3H), 4.62 (s, 1H), 4.37 (s, 1H), 4.26 (s, 1H), 4.24 – 3.87 (m, 9H), 3.85 (s, 1H), 3.73 (s, 2H), 2.26 (s, 6H). ¹³C DEPT 135 NMR (101 MHz, CDCl₃) δ 127.79, 127.26, 124.98, 124.82, 119.96, 101.20, 97.79, 75.80, 73.36, 69.91, 69.90, 69.31, 69.28, 68.66, 68.50, 68.40, 67.68, 67.63, 66.47, 60.65, 56.11, 55.60, 49.65, 46.65, 22.28, 22.13. HRMS, calcd $C_{34}H_{43}N_3O_{15}$: 733.2694; found $[M-H]^-$ 732.2716. HPLC, T_R =18.614 min.



Compound 6 (Tn-antigen, GalNAca-Ser-Fmoc):

To a solution of compound 7 (2.0 g, 3.0 mmol) in 20 mL of anhydrous methanol, PTSA.H₂O (115 mg, 0.6 mmol) was added and stirred at 30 °C until completion. The reaction was quenched with DIPEA (100 μ L), concentrated and the crude was used for the next step without purification. To the crude, 20 mL of precooled TFA/Anisole (9:1) mixture was added at 0 °C and allowed to reach room temperature over 15 min. After confirming the tert-butyl deprotection on TLC, solvent was evaporated under high vacuum below 30 °C. The crude was co-evaporated twice with toluene (2 × 5 mL) and dried under high vacuum for 1 hr. The crude solid thus obtained was dissolved in 20 mL of anhydrous methanol. Solid NaOMe was added slowly and carefully such that the pH does not exceed 8.5. The reaction was stirred at room temperature and frequently checked for completion on TLC. After completion, the reaction was neutralized using Amberlite® IRC120 H acidic resin and filtered over Celite® 545. The solution was concentrated and purified by silica gel flash column chromatography to obtain compound 6 (1.19 g, 81% over three steps) as a white solid. ¹H NMR (400 MHz, MeOD) δ 7.81 (d, J = 7.5 Hz, 2H), 7.71 – 7.66 (m, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.33 (t, J = 7.4 Hz, 2H), 4.80 (d, J = 3.2 Hz, 1H), 4.38 (d, J = 6.8 Hz, 2H),

 $4.31-4.19\ (m,3H),\ 3.97-3.89\ (m,2H),\ 3.75\ (ddt,\ \textit{J}=20.3,\ 16.8,\ 5.5\ Hz,\ 6H),\ 2.01\ (s,3H).\ ^{13}C\ NMR\ (101\ MHz,\ MeOD)\ \delta\ 175.57,\ 172.84,\ 156.70,\ 143.91,\ 141.19,\ 127.39,\ 126.79,\ 124.81,\ 119.53,\ 98.27,\ 71.06,\ 69.04,\ 68.90,\ 68.63,\ 66.57,\ 61.40,\ 56.27,\ 50.00,\ 21.51.\ HRMS,\ calcd\ C_{26}H_{30}N_2O_{10}:\ 530.1900;\ found\ [M+Na]^+\ 553.188.\ HPLC,\ T_R=23.262\ min.$

III. Enzymatic Modular Assembly to Diversify O-GalNAc Glycans

Materials

Unless otherwise stated, chemicals were purchased and used without further purification. Sugar nucleotides, such as uridine 5'-diphospho-galactose (UDP-Gal),⁵ guanosine 5'-diphospho-L-fucose (GDP-Fuc),⁶ uridine 5'-diphosphate-*N*-acetylglucosamine (UDP-GlcNA),⁶ uridine 5'-diphosphate-*N*-acetylgalactosamine (UDP-GalNAc)⁶ were prepared as described previously reported. Enzymes including *Neisseria meningitides* β1-4 galactosyltransferase (NmLgtB),⁷ human α1-3 galactosyltransferase (GTB),⁸ bovine α1-3 galactosyltransferase (Bα3GalT),⁹ *N. meningitidis* CMP-sialic acid synthetase (NmCSS),¹⁰ *Pasteurella multocida* α2-3 sialyltransferase mutant M144D (PmST1-M144D),¹¹ *P. multocida* α2-6sialyltransferase with selectively sialylation activity toward only terminal galactose residue (PmST1- P34H/M144L),¹² *Photobacterium damsela* α2-6 sialyltransferase (Pd2,6ST)¹³, *Campylobacter jejuni* β1-4 *N*-acetylgalactosaminetransferase (CjCgtA),¹⁴ *Helicobacter mustelae* α1-3 *N*-acetylgalactosaminyltransferase (HmBgtA),¹⁵ *H. pylori* β1-3 *N*-acetylglucosaminyltransferase (HpLgtA),¹⁶ *H. mustelae* α1-2 fucosyltransferase (Hm2FT),¹⁷*H. pylori* α1-3fucosyltransferase C-terminal 66 amnio acid truncation (Hp3FT),¹⁸ bovine β1-4 galactosyltransferase mutant Y289L/C342T (b4GalTm)¹⁹ and human ST6GalNAc-IV²⁰ were expressed and purified as previously described or purchased from Sigma.

General HPLC methods

<u>HPLC</u> method for monitoring reactions and purity analysis of final products: An analytical GL Science Inertsil ODS-4 column (100 Å, 5 μm, 4.6 mm \times 250 mm) was used and the signal was monitored by a UV detector (260 nm) or fluorescent detector (E_x 260nm, E_m 310 nm). The running solvents are solvent A(H₂O with 0.1% TFA) and solvent B (acetonitrile with 0.1% TFA). The running condition is gradient elution with solvent B% linear increased from 20% to 40% within 25 mins, with a total flow rate of 1 mL/min.

<u>HPLC</u> method for purifying final products: An analytical GL Science Inertsil ODS-4 column (100 Å, 5 μ m, 4.6 mm \times 250 mm) was used for separating small reactions with 3 mg or less products, and a semipreparative Inertsil ODS-4 column (100 Å, 5 μ m, 10 mm \times 250 mm) was used for separating products with over 3 mgs. The method for using the analytical column is same as above and monitored by a UV detector (260 nm). The method for using the semipreparative column is similar as that for the analytical column described above, with the only difference of flow rate at 4 mL/min instead.

Enzyme Modules

G1. \(\beta 1-4 \) galactosylation with NmLgtB

Reaction mixtures contain Tris-HCl (100 mM, pH 7.5), an acceptor glycan (10 mM), UDP-Gal (15 mM), MgCl₂ (10 mM), and an appropriate amount of NmLgtB. Reactions were incubated at 37 °C overnight and monitored by HPLC and/or MALDI-TOF MS. After over 95% acceptor was converted, the reaction was quenched, concentrated and subject for HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

S35

G2. α1-3 galactosylation with GTB

Reaction mixtures contain Tris-HCl (100 mM, pH 7.5), an acceptor glycan (10 mM), UDP-Gal (15 mM), MgCl₂ (10 mM), and an appropriate amount of GTB. Reactions were incubated at 37 °C overnight and monitored by HPLC and/or MALDI-TOF MS. After over 95% acceptor was converted, the reaction was quenched, concentrated and subject for HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

G3. α1-3 galactosylation with Bα3GalT

Reaction mixtures contain Tris-HCl (100 mM, pH 7.5), an acceptor glycan (10 mM), UDP-Gal (15 mM), MgCl₂ (10 mM), and an appropriate amount of α3GalT. Reactions were incubated at 37 °C overnight and monitored by HPLC and/or MALDI-TOF MS. After over 95% acceptor was converted, the reaction was quenched, concentrated and subject for HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

S1. α2-3 sialylation with PmST1-M144D

Reaction mixtures contain Tris-HCl (100 mM, pH 8.0), an acceptor glycan (10 mM), CTP (15 mM), Neu5A (15 mM), MgCl₂ (10 mM), and appropriate amount of NmCSS and PmST1-M144D. PmST1-M144D-catalyzed reactions were incubated at 37 °C for 3 h and monitored by HPLC and/or MALDI-TOF MS. After over 95% acceptor was converted, the reaction was quenched, concentrated and subject for HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

S2. α2-6 sialylation with PmST1-P34H/M144L

Reaction mixtures contain Tris-HCl (100 mM, pH 8.0), an acceptor glycan (10 mM), CTP (15 mM), Neu5Ac (15 mM), MgCl₂ (10 mM), and appropriate amount of NmCSS and PmST1-P34H/M144A. PmST1-P34H/M144L - catalyzed reactions were incubated at 37 °C for 3 h and monitored by HPLC and/or MALDI-TOF MS. After over 95% acceptor was converted, the reaction was quenched, concentrated and subject for HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

S3. α2-6 sialylation with Pd2,6ST

Reaction mixtures contain Tris-HCl (100 mM, pH 8.0), an acceptor glycan (10 mM), CTP (15 mM), Neu5Ac (15 mM), MgCl₂ (10 mM), and appropriate amount of NmCSS and Pd2,6ST. Reactions were incubated at 37 °C for 3 h and monitored by HPLC and/or MALDI-TOF MS. After over 95% acceptor was converted, the reaction was quenched, concentrated and subject for HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

S4. α2-6 sialylation with ST6GalNAc-IV

Reaction mixtures contain Tris-HCl (100 mM, pH 8.0), an acceptor glycan (10 mM), CTP (15 mM), Neu5Ac (15 mM), MgCl₂ (10 mM), and appropriate amount of NmCSS and human ST6GalNAc-IV. Reactions were incubated at 37 °C overnight and monitored by HPLC and/or MALDI-TOF MS. After over 95% acceptor was converted, the reaction was quenched, concentrated and subject for HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

N1. β1-4-N-acetylgalatosaminylation with CjCgtA

Reaction mixtures contain Tris-HCl (100 mM, pH 7.5), an acceptor glycan (10 mM), UDP-GalNAc (15 mM), MgCl₂ (10 mM), and appropriate amount of CjCgtA. Reactions were incubated at 37 °C overnight and were monitored by HPLC and/or MALDI-TOF MS. After over 95% acceptor was converted, reactions were quenched, concentrated before HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

N2. α1-3-N-acetylgalatosaminylation with BgtA

Reaction mixtures contain Tris-HCl (100 mM, pH 7.5), an acceptor glycan (10 mM), UDP-GalNAc (15 mM), MgCl₂ (10 mM), and appropriate amount of BgtA. Reactions were incubated at 37 °C overnight and were monitored by HPLC and/or MALDI-TOF MS. After over 95% acceptor was converted, reactions were quenched, concentrated before HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

N3. β1-3-N-acetylglucosamine with HpLgtA

Reaction mixtures contain Tris-HCl (100 mM, pH 7.5), an acceptor glycan (10 mM), UDP-GlcNAc (15 mM), MgCl₂ (10 mM), and appropriate amount of HpLgtA. Reactions were incubated at 37 °C overnight and were monitored by HPLC and/or MALDI-TOF MS. After over 95% acceptor was converted, reactions were quenched, concentrated before HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

N4. β1-3-N-acetylgalatosaminylation with b4GalTm

Reaction mixtures contain Tris-HCl (100 mM, pH 7.5), an acceptor glycan (10 mM), UDP-GalNAc (15 mM), MgCl₂ (10 mM), and appropriate amount of b4GalTm. Reactions were incubated at 37 °C overnight and were monitored by HPLC and/or MALDI-TOF MS. After over 95% acceptor was converted, reactions were quenched, concentrated before HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

F1. α1-2 fucosylation with Hm2FT

Reaction mixtures contain Tris-HCl (100 mM, pH 7.5), an acceptor glycan (10 mM), GDP-Fuc (15 mM), MgCl₂ (10 mM), and appropriate amount of Hm2FT. Reactions were incubated at 37 °C overnight and were monitored by HPLC and/or MALDI-TOF. After over 95% acceptor was converted, reactions were quenched, concentrated before HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

F2. α1-3 fucosylation with Hp3FT

Reaction mixtures contain Tris-HCl (100 mM, pH 7.5), an acceptor glycan (10 mM), GDP-Fuc (15 mM), MgCl₂ (10 mM), and appropriate amount of Hp3FT. Reactions were incubated at 37 °C overnight and were monitored by HPLC and/or MALDI-TOF. After over 95% acceptor was converted, reactions were quenched, concentrated before HPLC separation. Product-containing fractions were pooled and lyophilized for characterization and next step modular assembly.

IV. Glycan Microarray Fabrication and Assay

Method for removing Fmoc

O-GalNAc glycans (50 μ g) were dissolved in 200 μ L H₂O, and 30 μ L triethylamine was added to remove the Fmoc group at room temperature for 4 h. The reactions were then lyophilized, and hexane extraction was applied to remove free Fmoc.

Method for microarray fabrication

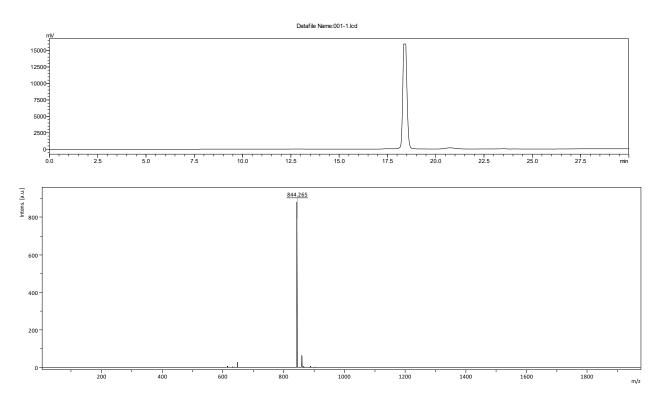
The O-GalNAc microarray was printed according to the guidelines of MIRAGE as summarized in Supplementary Table 1. O-GalNAc glycans and PPA [PGST(GalNAcα-)APP], PPAP [TSAPDT(GalNAcα-)RPAP] were prepared at a concentration of 100 μM in the printing buffer (300 mM phosphate, pH 8.5), and printed on Nexterion slide H-3D hydrogel coated glass microarray slides (Applied Microarrays Inc), each for 400 pL in replicates of three. Non-contact printing was performed at room temperature with a humidity of 60% by a sciFLEXARRAYER S3 spotter (Scienion) with two PDC 80 Piezo Dispense Capillary, and 8 subarrays were printed on each slide. After overnight dehumidification under room temperature, the slides were washed with MilliQ water and subsequently blocked with 50 mM ethanolamine in 100 mM Tris buffer (pH 9.0) for 2 hours. The blocked slides were then washed with MilliQ water twice, dried, and stored desiccated at -20 °C until use. Print buffer was printed as a negative control. In addition, biotinylated PEG amine (0.01mg/mL), Mouse IgG (0.1 mg/mL) and Human IgG (0.1 mg/mL) were printed in six replicates in print buffer to serve as a positive control. A marker containing anti-human IgG conjugate with Cy3 (0.01 mg/mL) and anti-human IgG conjugate with Alexa 647 (0.01 mg/mL) was also printed in triplicates.

Method for microarray assay

Materials: All biotinylated lectins were purchased from EYLabs (San Mateo, CA) and Vector Lab (Burlingame, CA), including three Fuc-specific lectins (Aleuria aurantia lectin, AAL; Ulex europaeus agglutinin I, UEA-1; Lotus Tetragonolobus lectin, LTL, two Sia-specific lectins (Maackia amurensis lectin I, MAL-I; Sambucus nigra lectin, SNA), two LacNAc-specific lectins (Ricinus communis agglutinin I, RCA-I; Erythrina cristagalli lectin, ECL), and two GlcNAc-specific lectins (Griffonia simplicifolia lectin II, GSL-II; Solanum tuberosum lectin, STL), two T antigen specific lectins (Arachis hypogaea lectin, PNA; Artocarpus integrifolia lectin, Jacalin), three Tn antigen specific antigen (Soybean agglutinin, SBA; Vicia villosa lectin, VVL; Dolichos biflorus agglutinin, DBA). Monoclonal mouse anti-human CD15s (sialyl-lewis X) antibody was purchased from BD Biosciences (Franklin Lakers, NJ). Sheep anti-human MUC-1 antibody was purchased from R&D Systems (Minneapolis, MN). Mouse anti-human sialyl-Tn antibody (STn219), Cy5-streptavidin, goat anti-mouse IgG-Alexa Fluor 647 conjugate, His6 Alexa Fluor 647 Conjugate were purchased from Thermo Fisher Scientific (Waltham, MA). Anti-Sheep IgG (H+L) CF™ 633 antibody produced in donkey was purchased from Sigma (St. Louis, MO). Influenza A viruses recombinant H3 Hemagglutinin (HA) of virus A/Brisbane/10/2007 (H3N2) with His-Tag (FR-61), and recombinant H1 HA of virus A/New York/18/2009 (H1N1) (NR-19441), were kindly provided by Dr. Xiu-Feng

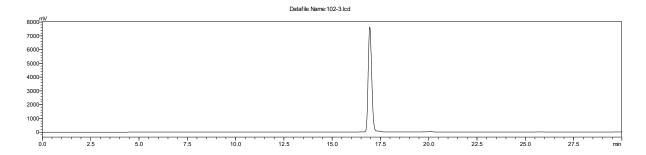
Wan from University of Missouri (acquired from BEI resources). The concentration of IgG and IgM of serum specimens was measured by Human IgG Total ELISA Kit and Human IgM ELISA Kit (Invitrogen). Human serum specimens (Supplementary Table 5) from colorectal cancer patients and normal people were provided by Georgia Cancer Center at Augusta University and stored at -80 °C until use. The protocol for serum specimen preparation was approved by the Institutional Review Board of Augusta University and was performed in accordance with the Helsinki Declaration. All participants gave written informed consent.

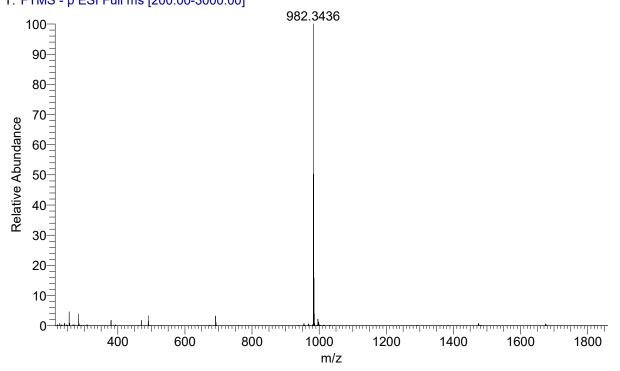
Procedures: Microarray slides were blocked in blocking buffer (50 mM ethanolamine in 50 mM sodium borate, pH 9.2) for 1 hour and washed with H2O before assay. Slides were fitted with ProPlate 16-well microarray modules to divide into subarrays, and then rehydrated for 10 min with 100 μL TSMTB Buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 2 mM CaCl2, 2 mM MgCl2, 0.05% (v/v) Tween-20, 1% (w/v) BSA) at room temperature. Next, the buffer was aspirated and 100 L of GBPs or serum samples at appropriate concentrations in TSMTB were added into each subarray, sealed and incubated at room temperature for 1 hour with gentle shaking. Slides were then washed with TSMT Buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 2 mM CaCl2, 2 mM MgCl2, 0.05% (v/v) Tween-20) for four times. Next, slides were added with 100 μL fluorescence-labeled secondary antibody, sealed, and incubated at room temperature for 1 hour with gentle shaking. Finally, slides were washed 4 times with TSMT, TSM (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 2 mM CaCl2, 2 mM MgCl2), and MilliQ water, respectively, and dried by brief centrifugation. Slides were scanned with a Genepix 4100A microarray scanner (Molecular Devices Corp) using 500 or 600 PMT gains and 80% power, and image analyses were carried out using Genepix Pro 6.1.


Biotin-labelled lectins were detected by Cy5-streptavidin (1 μ g/mL). Anti-STn antibody (1:10), anti-MUC-1 antibody (1:50), anti-CD15s antibody (10 μ g/mL) were detected by corresponding second antibody with fluorescent label (5 μ g/mL). Influenza A Hemagglutinin were detected with 6x-His Tag Monoclonal Antibody (4E3D10H2/E3), Alexa Fluor 647 (5 μ g/mL). Human serum specimens were analyzed in a 1/50 dilution and detected using Dylight 650 anti-human IgG Fc (Invitrogen) and Dylight 550 anti-human IgM antibodies (Invitrogen) with a concentration of 5 μ g/mL.

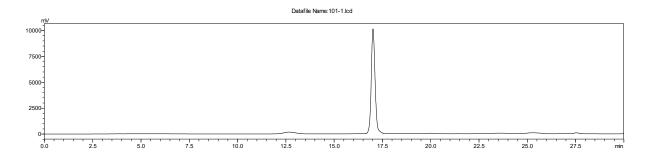
V. HPLC, Mass Spectrometry, and NMR Data of Enzymatically Assembled Glycans

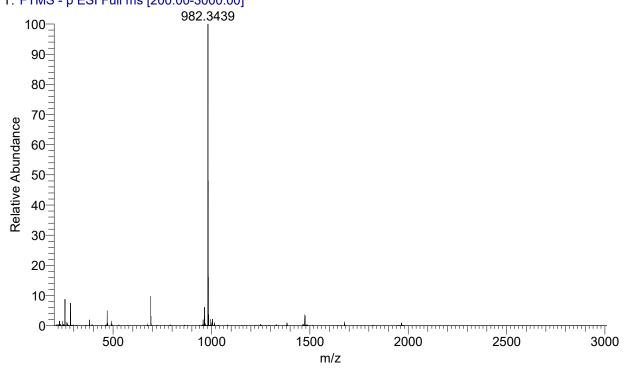
Neu5Acα2-6GalNAcα-Ser-Fmoc (25)


Compound **STn** was prepared according to general procedure of α 2-6 sialylation with Pd2,6ST. After lyophilization, **STn** was obtained as white solid (202 mg, 93%). Compound was characterized by HPLC, T_R = 18.188 min. 1 H NMR (600 MHz, D_2 O) δ 7.81 - 7.63 (m, 2H), 7.61 - 7.52 (m, 2H), 7.41 - 7.24 (m, 4H), 4.63 - 4.43 (m, 2H), 4.47 (s, 1H), 4.33 (s, 1H), 4.19 - 4.00 (m, 2H), 3.94 - 3.50 (m, 13H), 2.68 (m, 1H), 2.07 - 2.02 (m, 3H), 2.00 - 1.90(m, 3H), 1.73 (t, J = 12.1 Hz, 1H). HRMS, $C_{37}H_{47}N_3O_{18}$, Calcd for: 821.2855; found [M+Na]⁺ 844.265.

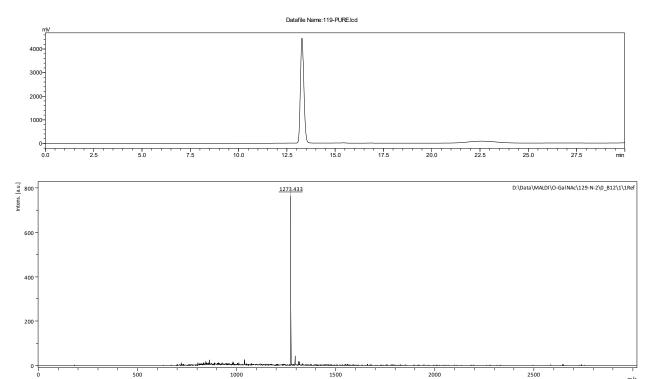

Neu5Acα2-6Galβ1-3GalNAcα-Ser-Fmoc (26)

Compound **26** was prepared according to general procedure of α 2-6 sialylation with PmST1-P34H/M144L. After lyophilization, **26** was obtained as white solid. Compound was characterized by HPLC, $T_R = 16.587$ min. ¹H NMR (600 MHz, D_2O) δ 7.86 - 7.76 (m, 2H), 7.71 - 7.54 (m, 2H), 7.50 - 7.32 (m, 4H), 4.66 - 4.49 (m, 2H), 4.41 - 4.29 (m, 1H), 4.28 - 4.12 (m, 3H), 4.11 - 4.05 (s, 1H), 3.97 - 3.43 (m, 19H), 2.71 (dd, J = 12.5, 4.7 Hz, 1H), 2.08 - 2.02 (m, 3H), 2.00 - 1.90 (m, 3H), 1.71 (t, J = 12.2 Hz, 1H). HRMS, $C_{43}H_{57}N_3O_{23}$ Calcd for: 983.3383; found [M-H] 982.3436.


OG102 #793-837 RT: 6.77-7.06 AV: 8 NL: 9.54E6 T: FTMS - p ESI Full ms [200.00-3000.00]

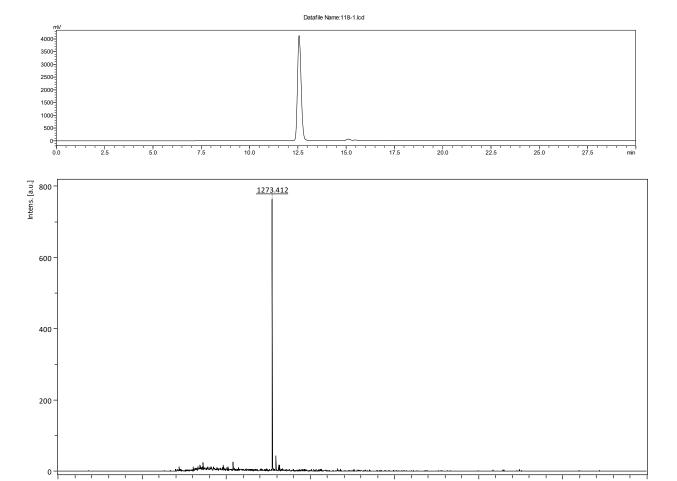

Neu5Acα2-3Galβ1-3GalNAcα-Ser-Fmoc (27)

Compound **27** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **27** was obtained as white solid. Compound was characterized by HPLC, $T_R = 16.789 \text{min.}^{-1} \text{H NMR}$ (600 MHz, D₂O) δ 7.68 - 7.54 (m, 2H), 7.53 - 7.35 (m, 2H), 7.34 - 7.12 (m, 4H), 4.76 - 4.71 (m, 2H), 4.49 - 4.34 (m, 3H), 4.38 (s, 1H), 4.20 - 4.12 (m, 1H), 4.11 - 4.05 (s, 1H), 4.00 (dd, J = 10.5, 3.6 Hz, 1H), 3.92 - 3.42 (m, 17H), 2.69 (dd, J = 12.4, 4.4 Hz, 1H), 2.00 - 1.94 (m, 3H), 1.93 - 1.85 (m, 3H), 1.80 (t, J = 11.22 Hz, 1H). HRMS, $C_{43}H_{57}N_3O_{23}$, Calcd for: 983.3383; found [M-H]⁻ 982.3439.


OG101_190411181035 #656-682 RT: 5.60-5.75 AV: 5 NL: 5.94E6 T: FTMS - p ESI Full ms [200.00-3000.00]

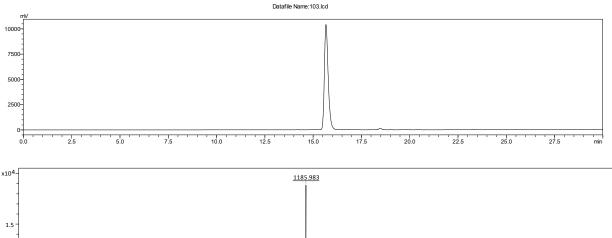
Neu5Acα2-6Galβ1-3(Neu5Acα2-6)GalNAcα-Ser-Fmoc (28)

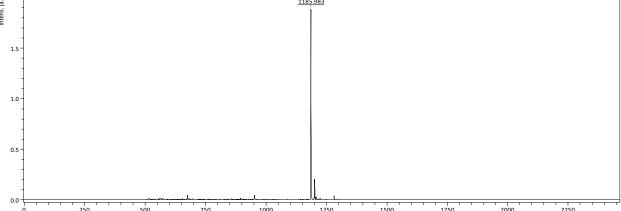
Compound 28 was prepared according to general procedure of α2-6 sialylation with Pd2,6ST. After lyophilization, 28 was obtained as white solid. Compound was characterized by HPLC, T_R =13.052 min. ¹H NMR $(600 \text{ MHz}, D_2O) \delta 7.87 - 7.79 \text{ (m, 2H)}, 7.70 - 7.54 \text{ (m, 2H)}, 7.49 - 7.30 \text{ (m, 4H)}, 4.66 - 4.49 \text{ (m, 2H)}, 4.36 \text{ (s, 1H)},$ 4.31 - 4.23 (m, 2H), 4.21 - 4.08 (m, 2H), 4.04 - 3.97 (m, 1H), 3.93- 3.37 (m, 25H), 2.70 - 2.52 (m, 2H), 2.01 -1.85 (m, 9H), 1.72 - 1.57 (m, 2H). HRMS, $C_{54}H_{74}N_4O_{31}$, Calcd for: 1274.4337; found [M-H]⁻ 1273.433.



1000

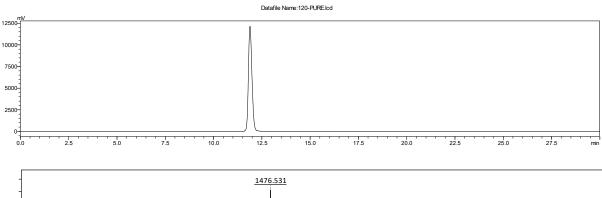
Neu5Acα2-3Galβ1-3(Neu5Acα2-6)GalNAcα-Ser-Fmoc (29)

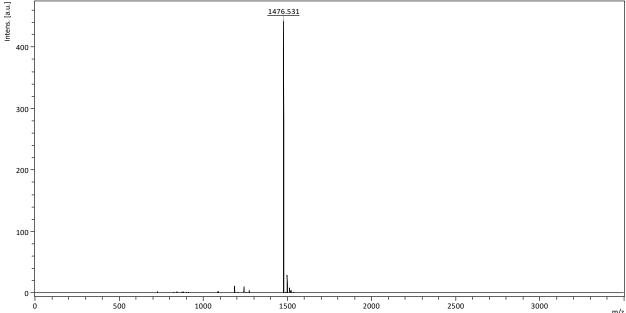

Compound **29** was prepared according to general procedure of α 2-6 sialylation with ST6GalNAc-IV. After lyophilization, **29** was obtained as white solid. Compound was characterized by HPLC, T_R =12.381 min. ¹H NMR (600 MHz, D₂O) δ 7.89 - 7.77 (m, 2H), 7.70 - 7.54 (m, 2H), 7.49 - 7.30 (m, 4H), 4.69 - 4.49 (m, 2H), 4.42 - 4.20 (m, 3H), 4.19 - 4.07 (m, 2H), 4.04 - 4.39 (m, 1H), 3.93 - 3.73 (m, 11H), 3.71 - 3.37 (m, 14H), 2.71 (dd, J = 12.6, 3.9 Hz, 1H), 2.59 (dd, J = 12.3, 4.5 Hz, 1H), 1.98 (s, 3H), 2.01 - 1.96 (m, 6H), 1.93 - 1.85 (m, 3H), 1.77 (t, J = 12.3 Hz, 1H), 1.59 (t, J = 12.2 Hz, 1H). HRMS, $C_{54}H_{74}N_4O_{31}$, Calcd for: 1274.4337; found [M-H]⁻ 1273.412.



Neu5Acα2-3(GalNAcβ1-4)Galβ1-3GalNAcα-Ser-Fmoc (30)

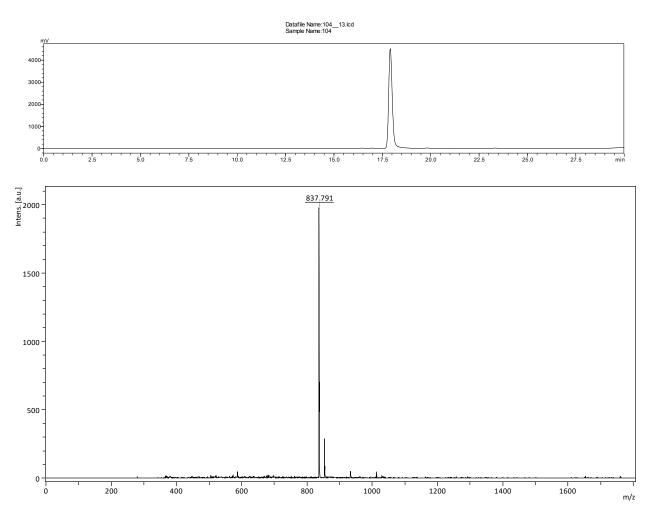
Compound **30** was prepared according to general procedure of β 1-4-*N*-acetylgalatosaminylation with CgtA. After lyophilization, **30** was obtained as white solid. Compound was characterized by HPLC, T_R =15.664 min. ¹H NMR (600 MHz, D₂O) δ 7.98 - 7.86 (m, 2H), 7.77 - 7.63 (m, 2H), 7.57 - 7.39 (m, 4H), 4.67 - 4.61 (m, 1H), 4.53 - 4.41 (m, 1H), 4.40 - 4.31 (m, 2H), 4.28 - 4.18 (m, 1H), 4.16 - 4.03 (m, 3H), 3.97 - 3.59 (m, 24H), 3.54 (d, J = 10.2 Hz, 1H), 3.36 - 3.31 (m, 1H), 2.73 - 2.64 (m, 1H), 2.05 (s, 3H), 2.01 (s, 3H), 1.94 (s, 3H). HRMS, $C_{51}H_{70}N_4O_{28}$, Calcd for: 1186.4177; found [M-H]⁻ 1185.983.



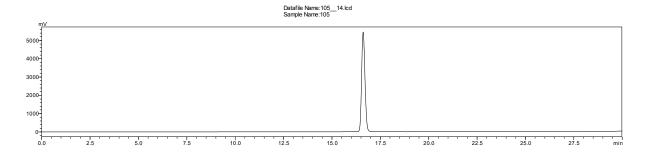


Neu5Acα2-3(GalNAcβ1-4)Galβ1-3(Neu5Acα2-6)GalNAcα-Ser-Fmoc (31)

Compound **31** was prepared according to general procedure of α 2-6 sialylation with Pd2,6ST. After lyophilization, **31** was obtained as white solid. Compound was characterized by HPLC, T_R =11.657 min. ¹H NMR (600 MHz, D_2O) δ 7.98 - 7.87 (m, 2H), 7.78 - 7.62 (m, 2H), 7.57 - 7.38 (m, 4H), 4.65 (s, 1H), 4.50 - 4.16 (m, 4H), 4.15 - 4.03 (m, 3), 3.98 - 3.49 (m, 31H), 3.32 (t, J = 8.7 Hz, 1H), 2.74 -2.61 (m, 2H), 2.05 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 1.94 (s, 3H), 1.76 - 1.62 (m, 2H). HRMS, $C_{62}H_{87}N_5O_{36}$, Calcd for: 1477.5131; found [M-H]⁻ 1476.531.

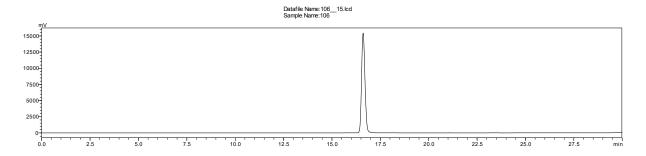


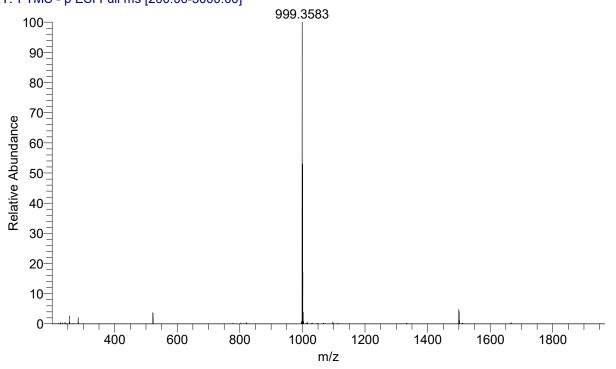
Fucα1-2Galβ1-3GalNAcα-Ser-Fmoc (32)


Compound **32** was prepared according to general procedure of α 1-2 fucosylation with Hm2FT. After lyophilization, **32** was obtained as white solid. Compound was characterized by HPLC, T_R = 17.912 min. 1 H NMR (600 MHz, D_2O) δ 7.95 - 7.76 (m, 2H), 7.76 - 7.57 (m, 2H), 7.55 - 7.34 (m, 4H), 5.20 (d, J = 3.9 Hz, 1H), 4.56 - 4.45 (m, 1H), 4.35 - 4.22 (m, 2H), 4.18 - 4.03 (m, 3H), 3.99 - 3.86 (m, 2H), 3.85 - 3.51 (m, 15H), 2.02 - 1.90 (m, 3H), 1.12 (d, J = 6.6 Hz, 3H). HRMS, $C_{38}H_{50}N_2O_{19}$, Calcd for: 838.3008; found [M-H] $^-$ 837.791.

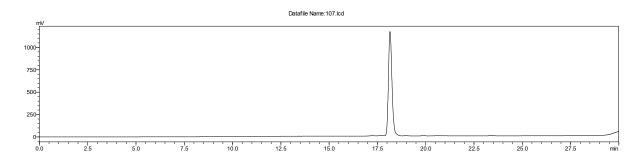
GalNAcα1-3(Fucα1-2)Galβ1-3GalNAcα-Ser-Fmoc (33)

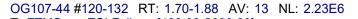
Compound **33** was prepared according to general procedure of α 1-3-*N*-acetylgalatosaminylation with BgtA. After lyophilization, **33** was obtained as white solid. Compound was characterized by HPLC, $T_R = 16.614$ min. ¹H NMR (600 MHz, D₂O) δ 7.89 - 7.81 (m, 2H), 7.72 - 7.57 (m, 2H), 7.49 - 7.34 (m, 4H), 5.20 (d, J = 4.2 Hz, 1H), 5.14 (d, J = 3.7 Hz, 1H), 4.70 - 4.63 (m, 1H), 4.62 - 4.58 (m, 1H), 4.57 - 4.50 (m, 1H), 4.32 - 4.25 (m, 2H), 4.24 - 4.15 (m, 4H), 4.12 - 4.09 (m, 1H), 4.02 - 3.84 (m, 5H), 3.83 - 3.47 (m, 14H), 1.99 (s, 3H), 1.96 - 1.88 (m, 3H), 1.09 (d, J = 6.6 Hz, 3H). HRMS, C₄₆H₆₃N₃O₂₄, Calcd for: 1041.3801; found [M-H]⁻ 1040.3857.

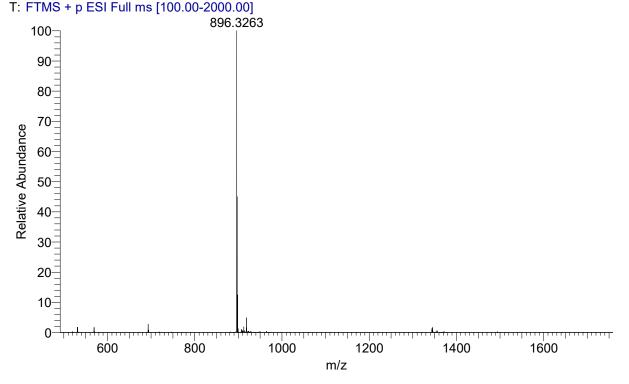

OG105 #654-688 RT: 5.54-5.79 AV: 5 NL: 9.33E6 T: FTMS - p ESI Full ms [200.00-3000.00]

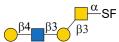

Galα1-3(Fucα1-2)Galβ1-3GalNAcα-Ser-Fmoc (34)

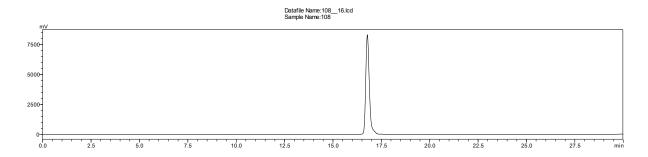
Compound **34** was prepared according to general procedure of α 1-3 galactosylation with GTB. After lyophilization, **34** was obtained as white solid. Compound was characterized by HPLC, $T_R = 16.612$ min. 1 H NMR (600 MHz, D₂O) δ 7.89 - 7.81 (m, 2H), 7.72 - 7.57 (m, 2H), 7.49 - 7.34 (m, 4H), 5.20 (d, J = 3.5 Hz, 1H), 5.18 (d, J = 4.2 Hz, 1H), 4.70 - 4.51 (m, 4H), 4.31 - 4.15 (m, 5H), 4.12 - 4.09 (m, 1H), 4.01 - 3.79 (m, 8H), 3.78 - 3.47 (m, 11H), 1.96 - 1.88 (m, 3H), 1.08 (d, J = 6.5 Hz, 3H). HRMS, C₄₄H₆₀N₂O₂₄, Calcd for: 1000.3536; found [M-H]⁻ 999.3583.

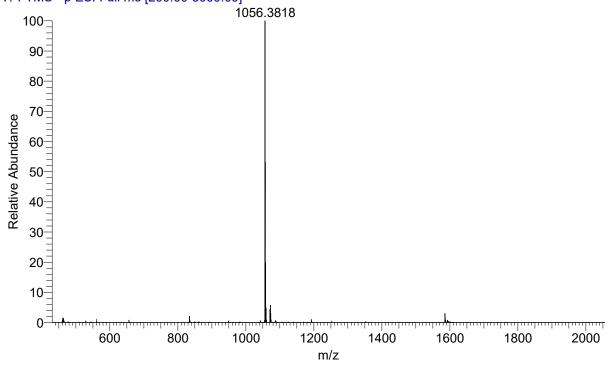




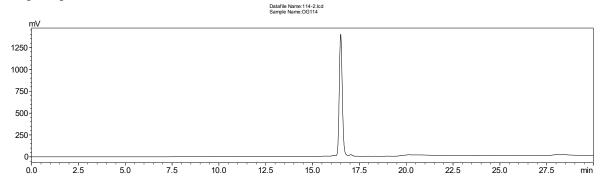

GlcNAcβ1-3Galβ1-3GalNAcα-Ser-Fmoc (35)

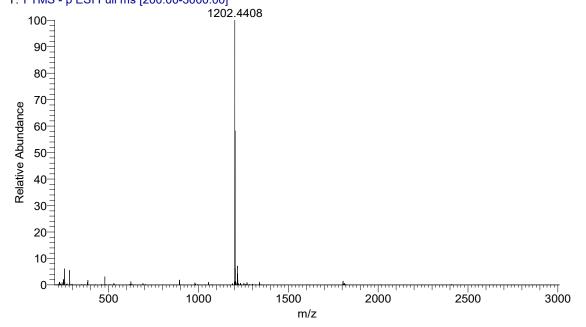

Compound **35** was prepared according to general procedure of β 1-3-*N*-acetylgalatosaminylation with HpLgtA. After lyophilization, **35** was obtained as white solid. Compound was characterized by HPLC, T_R = 18.151 min. 1 H NMR (600 MHz, D₂O) δ 7.98 - 7.90 (m, 2H), 7.79 - 7.67 (m, 2H), 7.56 - 7.41 (m, 4H), 4.42 - 4.30 (m, 3H), 4.29 - 4.21 (m, 2H), 4.18 - 4.10 (m, 3H), 3.96 - 3.41 (m, 17H), 1.99 (s, 3H), 2.04 (s, 3H), 1.95 (s, 3H). HRMS, $C_{40}H_{53}N_3O_{20}$, Calcd for: 895.3222; found [M+H] $^+$ 896.3262.

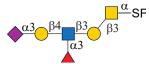


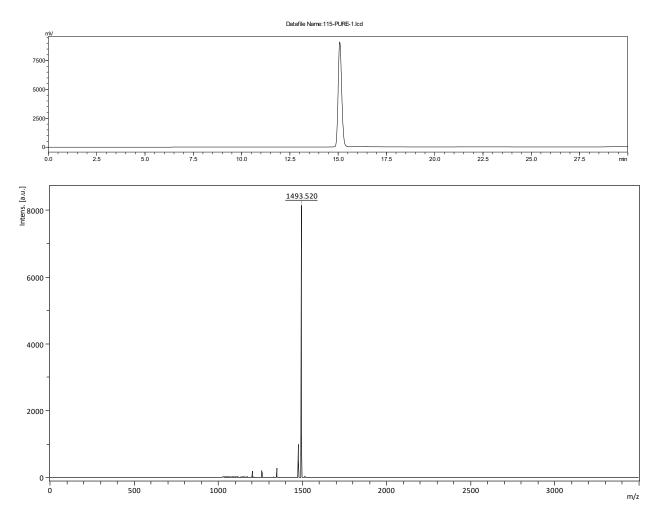

Galβ1-4GlcNAcβ1-3Galβ1-3GalNAcα-Ser-Fmoc (36)

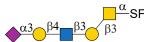
Compound **36** was prepared according to general procedure of β 1-4 galactosylation with NmLgtB. After lyophilization, **36** was obtained as white solid. Compound was characterized by HPLC, T_R =16.779 min. ¹H NMR (600 MHz, D₂O) δ 7.96 - 7.88 (m, 2H), 7.78 - 7.65 (m, 2H), 7.55 - 7.40 (m, 4H), 4.49 (d, J = 7.8 Hz, 1H), 4.33 (s, 1H), 4.31 (s, 1H), 4.29 - 4.22 (m, 1H), 4.21 - 4.09 (m, 4H), 4.02 - 3.48 (m, 25H), 2.01 (s, 3H), 1.95 (s, 3H). HRMS, $C_{46}H_{63}N_3O_{25}$, Calcd for: 1057.3751; found [M-H]⁻ 1056.3818.

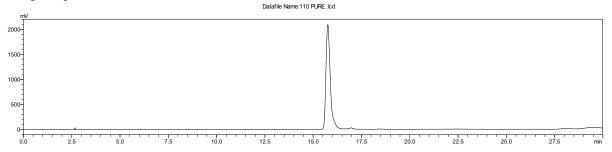


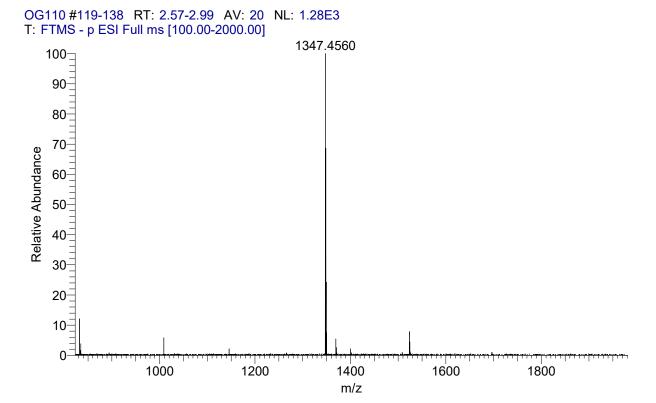

Galβ1-4(Fucα1-3)GlcNAcβ1-3Galβ1-3GalNAcα-Ser-Fmoc (37)


Compound **37** was prepared according to general procedure of α 1-3 fucosylation with Hp3FT. After lyophilization, **37** was obtained as white solid. Compound was characterized by HPLC, T_R =16.215 min. ¹H NMR (600 MHz, D₂O) δ 7.97 - 7.87 (m, 2H), 7.78 - 7.64 (m, 2H), 7.57 - 7.40 (m, 4H), 5.14 (d, J = 4.0 Hz, 1H), 4.69 - 4.60 (m, 2H), 4.48 (d, J = 7.9 Hz, 1H), 4.38 - 4.18 (m, 4H), 4.14 (s, 1H), 4.11 (s, 1H), 4.02 - 3.79 (m, 12H), 3.78 - 3.48 (m, 16H), 2.02 (s, 3H), 1.95 (s, 3H), 1.20 (d, J = 6.6 Hz, 3H). HRMS, $C_{52}H_{73}N_3O_{29}$, Calcd for: 1203.4330; found [M-H]⁻ 1202.4408.

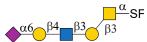



Neu5Aca2-3Galβ1-4(Fuca1-3)GlcNAcβ1-3Galβ1-3GalNAca-Ser-Fmoc (38)

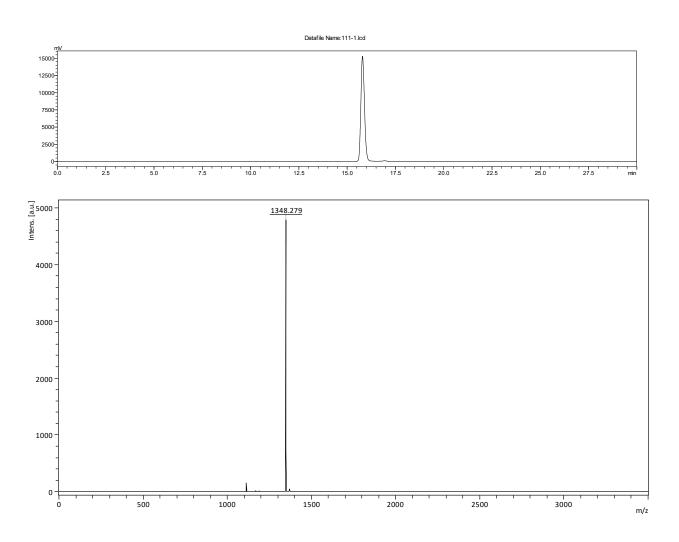

Compound **38** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **38** was obtained as white solid. Compound was characterized by HPLC, T_R =15.145 min. ¹H NMR (600 MHz, D_2O) δ 7.91 - 7.82 (m, 2H), 7.74 - 7.59 (m, 2H), 7.49 - 7.33 (m, 4H), 5.07 (d, J = 4.1 Hz, 1H), 4.69 - 4.55 (m, 3H), 4.48 (d, J = 7.6 Hz, 1H), 4.33 - 4.21 (m, 3H), 4.20 - 4.01 (m, 4H), 3.97- 3.70 (m, 15H), 3.69 - 3.42 (m, 18H), 2.71 (dd, J = 12.6, 4.8 Hz, 1H), 1.98 (s, 3H), 1.95 (s, 3H), 1.88 (s, 3H), 1.75 (t, J = 12.3 Hz, 1H), 1.12 (d, J = 6.5 Hz, 3H). HRMS, $C_{63}H_{90}N_4O_{37}$, Calcd for: 1494.5284; found [M-H]⁻ 1493.520.

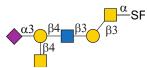


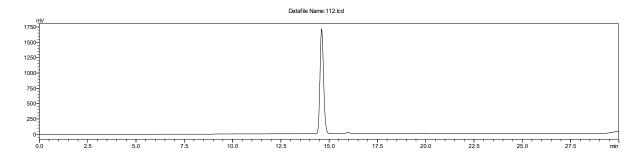
Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-3GalNAcα-Ser-Fmoc (39)



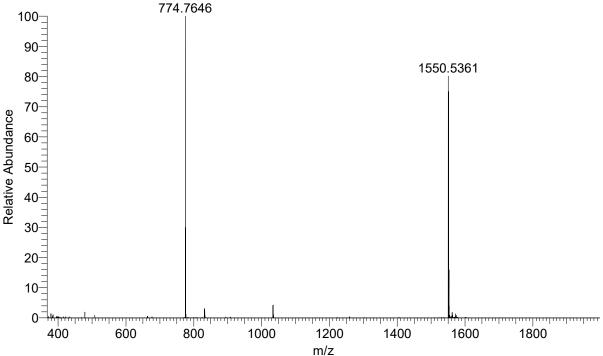
Compound **39** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **39** was obtained as white solid. Compound was characterized by HPLC, T_R = 15.693 min. ¹H NMR (600 MHz, D₂O) δ 7.96 - 7.88 (m, 2H), 7.78 - 7.65 (m, 2H), 7.55 - 7.40 (m, 4H), 4.69 (t, J = 8.5 Hz, 1H), 4.63 (s, 1H), 4.57 (d, J = 7.7 Hz, 1H), 4.39 - 4.18 (m, 6H), 4.03 - 3.49 (m, 35H), 2.77 (dd, J = 12.5, 4.62 Hz, 1H), 2.04 (s, 3H), 2.03 (s, 3H), 1.94 (s, 3H), 1.83 (t, J = 12.3 Hz, 1H). HRMS, C₅₇H₈₀N₄O₃₃, Calcd for: 1348.4705; found [M-H]⁻ 1347.4560.



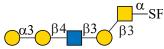

Neu5Acα2-6Galβ1-4GlcNAcβ1-3Galβ1-3GalNAcα-Ser-Fmoc (40)


Compound **40** was prepared according to general procedure of α 2-6 sialylation with PmST1-P34H/M144L. After lyophilization, **40** was obtained as white solid. Compound was characterized by HPLC, $T_R = 15.645$ min. ¹H NMR (600 MHz, D₂O) δ 7.90 - 7.81 (m, 2H), 7.72 - 7.57 (m, 2H), 7.49 - 7.34 (m, 4H), 4.71 - 4.60 (m, 1H), 4.59 - 4.53 (m, 1H), 4.40 (d, J = 8.0 Hz, 1H), 4.32 - 4.23 (m, 2H), 4.21 - 4.15 (m, 1H), 4.09 (s, 1H), 4.06 (s, 1H), 3.97 (t, J = 9.7 Hz, 1H), 3.94 - 3.44 (m, 31H), 2.61 (dd, J = 12.4 Hz, 4.5, 1H), 1.99 (s, 3H), 1.96 (s, 3H), 1.87 (s, 3H), 1.72 (t, J = 12.2 Hz, 1H). HRMS, $C_{57}H_{80}N_4O_{33}$, Calcd for: 1348.4705; found [M-H]⁻ 1348.279.

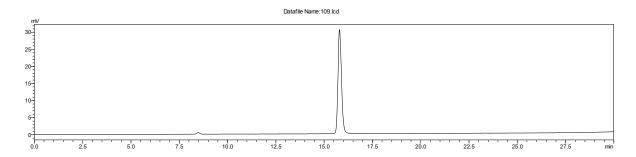
Neu5Acα2-3(GalNAcβ1-4)Galβ1-4GlcNAcβ1-3Galβ1-3GalNAcα-Ser-Fmoc (41)

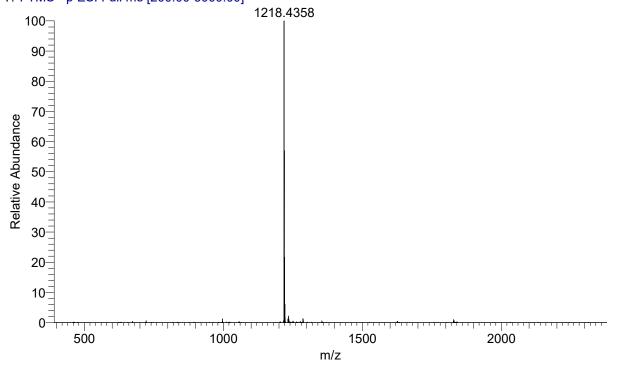


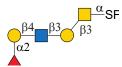
Compound **41** was prepared according to general procedure of β 1-4-*N*-acetylgalatosaminylation with CgtA. After lyophilization, **41** was obtained as white solid. Compound was characterized by HPLC, T_R = 14.610 min. ¹H NMR (600 MHz, D₂O) δ 7.86 - 7.75 (m, 2H), 7.68 - 7.53 (m, 2H), 7.46 - 7.29 (m, 4H), 4.63 (d, *J* = 8.5 Hz, 1H), 4.62 - 4.57 (m, 2H), 4.54 - 4.50 (m, 1H), 4.48 (d, *J* = 7.9 Hz, 1H), 4.31 - 4.19 (m, 3H), 4.18 - 4.13 (m, 1H), 4.11 - 4.03 (m, 3H), 3.93 - 3.36 (m, 35H), 3.31 (t, *J* = 8.8 Hz, 1H), 2.60 (dd, *J* = 12.8, 4.7 Hz, 1H), 1.96 (s, 3H), 1.95 (s, 3H), 1.94 (s, 3H), 1.86 (s, 3H). HRMS, $C_{65}H_{93}N_5O_{38}$, Calcd for: 1551.5499; found [M-H]⁻ 1550.5361, [M-2H]²⁻ 774.7646.

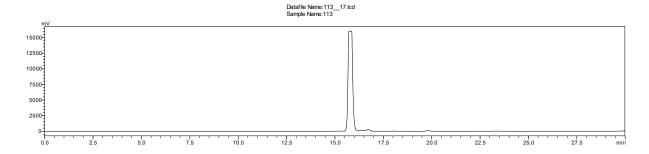


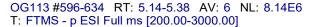
OG112 #98-113 RT: 2.12-2.44 AV: 16 NL: 8.15E4

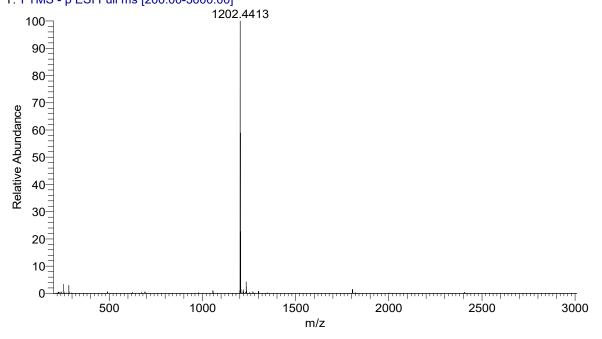


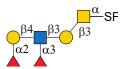

Galα1-3Galβ1-4GlcNAcβ1-3Galβ1-3GalNAcα-Ser-Fmoc (42)

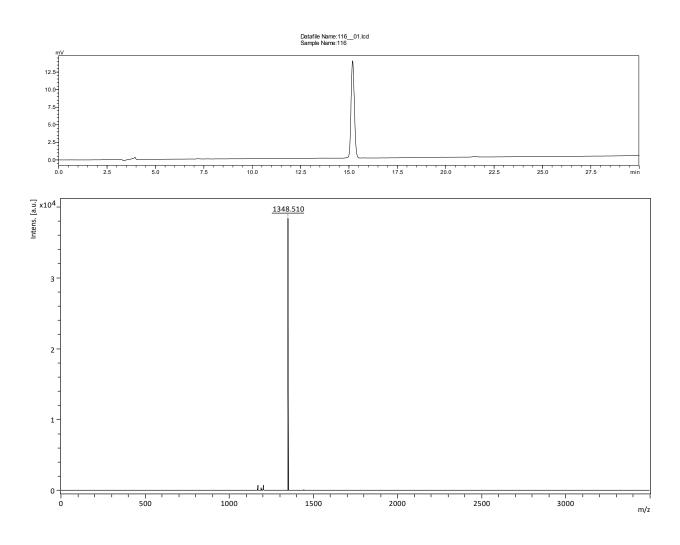

Compound **42** was prepared according to general procedure of α 1-3 galactosylation with α 3GalT. After lyophilization, **42** was obtained as white solid (202 mg, 93%). Compound was characterized by HPLC, T_R = 15.797 min. 1 H NMR (600 MHz, D_2O) δ 7.96 - 7.88 (m, 2H), 7.78 - 7.65 (m, 2H), 7.55 - 7.40 (m, 4H), 5.16 (d, J = 3.9 Hz, 1H), 4.57 (d, J = 7.8 Hz, 1H), 4.39 - 4.18 (m, 6H), 4.15 (s, 1H), 4.12 (s, 1H), 4.05 - 3.94 (m, 3H), 3.91 - 3.57 (m, 21+5H), 3.53 (t, J = 10.3 Hz, 1H), 2.03 (s, 3H), 1.95 (s, 3H). HRMS, $C_{52}H_{73}N_3O_{30}$, Calcd for: 1219.4279; found [M-H] $^-$ 1218.4358.



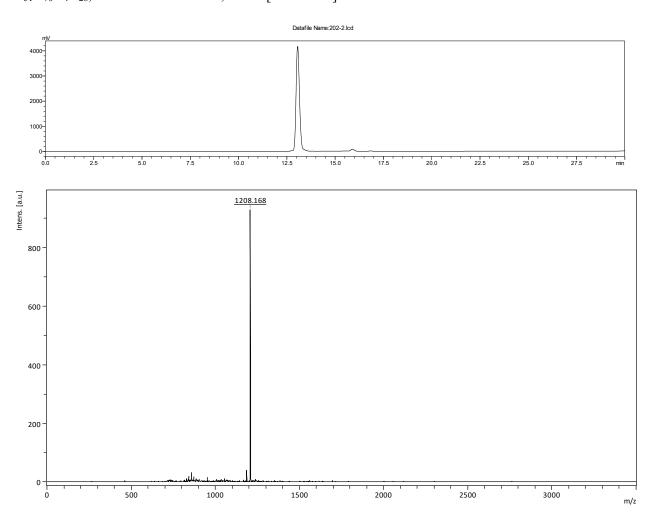



Fucα1-2Galβ1-4GlcNAcβ1-3Galβ1-3GalNAcα-Ser-Fmoc (43)

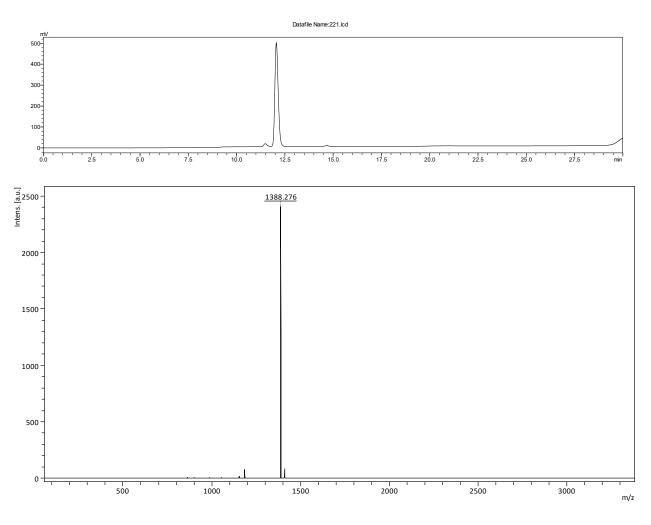

Compound **43** was prepared according to general procedure of α 1-2 fucosylation with Hm2FT. After lyophilization, **43** was obtained as white solid. Compound was characterized by HPLC, T_R =15.868 min. ¹H NMR (600 MHz, D₂O) δ 7.93 - 7.82 (m, 2H), 7.74 - 7.59 (m, 2H), 7.53 - 7.36 (m, 4H), 5.32 (d, J = 3.4 Hz, 1H), 4.69 - 4.58 (m, 2H), 4.55 (d, J = 7.8 Hz, 1H), 4.37 - 4.18 (m, 5H), 4.14 (s, 1H), 4.11 (s, 1H), 4.02 - 3.94 (m, 1H), 3.93 - 3.42 (m, 26H), 2.04 (s, 3H), 1.94 (s, 3H), 1.24 (d, J = 6.6 Hz, 3H). HRMS, $C_{52}H_{73}N_3O_{29}$, Calcd for: 1203.4330; found [M-H]⁻ 1202.4413.



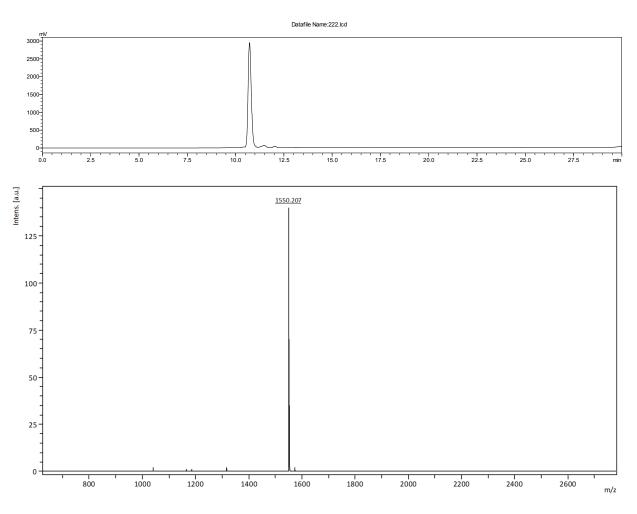
Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-3Galβ1-3GalNAcα-Ser-Fmoc (44)

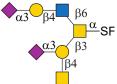

Compound **44** was prepared according to general procedure of α 1-3 fucosylation with Hp3FT. After lyophilization, **44** was obtained as white solid. Compound was characterized by HPLC, T_R =15.189 min. ¹H NMR (600 MHz, D₂O) δ 7.97 - 7.87 (m, 2H), 7.78 - 7.61 (m, 2H), 7.55 - 7.37 (m, 4H), 5.28 (d, J = 3.5 Hz, 1H), 5.13 (d, J = 3.5 Hz, 1H), 4.52 (d, J = 7.5 Hz, 1H), 4.40 - 4.29 (m, 3H), 4.28 - 4.18 (m, 2), 4.14 (s, 1H), 4.11 (s, 1H), 4.06 - 3.43 (m, 30H), 2.02 (s, 3H), 2.02 (s, 3H), 1.93 (s, 3H), 1.27 (d, J = 6.6 Hz, 3H), 1.24 (d, J = 6.5 Hz, 3H). HRMS, $C_{58}H_{83}N_3O_{33}$, Calcd for: 1349.4909; found [M-H]⁻ 1348.510.

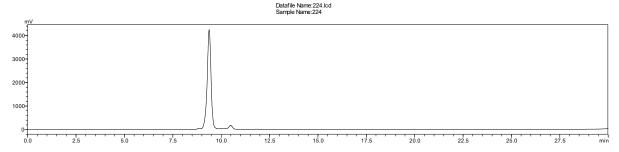
Neu5Acα2-3Galβ1-3(GlcNAcβ1-6)GalNAcα-Ser-Fmoc (45)

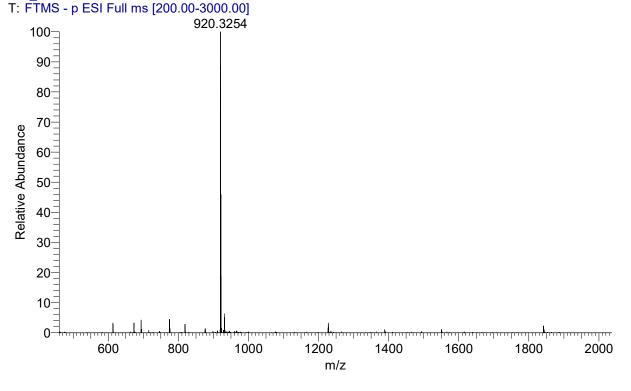

Compound **45** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **45** was obtained as white solid. Compound was characterized by HPLC, T_R =12.908 min. ¹H NMR (600 MHz, D₂O) δ 7.80 - 7.64 (m, 2H), 7.62 - 7.42 (m, 2H), 7.41 - 7.21 (m, 4H), 4.70 (s, 1H), 4.58 -4.43 (m, 2H), 4.40 (d, J = 8.4 Hz, 1H), 4.36 (m, 1H), 4.28 (s, 1H), 4.18 – 4.08 (m, 2H), 4.06 (s, 1H), 4.00 (dd, J = 9.8, 3.3 Hz, 1H), 3.93 - 3.27 (m, 24H), 2.69 (dd, J = 11.9, 3.9 Hz, 1H), 1.97 (s, 3H), 1.88 (s, 3H), 1.85 (s, 3H). HRMS, $C_{51}H_{70}N_4O_{28}$, Calcd for: 1186.4177; found [M+Na-2H]⁻ 1208.168.

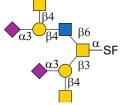
Neu5Acα2-3(GalNAcβ1-4)Galβ1-3(GlcNAcβ1-6)GalNAcα-Ser-Fmoc (46)

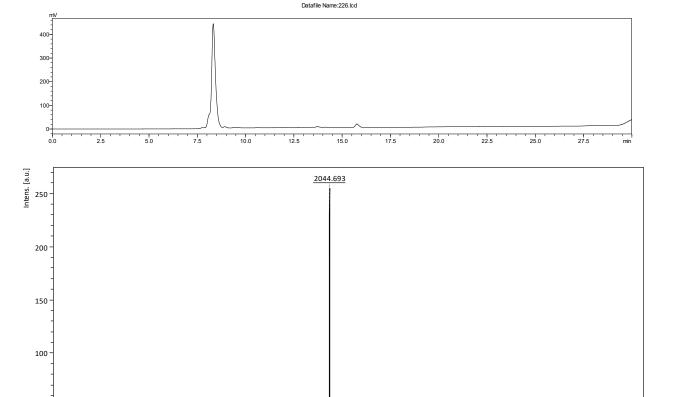

Compound **46** was prepared according to general procedure of β 1-4-N-acetylgalatosaminylation with CgtA. After lyophilization, **46** was obtained as white solid. Compound was characterized by HPLC, T_R =12.060 min. ¹H NMR (600 MHz, D₂O) δ 7.96 - 7.85 (m, 2H), 7.77 – 7.61 (m, 2H), 7.55 - 7.40 (m, 4H), 4.49 (d, J = 8.5 Hz, 1H), 4.43 (m, 1H), 4.38 – 4.28 (m, 2H), 4.26- 4.18 (m, 1H), 4.14 – 4.04 (m, 3H), 4.02 –3.36 (m, 32H), 3.32 (t, J = 8.7 Hz, 1H), 2.68 (dd, 12.3, 4.5, 1H), 2.05 (s, 3H), 2.01 (s, 3H), 1.96 (s, 3H), 1.93 (s, 3H). HRMS, $C_{59}H_{83}N_5O_{33}$, Calcd for: 1389.497; found [M-H]⁻ 1388.276.


Neu5Acα2-3(GalNAcβ1-4)Galβ1-3(Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (47)

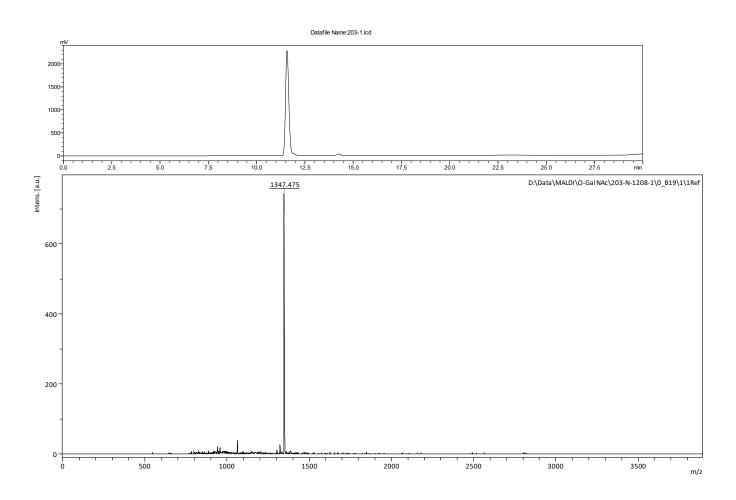

Compound **47** was prepared according to general procedure of β 1-4 galactosylation with NmLgtB. After lyophilization, **47** was obtained as white solid. Compound was characterized by HPLC, T_R =10.723 min. ¹H NMR (600 MHz, D_2O) δ 7.94 - 7.82 (m, 2H), 7.77 - 7.61 (m, 2H), 7.54 - 7.35 (m, 4H), 4.70 (d, J = 8.5 Hz, 1H), 4.68 - 4.63 (m, 1H), 4.60 - 4.54 (m, 1H), 4.46 (d, J = 8.0 Hz, 1H), 4.42 (d, J = 7.9 Hz, 1H), 4.38 - 4.28 (m, 3H), 4.23-4.14 (m, 1H), 4.10 - 4.00 (m, 3H), 3.96 - 3.40 (m, 33H), 3.28 (t, J = 8.8 Hz, 1H), 3.16 (dd, 14.7, 7.3, 1H), 2.63 (dd, 12.6, 4.6, 1H), 2.00 (s, 3H), 1.97 (s, 3H), 1.92 (s, 3H), 1.90 (s, 3H), 1.24 (t, J = 7.3 Hz, 1H). HRMS, $C_{65}H_{93}N_5O_{38}$, Calcd for: 1551.5499; found [M-H]⁻ 1550.207.

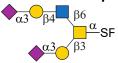

$Neu 5 Ac\alpha 2-3 (GalNAc\beta 1-4) Gal\beta 1-3 (Neu 5 Ac\alpha 2-3 Gal\beta 1-4 GlcNAc\beta 1-6) GalNAc\alpha - Ser-Fmoc~(48)$

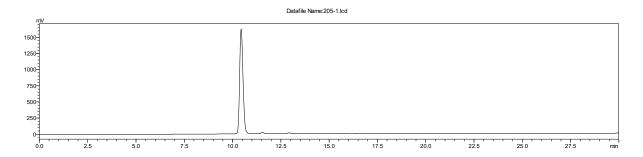

Compound **48** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **48** was obtained as white solid. Compound was characterized by HPLC, T_R =9.379 min. ¹H NMR (600 MHz, D₂O) δ 7.98 - 7.88 (m, 2H), 7.79 – 7.64 (m, 2H), 7.57 - 7.40 (m, 4H), 4.64 (m, 1H), 4.53 – 4.48 (m, 1H), 4.46 (d, J = 7.9 Hz, 1H), 4.43 – 4.33 (m, 2H), 4.26- 4.18 (m, 1H), 4.14 – 4.05 (m, 4H), 3.01 –3.46 (m, 38H), 3.33 (t, J = 8.8 Hz, 1H), 3.16 (dd, 14.7, 7.3, 1H), 2.76 (dd, 12.5, 4.6, 1H), 2.68 (m, 1H), 2.04 (m, 6H), 2.01 (s, 3H), 1.96 (s, 3H), 1.94 (s, 3H), 1.83 (t, J = 12.2 Hz, 1H). HRMS, $C_{76}H_{110}N_6O_{46}$, Calcd for: 1842.6453; found [M-2H]²⁻ 920.3254.

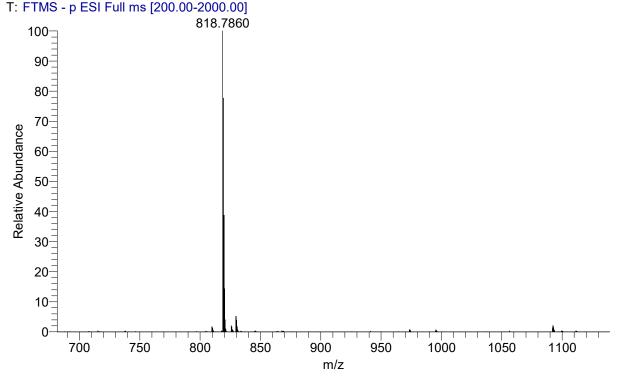

224_190405114247 #846-875 RT: 7.06-7.26 AV: 5 NL: 2.38E6

Neu5Acα2-3(GalNAcβ1-4)Galβ1-3[Neu5Acα2-3(GalNAcβ1-4)Galβ1-4GlcNAcβ1-6]GalNAcα-Ser-Fmoc (49)


Compound **49** was prepared according to general procedure of β 1-4-N-acetylgalatosaminylation with CgtA. After lyophilization, **49** was obtained as white solid. Compound was characterized by HPLC, T_R =8.328 min. ¹H NMR (600 MHz, D₂O) δ 7.94 - 7.83 (m, 2H), 7.76 - 7.60 (m, 2H), 7.54 - 7.35 (m, 4H), 4.64 (m, 1H), 4.53 - 4.48 (m, 1H), 4.46 (d, J = 7.9 Hz, 1H), 4.43 - 4.33 (m, 2H), 4.26- 4.18 (m, 1H), 4.14 - 4.05 (m, 4H), 3.01 - 3.46 (m, 38H), 3.33 (t, J = 8.8 Hz, 1H), 3.16 (dd, 14.7, 7.3, 1H), 2.76 (dd, 12.5, 4.6, 1H), 2.68 (m, 1H), 2.04 (m, 6H), 2.01 (s, 3H), 1.96 (s, 3H), 1.94 (s, 3H), 1.83 (t, J = 12.2 Hz, 1H). HRMS, $C_{84}H_{123}N_7O_{51}$, Calcd for: 2045.7246; found [M-H]⁻ 2044.693.

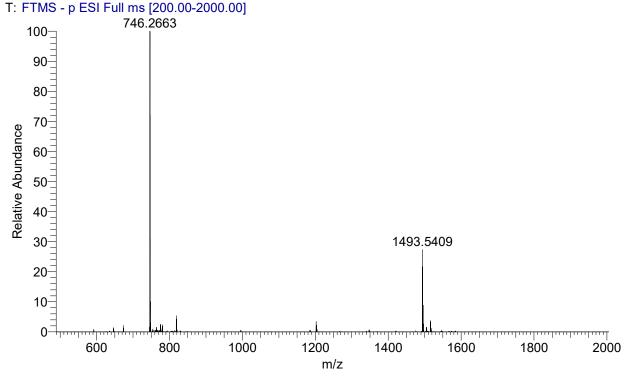

Neu5Acα2-3Galβ1-3(Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (50)


Compound **50** was prepared according to general procedure of β 1-4 galactosylation with NmLgtB. After lyophilization, **50** was obtained as white solid. Compound was characterized by HPLC, $T_R = 11.331$ min. ¹H NMR (600 MHz, D_2O) δ 7.95 - 7.82 (m, 2H), 7.77 - 7.58 (m, 2H), 7.55 - 7.36 (m, 4H), 4.51 (dd, J = 8.4, 4.6 Hz,1H), 4.46 (m, 1H), 4.42 -4.34 (m, 2H), 4.22 (m, 1H), 4.15 (s, 1H), 4.11 -4.04 (m, 2H), 4.03 - 3.48 (m, 32H), 2.77 (dd, J = 12.1, 4.6 Hz, 1H), 2.05(s, 3H), 1.95 (s, 3H), 1.94 (s, 3H), 1.86 (t, J = 12.5 Hz, 1H). HRMS, $C_{57}H_{80}N_4O_{33}$, Calcd for: 1348.4705; found [M-H]⁻ 1347.475.

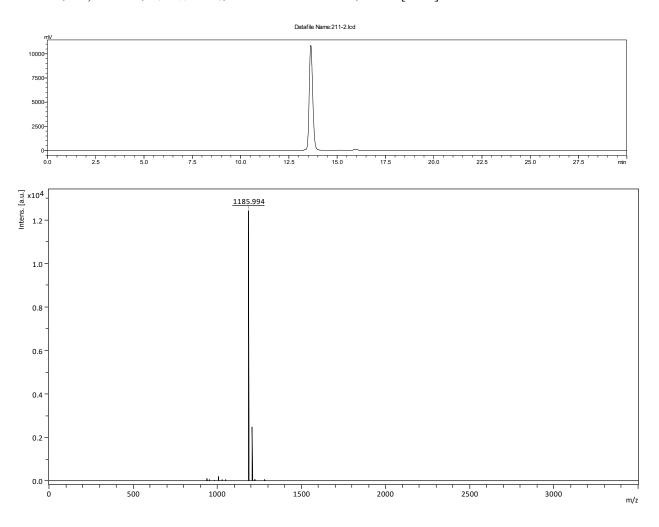

Neu5Acα2-3Galβ1-3(Neu5Acα2-3Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (51)

Compound **51** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **51** was obtained as white solid. Compound was characterized by HPLC, $T_R = 10.192$ min. ¹H NMR (600 MHz, D₂O) δ 7.95 - 7.82 (m, 2H), 7.77 - 7.58 (m, 2H), 7.55 - 7.37 (m, 4H), 4.48 (d, J = 7.8 Hz, 1H), 4.46 (d, J = 7.8 Hz, 1H), 4.11 (m, 1H), 4.31 (m, 1H), 4.21 (m, 1H), 4.13 -4.04 (m, 2H), 4.03 - 3.44 (m, 39H), 2.76 (dd, J = 12.2, 4.6 Hz, 2H), 2.10 - 2.02 (m, 6H), 2.01 - 1.92 (m, 6H), 1.87 (t, J = 12.2 Hz, 2H). HRMS, $C_{68}H_{97}N_5O_{41}$, Calcd for: 1639.5659; found [M-2H]²⁻ 818.7860.

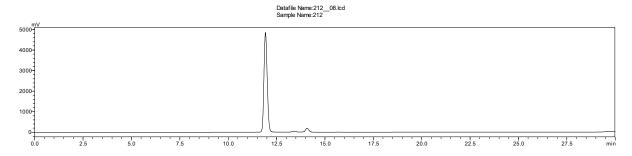
205_190322225755 #695-710 RT: 6.14-6.19 AV: 3 NL: 2.02E6

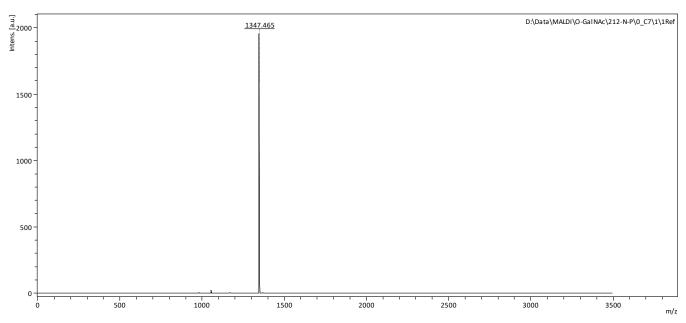

Neu5Acα2-3Galβ1-3[Galβ1-4(Fucα1-3)GlcNAcβ1-6]GalNAcα-Ser-Fmoc (52)

Compound **52** was prepared according to general procedure of α 1-3 fucosylation with Hp3FT. After lyophilization, **52** was obtained as white solid. Compound was characterized by HPLC, T_R =10.031 min. ¹H NMR (600 MHz, D₂O) δ 7.95 - 7.82 (m, 2H), 7.77 - 7.58 (m, 2H), 7.53 - 7.37 (m, 4H), 5.09 (d, J = 3.6 Hz, 1H), 4.61 (t, J = 6.2 Hz, 1H), 4.51 (d, J = 8.0 Hz, 1H), 4.45 (d, J = 7.8 Hz, 1H), 4.39 (s, 1H), 4.35 (m, 1H), 4.30 (m, 1H), 4.21 (m, 1H), 4.14 (d, J = 3.1 Hz, 1H), 4.07 (dd, J = 9.6, 3.3 Hz, 2H), 4.02 - 3.54 (m, 35H), 2.76 (dd, J = 12.2, 4.6 Hz, 1H), 2.08 - 2.02 (m, 3H), 2.01 - 1.91 (m, 6H), 1.17 (d, J = 6.6 Hz, 3H). HRMS, $C_{63}H_{90}N_4O_{37}$, Calcd for: 1494.5284; found [M-H]⁻ 1493.5409, [M-2H]²⁻ 746.2663.

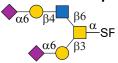


Neu5Acα2-6Galβ1-3(GlcNAcβ1-6)GalNAcα-Ser-Fmoc (53)


Compound **53** was prepared according to general procedure of α 2-6 sialylation with Pd2,6ST. After lyophilization, **3** was obtained as white solid. Compound was characterized by HPLC, T_R =13.455 min. ¹H NMR (600 MHz, D_2O) δ 7.83 - 7.69 (m, 2H), 7.68 - 7.49 (m, 2H), 7.47 - 7.30 (m, 4H), 4.57 (m, 1H), 4.51 (d, J = 8.5 Hz, 1H), 4.48 (d, J = 8.4 Hz, 1H), 4.38 (s, 1H), 4.21 (m, 1H), 4.17 (dd, J = 10.9, 3.6 Hz, 1H), 4.09 - 4.04 (m, 1H), 3.97- 3.37 (m, 26H), 2.70 (dd, J = 12.6, 4.6 Hz, 1H), 2.09 - 2.02 (m, 3H), 1.99 (s, 3H), 1.92 (s, 3H), 1.17 (t, J = 12.7 Hz, 1H). HRMS, $C_{51}H_{70}N_4O_{28}$, Calcd for: 1186.4177; found [M-H]⁻ 1185.994.



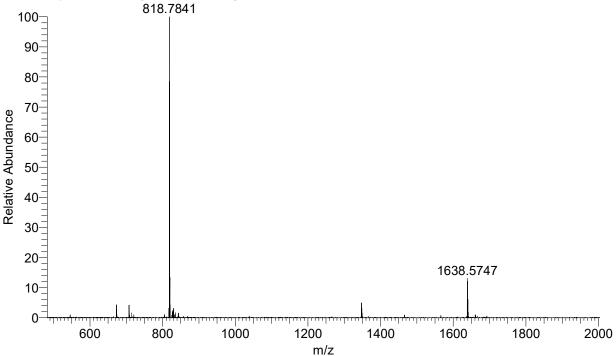
Neu5Acα2-6Galβ1-3(Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (54)



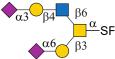
Compound **54** was prepared according to general procedure of β 1-4 galactosylation with NmLgtB. After lyophilization, **54** was obtained as white solid. Compound was characterized by HPLC, $T_R = 11.926$ min. ¹H NMR (600 MHz, D_2O) δ 7.91 - 7.77 (m, 2H), 7.75 - 7.56 (m, 2H), 7.54 - 7.34 (m, 4H), 4.66 (m, 1H), 4.61 (m, 1H), 4.53 (d, J = 8.2 Hz, 1H), 4.41 (s, 1H), 4.38 (d, J = 7.7 Hz, 1H), 4.29 (m, 1H), 4.21 - 4.13 (m, 2H), 4.17 (dd, J = 10.9, 3.6 Hz, 1H), 4.01 – 3.41 (m, 32H), 2.69 (dd, J = 12.5, 4.5 Hz, 1H), 2.03 (s, 3H), 1.99 (s, 3H), 1.93 (s, 3H), 1.71 (t, J = 11.7 Hz, 1H). HRMS, Calcd for: 1348.4705; found [M-H]⁻ 1348.465.



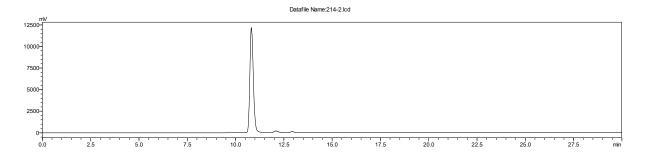
Neu5Acα2-6Galβ1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (55)

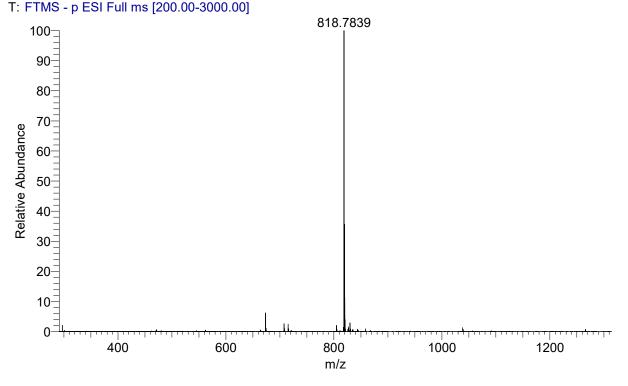


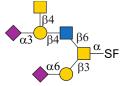
Compound **55** was prepared according to general procedure of α 2-6 sialylation with Pd2,6ST. After lyophilization, **55** was obtained as white solid. Compound was characterized by HPLC, $T_R = 10.175$ min. ¹H NMR (600 MHz, D₂O) δ 7.97 - 7.87 (m, 2H), 7.79 - 7.62 (m, 2H), 7.58 - 7.40 (m, 4H), 4.68 - 4.61 (m, 2H), 4.56 (d, J = 7.7 Hz, 1H), 4.42 - 4.35 (m, 2H), 4.33 (d, J = 7.7 Hz, 1H), 4.22 (m, 1H), 4.12 (m, 1H), 4.05 - 4.45 (m, 39H), 2.73 (d, J = 11.8 Hz, 1H), 2.68 (d, J = 10.8 Hz, 1H), 2.08 - 1.97 (m, 9H), 1.93 (s, 3H), 1.75 (t, J = 12.3 Hz, 1H), 1.67 (t, J = 12.2 Hz, 1H). HRMS, $C_{68}H_{97}N_5O_{41}$, Calcd for: 1639.5659; found [M-H]⁻ 1638.5747; [M-2H]²⁻ 818.7841.

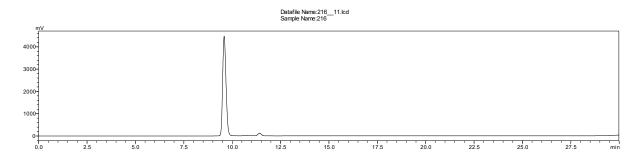


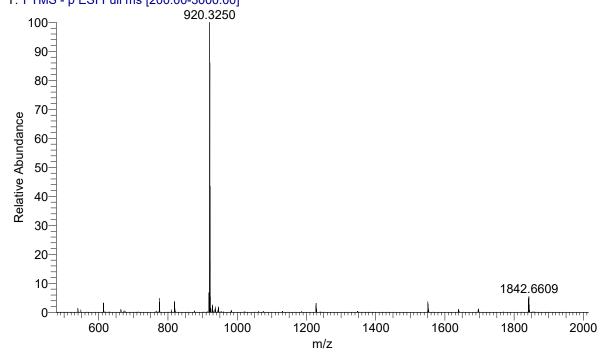
215_190405102842 #950-963 RT: 7.63-7.73 AV: 11 NL: 2.51E5



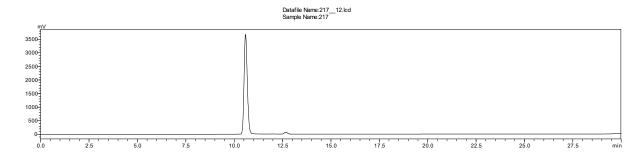

Neu5Acα2-6Galβ1-3(Neu5Acα2-3Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (56)

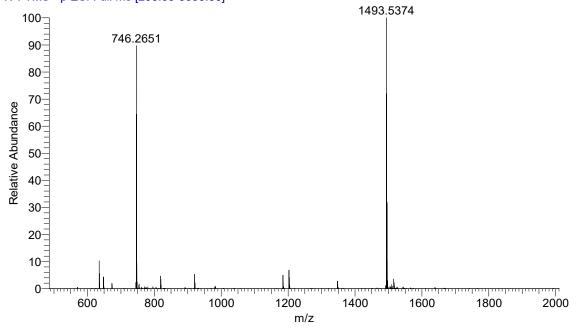

Compound **56** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **56** was obtained as white solid. Compound was characterized by HPLC, T_R =10.691 min. 1 H NMR (600 MHz, D₂O) δ 7.88 - 7.76 (m, 2H), 7.69 - 7.52 (m, 2H), 7.47 - 7.29 (m, 4H), 4.72 (s, 1H), 4.59 (s, 1H), 4.54 (s, 1H), 4.41 (m, 1H), 4.38 - 4.17 (m, 4H), 4.16 - 3.94 (m, 4H), 3.93 - 3.34 (m, 35H), 2.67 (d, J = 12.2 Hz, 1H), 2.61 (d, J = 12.4 Hz, 1H), 1.94 (s, 3H), 1.93 (s, 3H), 1.89 (s, 3H), 1.84 (s, 3H), 1.75 (t, J = 13.2 Hz, 1H), 1.59 (t, J = 9.6 Hz, 1H). HRMS, $C_{68}H_{97}N_5O_{41}$, Calcd for: 1639.5659; found [M-2H]²⁻ 818.7839.

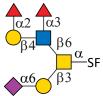

214_190405101013 #895-922 RT: 7.31-7.53 AV: 18 NL: 1.99E5

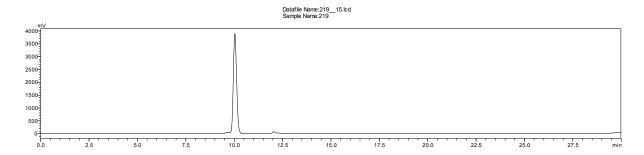

Neu5Acα2-6Galβ1-3[Neu5Acα2-3(GalNAc β1-4)Galβ1-4GlcNAcβ1-6]GalNAcα-Ser-Fmoc (57)

Compound **57** was prepared according to general procedure of β 1-4-N-acetylgalatosaminylation with CgtA. After lyophilization, **57** was obtained as white solid. Compound was characterized by HPLC, T_R =9.586 min. ¹H NMR (600 MHz, D₂O) δ 7.87 (dd, J = 22.3, 8.1 Hz, 2H), 7.76 - 7.59 (m, 2H), 7.53 - 7.36 (m, 4H), 4.69 (d, J = 8.4 Hz, 2H), 4.62 (m, 1H), 4.52 (d, J = 8.2 Hz, 1H), 4.45 (d, J = 7.9 Hz, 1H), 4.41 (s, 1H), 4.34 - 4.25 (m, 2H), 4.23 - 4.12 (m, 3H), 4.10 (m, 1H), 4.01 (s, 1H), 3.99 - 3.43 (m, 43 H), 2.70 (dd, J = 12.9, 4.6 Hz, 1H), 2.68 (dd, J = 13.2, 4.5 Hz, 1H), 2.05 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 2.01 - 1.92 (m, 6H), 1.73 (t, J = 12.5 Hz, 1H). HRMS, $C_{76}H_{110}N_{6}O_{46}$, Calcd for: 1843.6453; found [M-H] 1842.6609, [M-2H]²⁻920.3250.



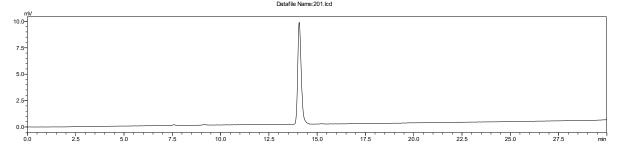

Neu5Acα2-6Galβ1-3[Galβ1-4(Fucα1-3)GlcNAcβ1-6]GalNAcα-Ser-Fmoc (58)

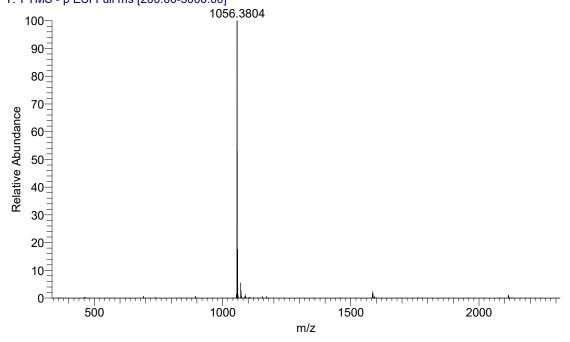

Compound **58** was prepared according to general procedure of α 1-3 fucosylation with Hp3FT. After lyophilization, **58** was obtained as white solid. Compound was characterized by HPLC, T_R =10.587 min. ¹H NMR (600 MHz, D₂O) δ 7.95 - 7.87 (m, 2H), 7.73 (dd, J = 14.5, 7.3 Hz, 2H), 7.55 - 7.38 (m, 4H), 5.10 (d, J = 3.9 Hz, 1H), 4.69 (t, J = 8.7 Hz, 1H), 4.54 (d, J = 8.5 Hz, 1H), 4.41 (s, 1H), 4.38 (d, J = 7.4 Hz, 1H), 4.35 (m, 1H), 4.25 (d, J = 7.5 Hz, 2H), 4.20 (m, 1H), 4.06 (m, 1H), 4.03 – 3.45 (m, 35 H), 2.71 (dd, J = 12.5, 4.6 Hz, 1H), 2.05 (s, 3H), 2.00 (s, 3H), 1.94 (s, 3H), 1.70 (t, J = 12.2 Hz, 1H), 1.18 (d, J = 6.5 Hz, 3H). HRMS, C₆₃H₉₀N₄O₃₇, Calcd for: 1494.5284; found [M-H]⁻ 1493.5374, [M-2H]²⁻ 746.2651.

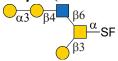


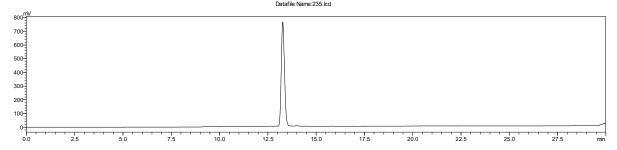

Neu5Acα2-6Galβ1-3[Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-6]GalNAcα-Ser-Fmoc (59)

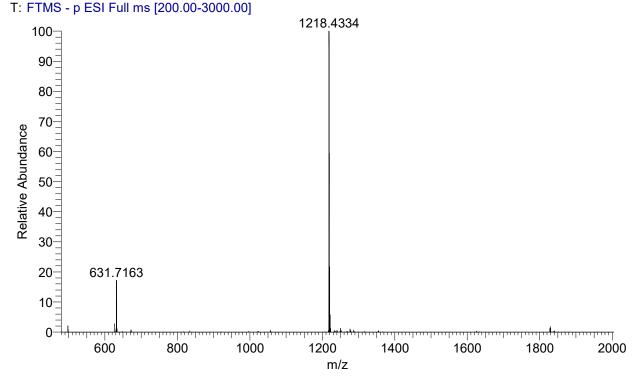
Compound **59** was prepared according to general procedure of α 1-2 fucosylation with Hm2FT. After lyophilization, **59** was obtained as white solid. Compound was characterized by HPLC, T_R =10.034 min. ¹H NMR (600 MHz, D_2O) δ 7.93 - 7.80 (m, 2H), 7.76 - 7.57 (dd, J = 14.6, 7.6 Hz, 2H), 7.51 - 7.33 (m, 4H), 5.20 (t, J = 3.4 Hz, 1H), 5.16 (d, J = 4.0 Hz, 1H), 5.03 (s, 1H), 4.68 - 4.60 (m, 1H), 4.60 - 4.45 (m, 2H), 4.45- 4.24 (m, 4H), 4.22 - 3.99 (m, 4H), 3.99 - 3.31 (m, 36H), 2.69 (dd, J = 12.3, 4.6 Hz, 1H), 2.04 - 1.84 (m, 9H), 1.60 (t, J = 12.0 Hz, 1H), 1.18 (dd, J = 12.4, 6.3 Hz, 3H), 1.08 (d, J = 6.6 Hz, 3H). HRMS, $C_{69}H_{100}N_4O_{41}$, Calcd for: 1640.5863; found [M-2H]²⁻819.2965.



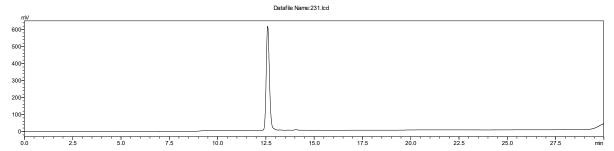

Galβ1-3(Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (60)

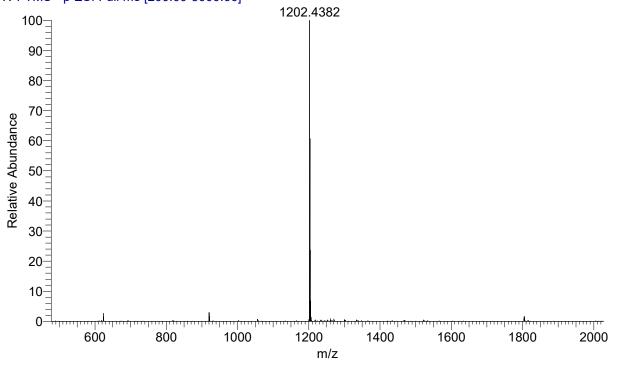

Compound **60** was prepared according to general procedure of β 1-4 galactosylation with NmLgtB. After lyophilization, **60** was obtained as white solid. Compound was characterized by HPLC, T_R =14.073 min. ¹H NMR (600 MHz, D_2O) δ 7.95 - 7.84 (m, 2H), 7.77 - 7.61 (m, 2H), 7.54 - 7.3 (m, 4H), 4.68 -4.56 (m, 2H), 4.51 (d, J = 8.1 Hz, 1H), 4.37 (m, 4H), 4.24 (m, 1H), 4.15 (s, 1H), 4.02 - 3.44 (m, 24H), 1.96 (s, 3H), 1.94 (s, 3H). HRMS, $C_{46}H_{63}N_3O_{25}$, Calcd for: 1057.3751; found [M-H]⁻ 1056.3804.


OG201 #728-792 RT: 6.03-6.55 AV: 32 NL: 2.66E6 T: FTMS - p ESI Full ms [200.00-3000.00]

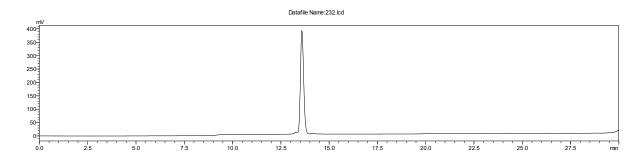

Galβ1-3(Galα1-3Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (61)

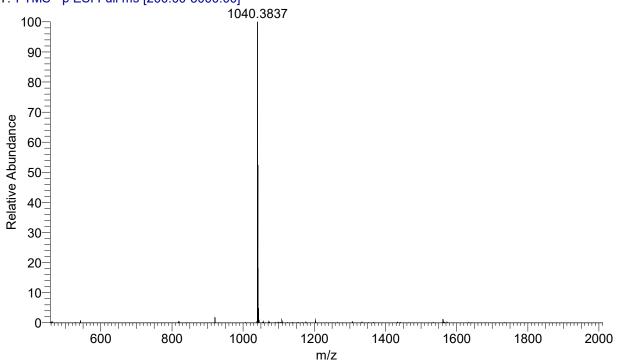
Compound **61** was prepared according to general procedure of α 1-3 galactosylation with α 3GalT. After lyophilization, **61** was obtained as white solid. Compound was characterized by HPLC, $T_R = 13.271$ min. ¹H NMR (600 MHz, D_2O) δ 7.91 – 7.80 (m, 2H), 7.75 – 7.57 (m, 2H), 7.52 - 7.34 (m, 4H), 5.14 (d, J = 3.9 Hz, 1H), 4.64 – 4.54 (m, 2H), 4.50 (d, J = 8.0 Hz, 1H), 4.44 (d, J = 7.8 Hz, 1H), 4.39 - 4.32 (m, 2H), 4.28 (s, 1H), 4.25 – 4.12 (m, 4H), 4.02 (d, J = 3.3 Hz, 1H), 3.96 (d, J = 3.3 Hz, 1H), 3.94 (d, J = 3.3 Hz, 1H), 3.93 - 3.89 (m, 2H), 3.88 (d, J = 3.8 Hz, 1H), 3.86 (d, J = 3.8 Hz, 1H), 3.84 – 3.63 (m, 21H), 1.95 (s, 3H), 1.94 (s, 3H). HRMS, $C_{52}H_{73}N_3O_{30}$, Calcd for: 1219.4279; found [M-H]⁻ 1218.4334, [M-2H]²⁻ 631.7163


235_190405131537 #754-803 RT: 6.16-6.55 AV: 42 NL: 3.09E5

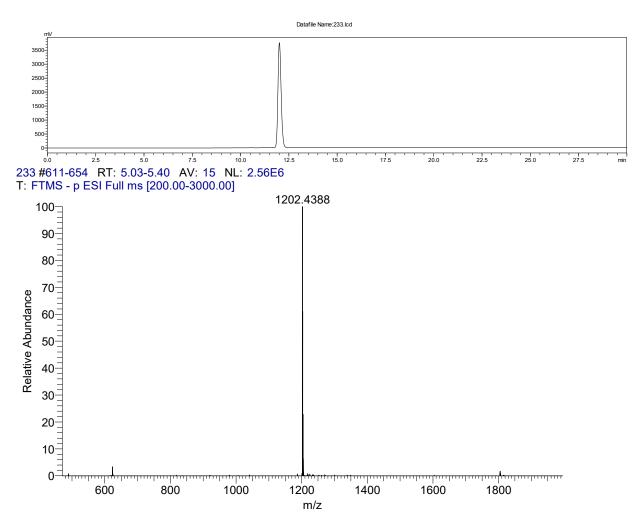

Galβ1-3[Galβ1-4(Fucα1-3)GlcNAcβ1-6]GalNAcα-Ser-Fmoc (62)

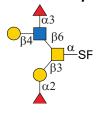
Compound **62** was prepared according to general procedure of α 1-3 fucosylation with Hp3FT. After lyophilization, **62** was obtained as white solid. Compound was characterized by HPLC, T_R =12.594 min. ¹H NMR (600 MHz, D₂O) δ 7.96 - 7.85 (m, 2H), 7.78 - 7.67 (m, 2H), 7.55 - 7.39 (m, 4H), 5.10 (d, J = 3.1 Hz, 1H), 4.62 (d, J = 5.6 Hz, 1H), 4.52 (d, J = 8.1 Hz, 1H), 4.47 - 4.29 (m, 4H), 4.24 (m, 1H), 4.15 (s, 1H), 4.04 - 3.15 (m, 29 H), 1.97 (s, 3H), 1.94 (s, 3H), 1.17 (d, J = 6.5 Hz, 3H). HRMS, $C_{52}H_{73}N_3O_{29}$, Calcd for: 1203.433; found [M-H]⁻ 1202.4382.

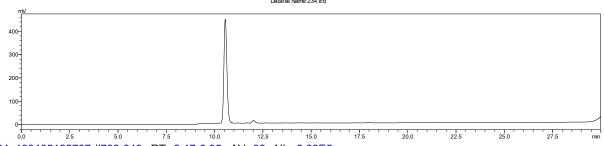


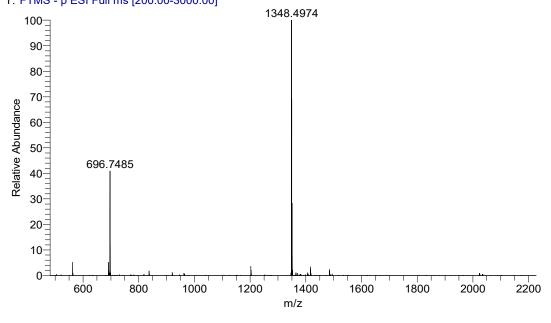

Fucα1-2Galβ1-3(GlcNAcβ1-6)GalNAcα-Ser-Fmoc (63)

Compound **63** was prepared according to general procedure of α 1-2 fucosylation with Hm2FT. After lyophilization, **63** was obtained as white solid. Compound was characterized by HPLC, T_R =13.589 min. ¹H NMR (600 MHz, D₂O) δ 7.85 (d, J = 7.6 Hz, 1H), 7.81 (d, J = 7.4 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.81 (d, J = 7.3 Hz, 1H), 7.52 - 7.35 (m, 4H), 5.18 (d, J = 4.2 Hz, 1H), 4.67 - 4.57 (m, 2H), 4.49 (d, J = 8.4 Hz, 1H), 4.45 (d, J = 7.6 Hz, 1H), 4.25 (s, 1H), 4.21 (s, 1H), 4.16 - 4.09 (m, 1H), 4.09 - 4.02 (m, 2H), 3.99 - 3.87 (m, 4H), 3.83 (d, J = 12.1 Hz, 1H), 3.80 - 3.33 (m, 16 H), 1.96 (s, 3H), 1.95 (s, 3H), 1.11 (d, J = 6.5 Hz, 3H). HRMS, $C_{46}H_{63}N_3O_{24}$, Calcd for: 1041.3801; found [M-H]⁻ 1040.3837.

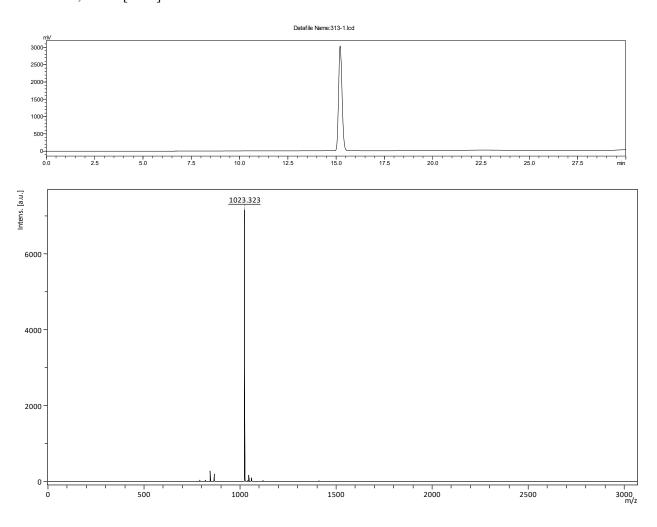



Fucα1-2Galβ1-3(Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (64)

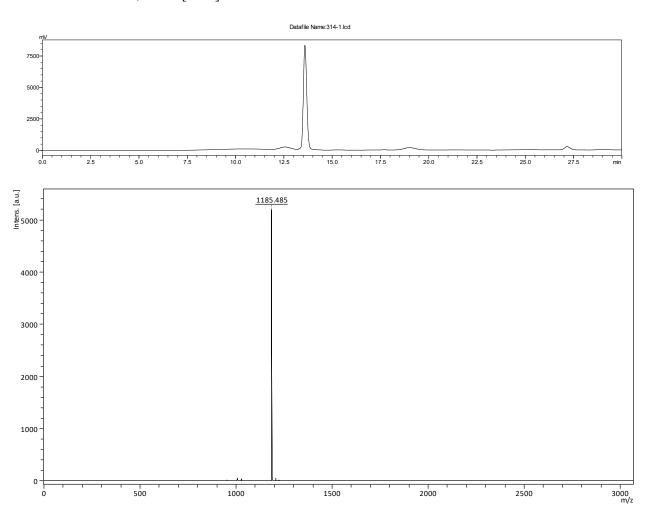

Compound **64** was prepared according to general procedure of β 1-4 galactosylation with NmLgtB. After lyophilization, **64** was obtained as white solid. Compound was characterized by HPLC, T_R =12.010 min. ¹H NMR (600 MHz, D₂O) δ 7.90 (d, J = 6.9 Hz, 1H), 7.86 (d, J = 7.3 Hz, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.71 (d, J = 7.2 Hz, 1H), 7.52 - 7.35 (m, 4H), 4.60 - 4.53 (m, 2H), 4.51 - 4.46 (m, 1H), 4.42 (d, J = 7.7 Hz, 1H), 4.28 (t, J = 8.3 Hz, 2H), 4.13 (s, 1H), 4.05 (m, 1H), 4.03 - 3.97 (m, 2H), 3.96 - 3.77 (m, 8H), 3.76 - 3.39 (m, 20H), 1.88 (s, 3H), 1.87 (s, 3H), 1.05 (d, J = 6.9 Hz, 3H). HRMS, $C_{52}H_{73}N_3O_{29}$, Calcd for: 1203.433; found [M-H]⁻ 1202.4388.


Fucα1-2Galβ1-3[Galβ1-4(Fucα1-3)GlcNAcβ1-6)GalNAcα-Ser-Fmoc (65)

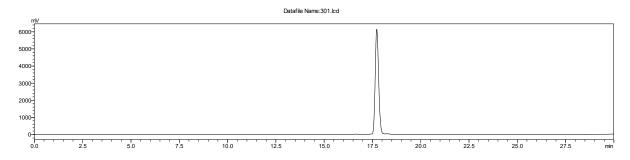
Compound **65** was prepared according to general procedure of α 1-3 fucosylation with Hp3FT. After lyophilization, **65** was obtained as white solid. Compound was characterized by HPLC, T_R =10.555 min. ¹H NMR (600 MHz, D₂O) δ 7.80 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 7.3 Hz, 1H), 7.66 (d, J = 7.4 Hz, 1H), 7.71 (d, J = 6.9 Hz, 1H), 7.48 - 7.30 (m, 4H), 5.13 (d, J = 3.8 Hz, 1H), 5.05 (d, J = 3.9 Hz, 1H), 4.59 (m, 1H), 4.56 (d, J = 7.9 Hz, 1H), 4.48 (d, J = 8.3 Hz, 1H), 4.39 (d, J = 7.5 Hz, 1H), 4.33 (m, 1H), 4.21 (s, 1H), 4.56 (d, J = 6.9 Hz, 1H), 4.03 – 3.97 (m, 2H), 3.92 - 3.39 (m, 32 H), 1.93 (s, 3H), 1.90 (s, 3H), 1.14 (d, J = 6.5 Hz, 3H), 1.05 (d, J = 6.5 Hz, 3H). HRMS, $C_{58}H_{83}N_3O_{33}$, Calcd for: 1349.4909; found [M-H]⁻ 1348.4974, [M-2H]²⁻ 696.7485.

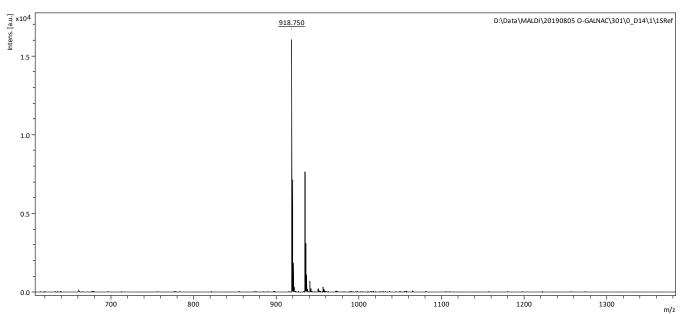

234_190405125707 #782-843 RT: 6.47-6.95 AV: 39 NL: 2.89E5 T: FTMS - p ESI Full ms [200.00-3000.00]

GlcNAcβ1-3(Neu5Acα2-6)GalNAcα-Ser-Fmoc (66)

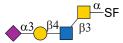

Compound **66** was prepared according to general procedure of α 2-6 sialylation with Pd2,6ST. After lyophilization, **66** was obtained as white solid. Compound was characterized by HPLC, T_R =15.128 min. ¹H NMR (600 MHz, D₂O) δ 7.91 – 7.75 (m, 2H), 7.73 – 7.51 (m, 2H), 7.51 - 7.31 (m, 4H), 4.59 (d, J = 5.9 Hz, 2H), 4.45 (d, J = 8.3 Hz, 1H), 4.32 (s, 1H), 4.24 (s, 1H), 4.16 – 4.07 (m, 2H), 3.96 – 3.12 (m, 19 H), 2.63 (dd, J = 12.4, 4.5 Hz, 1H), 2.03 (s, 3H), 1.98 (s, 3H), 1.92 (s, 3H), 1.67 (t, J = 12.6 Hz, 1H). HRMS, C₄₅H₆₀N₄O₂₃, Calcd for: 1024.3648; found [M-H]⁻ 1023.323.

GlcNAcβ1-3(Neu5Acα2-6)GalNAcα-Ser-Fmoc (67)

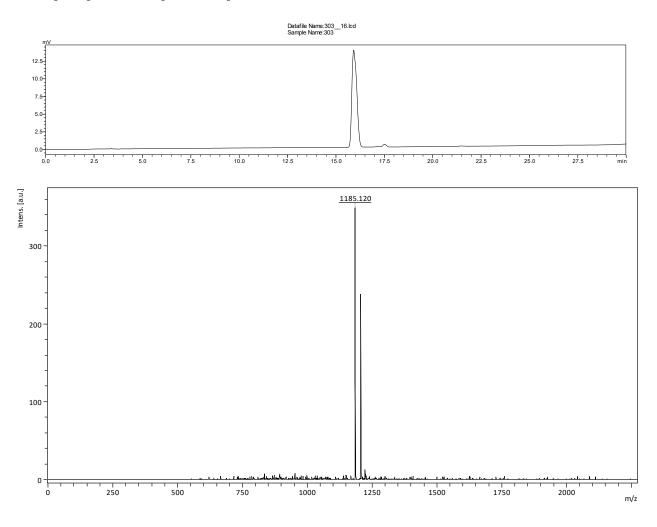

Compound **67** was prepared according to general procedure of β 1-4 galactosylation with NmLgtB. After lyophilization, **67** was obtained as white solid. Compound was characterized by HPLC, T_R =13.449 min. ¹H NMR (600 MHz, D_2O) δ 7.76 – 7.72 (m, 2H), 7.67 – 7.52 (m, 2H), 7.47 - 7.26 (m, 4H), 4.71 (d, J = 3.7 Hz, 1H), 4.62 – 4.50 (m, 2H), 4.46 (d, J = 7.5 Hz, 2H), 4.33 (s, 1H), 4.23 - 4.07 (m, 3H), 3.93 – 3.34 (m, 24 H), 2.58 (dd, J = 12.4, 4.5 Hz, 1H), 2.01 (s, 3H), 1.96 (s, 3H), 1.91 (s, 3H), 1.69 (t, J = 12.3 Hz, 1H). HRMS, $C_{51}H_{70}N_4O_{28}$, Calcd for: 1186.4177; found [M-H]⁻ 1185.485.

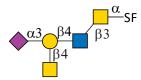


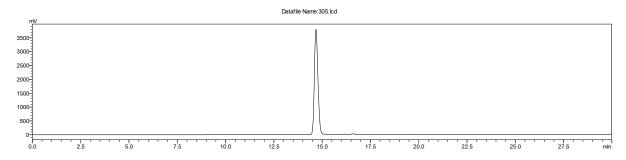
Galβ1-4GlcNAcβ1-3GalNAcα-Ser-Fmoc (68)

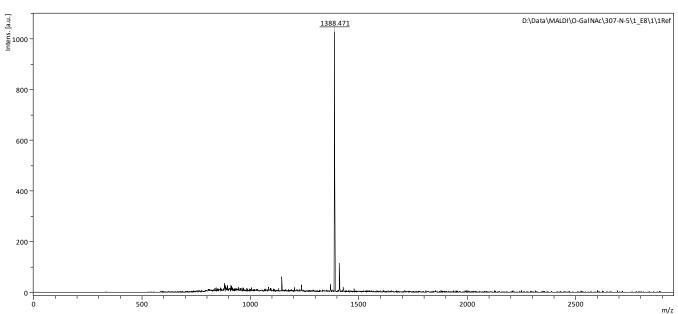


Compound **68** was prepared according to general procedure of β 1-4 galactosylation with NmLgtB. After lyophilization, **68** was obtained as white solid. Compound was characterized by HPLC, T_R =17.724 min. ¹H NMR (600 MHz, D_2O) δ 7.93 – 7.75 (m, 2H), 7.73 – 7.56 (m, 2H), 7.55 - 7.32 (m, 4H), 4.72 (s, 1H), 4.60 (m, 2H), 4.48 (d, J = 7.9 Hz, 2H), 4.29 – 4.09(m, 4H), 3.95 - 3.59 (m, 15H), 3.59 – 3.42(m, 2H), 1.98 (s, 3H), 1.93 (s, 3H). HRMS, $C_{40}H_{53}N_3O_{20}$, Calcd for: 895.3222; found [M+Na]⁺ 918.750, [M+K]⁺ 934.754.



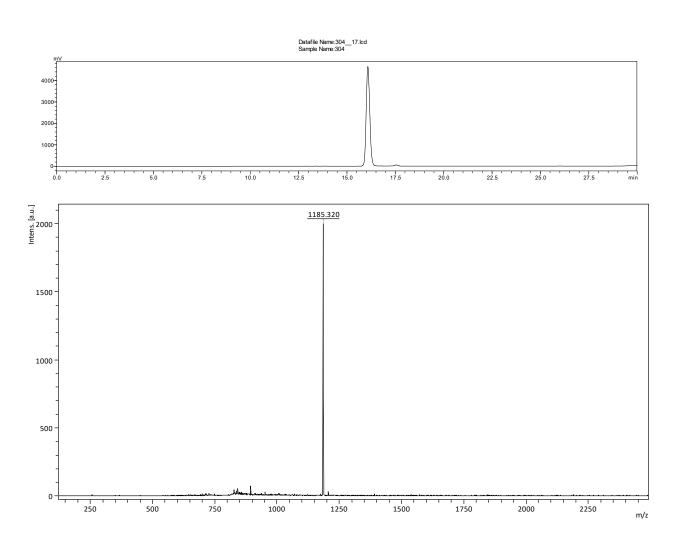

Neu5Acα2-3Galβ1-4GlcNAcβ1-3GalNAcα-Ser-Fmoc (69)

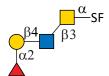

Compound **69** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **69** was obtained as white solid. Compound was characterized by HPLC, T_R =15.915 min. 1 H NMR (600 MHz, D_2O) δ 7.97 – 7.85 (m, 2H), 7.77 – 7.61 (m, 2H), 7.56 - 7.37 (m, 4H), 4.70 – 4.62 (m, 1H), 4.60 – 4.44 (m, 2H), 4.33 (s, 2H), 4.21 – 4.10 (m, 3H), 4.00 – 3.41 (m, 25H), 2.78 (dd, J = 12.2, 4.5 Hz, 1H), 2.04 (s, 3H), 2.00 (s, 3H), 1.94 (s, 3H), 1.86 (t, J = 12.3 Hz, 1H). HRMS, $C_{51}H_{70}N_4O_{28}$, Calcd for: 1186.4177; found [M-H]⁻ 1185.120, [M+Na-2H]⁻ 1207.092.

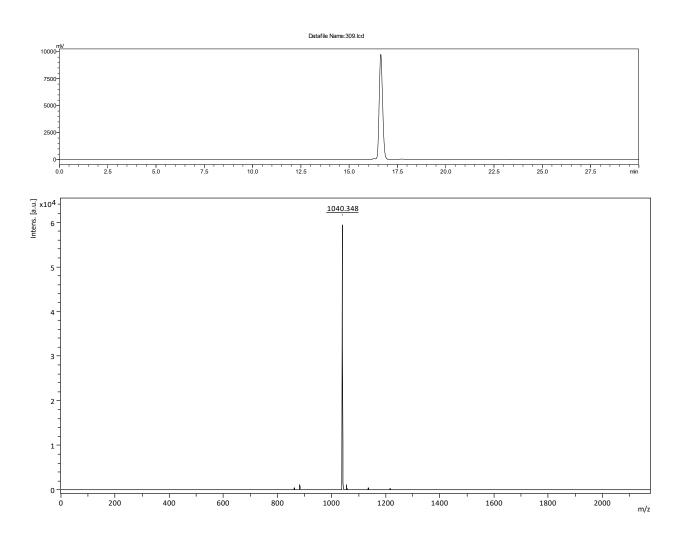


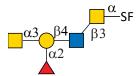
Neu5Acα2-3(GalNAcβ1-4)Galβ1-4GlcNAcβ1-3GalNAcα-Ser-Fmoc (70)

Compound **70** was prepared according to general procedure of β 1-4-*N*-acetylgalatosaminylation with CgtA. After lyophilization, **70** was obtained as white solid. Compound was characterized by HPLC, $T_R = 14.682$ min. ¹H NMR (600 MHz, D₂O) δ 7.94 – 7.81 (m, 2H), 7.73 – 7.56 (m, 2H), 7.53 - 7.33 (m, 4H), 4.75 -4.67 (m, 3H), 4.56 (d, J = 7.9 Hz, 1H), 4.43 (m, 1H), 4.34 – 4.23 (m, 2H), 4.19 – 4.06 (m, 4H), 3.97 – 3.33 (m, 30 H), 2.68 (dd, J = 12.5, 3.8 Hz, 1H), 2.02 (s, 3H), 2.00 (s, 3H), 1.97 (s, 3H), 1.92 (s, 3H), 1.75 (t, J = 12.3Hz, 1H). HRMS, $C_{59}H_{83}N_5O_{33}$, Calcd for: 1389.497; HRMS, found [M-H]⁻ 1388.471.

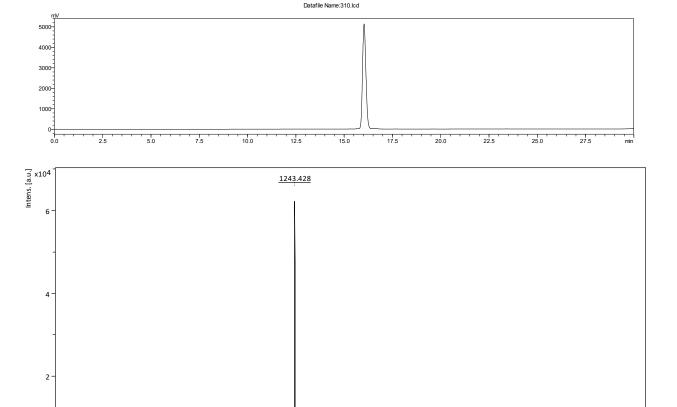



Neu5Acα2-6Galβ1-4GlcNAcβ1-3GalNAcα-Ser-Fmoc (71)


Compound **71** was prepared according to general procedure of α 2-6 sialylation with PmST1-P34H/M144L. After lyophilization, **71** was obtained as white solid. Compound was characterized by HPLC, $T_R = 16.081$ min. 1 H NMR (600 MHz, D_2O) δ 7.98 – 7.85 (m, 2H), 7.79 – 7.62 (m, 2H), 7.56 - 7.35 (m, 4H), 4.67 (s, 1H), 4.56 – 4.40 (m, 3H), 4.33 (s, 1H), 4.24 – 4.09 (m, 3H), 4.03 – 3.45 (m, 24H), 2.66 (dd, J = 11.4, 3.5 Hz, 1H), 2.02 (s, 3H), 2.01 (s, 3H), 1.94 (s, 3H), 1.70 (t, J = 12.1 Hz, 1H). HRMS, $C_{51}H_{70}N_4O_{28}$, Calcd for: 1186.4177; found [M-H]⁻¹ 1185.320.


Fucα1-2Galβ1-4GlcNAcβ1-3GalNAcα-Ser-Fmoc (72)

Compound **72** was prepared according to general procedure of α 1-2 fucosylation with Hm2FT. After lyophilization, **72** was obtained as white solid. Compound was characterized by HPLC, T_R =16.637 min. ¹H NMR (600 MHz, D_2O) δ 7.83 – 7.70 (m, 2H), 7.66 – 7.45 (m, 2H), 7.44 - 7.25 (m, 4H), 5.27 (d, J = 3.5 Hz, 1H), 4.65 - 4.44 (m, 4H), 4.31 – 4.08 (m, 5H), 3.98 – 3.57 (m, 20 H), 3.46 – 3.32 (m, 1H), 1.98 (s, 3H), 1.92 (s, 3H), 1.18 (d, J = 7.4 Hz, 3H). HRMS, $C_{46}H_{63}N_3O_{24}$, Calcd for: 1041.3801; found [M-H]⁻ 1040.348.


GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-3GalNAcα-Ser-Fmoc (73)

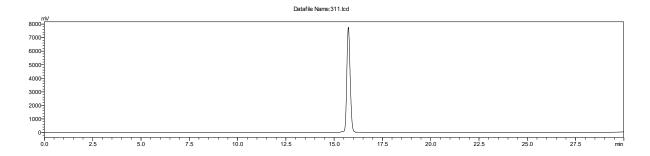
500

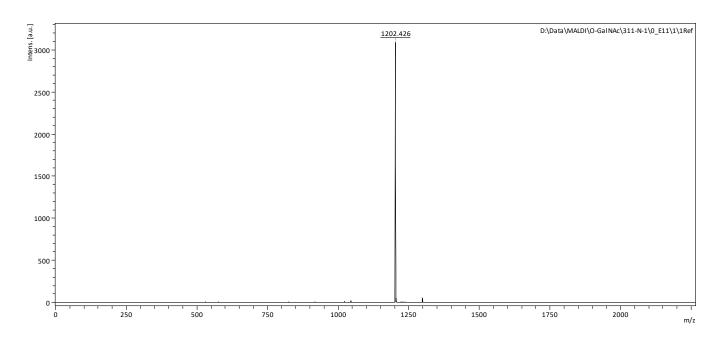
1000

Compound **73** was prepared according to general procedure of α 1-3-*N*-acetylgalatosaminylation with BgtA. After lyophilization, **73** was obtained as white solid. Compound was characterized by HPLC, $T_R = 16.033$ min. ¹H NMR (600 MHz, D_2O) δ 7.95 – 7.82 (m, 2H), 7.75 – 7.58 (m, 2H), 7.55 - 7.33 (m, 4H), 5.34 (d, J = 3.6 Hz, 1H), 5.16 (d, J = 3.7 Hz, 1H), 4.68 - 4.50 (m, 4H), 4.36 – 4.08 (m, 8 H), 4.04 – 3.57 (m, 23 H), 3.39 (m, 1H), 2.03 (s, 3H), 1.98 (s, 3H), 1.93 (s, 3H), 1.23 (d, J = 6.6 Hz, 3H). HRMS, $C_{54}H_{76}N_4O_{29}$, Calcd for: 1244.4595; found [M-H]⁻ 1243.428.

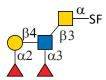
1500

2000

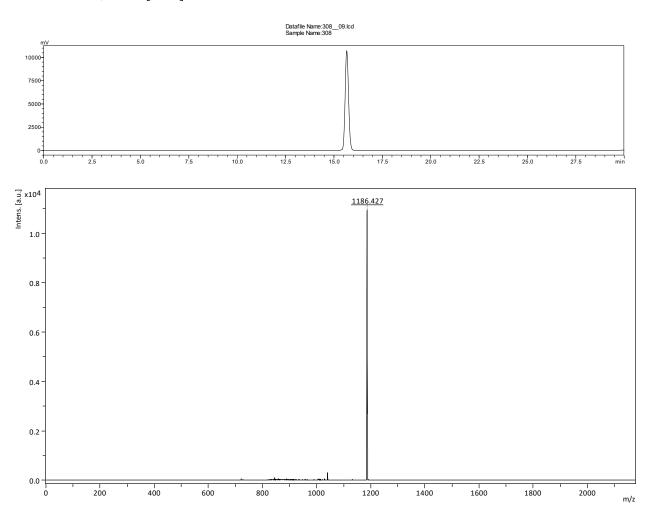

2500

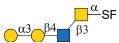

3000 m/z

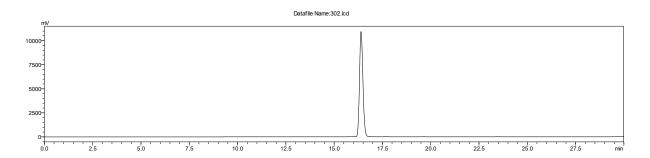
Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-3GalNAcα-Ser-Fmoc (74)

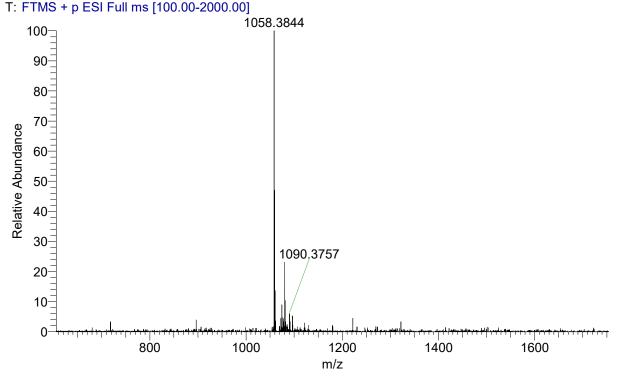


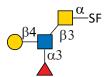
Compound **74** was prepared according to general procedure of α 1-3 galactosylation with GTB. After lyophilization, **74** was obtained as white solid. Compound was characterized by HPLC, T_R =15.736 min. ¹H NMR (600 MHz, D_2O) δ 7.95 – 7.82 (m, 2H), 7.75 – 7.59 (m, 2H), 7.54 - 7.34 (m, 4H), 5.31 (s, 1H), 5.23 (s, 1H), 4.66 - 4.49 (m, 4H), 4.37 – 4.25 (m, 3 H), 4.24 – 4.10 (m, 3 H), 4.06 – 3.57 (m, 23H), 3.43 – 3.30 (m, 3H), 1.99 (s, 3H), 1.93 (s, 3H), 1.22 (d, J = 6.5 Hz, 3H). HRMS, $C_{52}H_{73}N_3O_{29}$, Calcd for: 1203.4330; found [M-H]⁻ 1202.426.

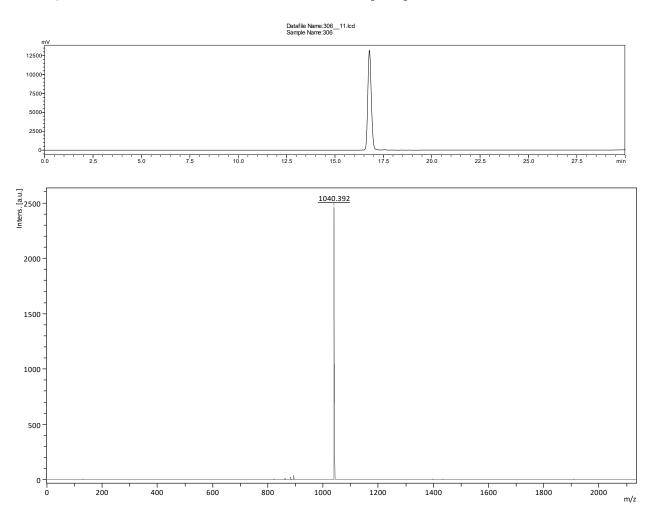


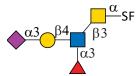

Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-3GalNAcα-Ser-Fmoc (75)

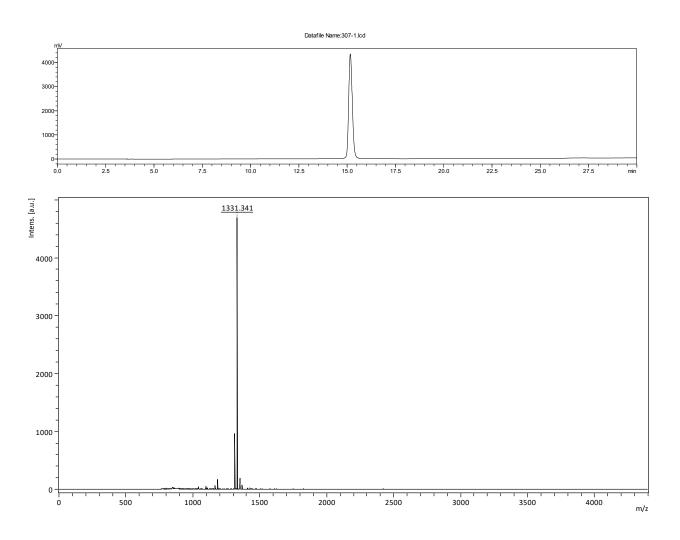

Compound **75** was prepared according to general procedure of α 1-3 fucosylation with Hp3FT. After lyophilization, **75** was obtained as white solid. Compound was characterized by HPLC, $T_R = 15.661$ min. ¹H NMR (600 MHz, D₂O) δ 7.92 – 7.78 (m, 2H), 7.73 – 7.55 (m, 2H), 7.52 - 7.31 (m, 4H), 5.24 (d, J = 3.5 Hz, 1H), 5.07 (d, J = 3.2 Hz, 1H), 4.73 (s, 1H), 4.65 - 4.53 (m, 2H), 4.50 (d, J = 13.8 Hz, 1H), 4.31 – 4.06 (m, 5 H), 4.00 – 3.51 (m, 23 H), 3.46 – 3.35 (m, 2H), 1.97 (s, 3H), 1.92 (s, 3H), 1.19 (d, J = 5.4 Hz, 6H). HRMS, $C_{52}H_{73}N_3O_{28}$, Calcd for: 1187.4381; found [M-H]⁻ 1186.427.


Galα1-3Galβ1-4GlcNAcβ1-3GalNAcα-Ser-Fmoc (76)

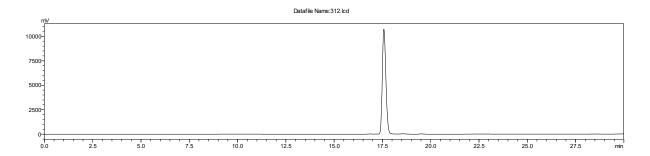

Compound **76** was prepared according to general procedure of α 1-3 galactosylation with α 3GalT. After lyophilization, **76** was obtained as white solid. Compound was characterized by HPLC, T_R =16.394 min. ¹H NMR (600 MHz, D₂O) δ 7.72 – 7.62 (m, 2H), 7.62 – 7.41 (m, 2H), 7.40 - 7.15 (m, 4H), 5.13 (d, J = 4.3 Hz, 1H), 4.70 (s, 1H), 4.58 – 4.36 (m, 4H), 4.23 (s, 1H), 4.21 – 4.03 (m, 4H), 3.99 (m, 2H), 3.96 – 3.55 (m, 20H), 1.97 (s, 3H), 1.92 (s, 3H). HRMS, $C_{46}H_{63}N_3O_{25}$, Calcd for: 1057.3751; found [M+H]⁺ 1058.3836, [M+Na]⁺ 1080.3667.

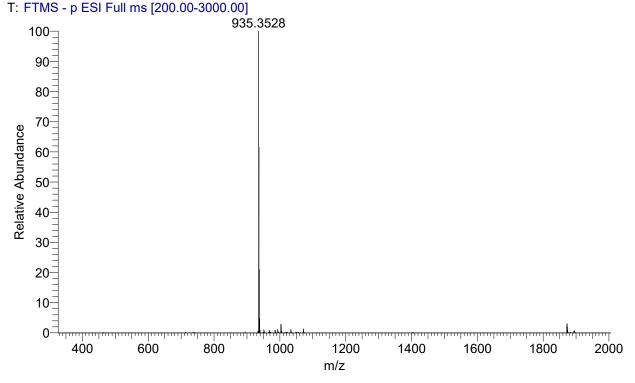



Galβ1-4(Fucα1-3)GlcNAcβ1-3GalNAcα-Ser-Fmoc (77)

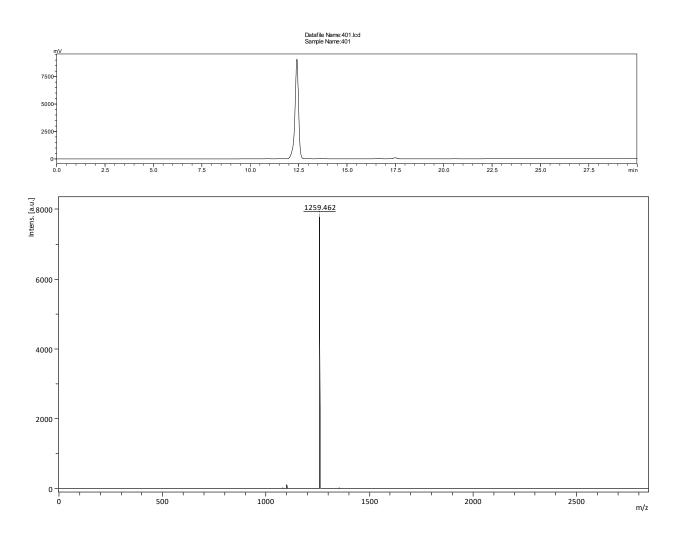

Compound 77 was prepared according to general procedure of $\alpha 1$ -3 fucosylation with Hp3FT. After lyophilization, 77 was obtained as white solid. Compound was characterized by HPLC, T_R =16.782 min. ¹H NMR (600 MHz, D_2O) δ 7.99 – 7.86 (m, 2H), 7.80 – 7.63 (m, 2H), 7.56 - 7.36 (m, 4H), 5.09 (d, J = 3.6 Hz, 1H), 4.57 - 4.36 (m, 3H), 4.34 (s, 2H), 4.21 – 4.09 (m, 3H), 3.97 – 3.40 (m, 22 H), 1.97 (s, 3H), 1.94 (s, 3H), 1.19 (d, J = 6.5 Hz, 3H). HRMS, $C_{46}H_{63}N_3O_{24}$, Calcd for: 1041.3801; found [M-H]⁻ 1040.392.

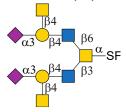
Neu5AcGalβ1-4(Fucα1-3)GlcNAcβ1-3GalNAcα-Ser-Fmoc (78)

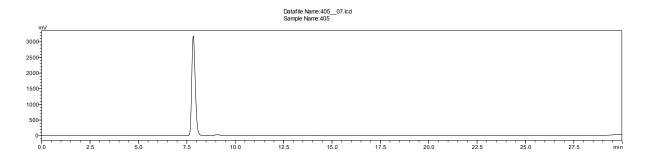

Compound **78** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **78** was obtained as white solid. Compound was characterized by HPLC, $T_R = 15.199$ min. ¹H NMR (600 MHz, D_2O) δ 7.96 – 7.80 (m, 2H), 7.76 – 7.55 (m, 2H), 7.55 - 7.33 (m, 4H), 5.11 (d, J = 3.3 Hz, 1H), 4.73 - 4.60 (m, 2H), 4.60 – 4.48 (m, 2H), 4.31 (s, 1H), 4.27 (s, 1H), 4.21 – 4.09 (m, 3H), 4.03 – 3.41 (m, 28 H), 2.78 (dd, J = 12.7, 4.5 Hz, 1H), 2.04 (s, 3H), 1.98 (s, 3H), 1.94 (s, 3H), 1.87 (d, J = 12.3 Hz, 1H), 1.19 (d, J = 6.6 Hz, 3H). HRMS, $C_{57}H_{80}N_4O_{32}$ Calcd for: 1332.4756; found [M-H]⁻ 1331.341.

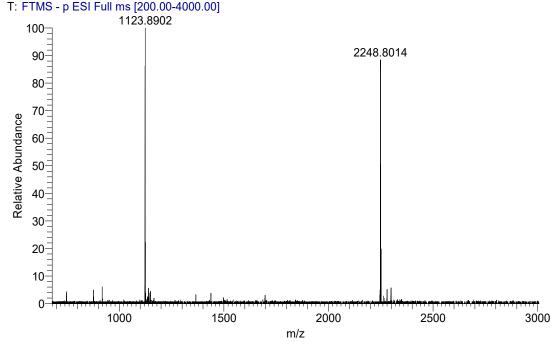

GalNAcβ1-4GlcNAcβ1-3GalNAcα-Ser-Fmoc (79)

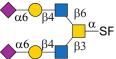
Compound **79** was prepared according to general procedure of β 1-4-*N*-acetylgalatosaminylation with NmLgtBm. After lyophilization, **79** was obtained as white solid. Compound was characterized by HPLC, T_R =17.575 min. ¹H NMR (600 MHz, D₂O) δ 7.87 – 7.77 (m, 2H), 7.70 – 7.53 (m, 2H), 7.47 - 7.29 (m, 4H), 4.69 - 4.57 (m, 2H), 4.47 (d, *J* = 8.4 Hz, 1H), 4.34 (s, 1H), 4.27 (s, 1H), 4.18 (s, 1H), 4.14 – 4.01 (m, 2 H), 3.98 – 3.80 (m, 2H), 3.79 – 3.51 (m, 14), 3.38 – 3.26 (m, 2H), 2.03 (s, 3H), 1.91 (s, 3H), 1.86 (s, 3H). HRMS, $C_{42}H_{56}N_4O_{20}$, Calcd for: 936.3488; found [M-H]⁻ 935.3528.

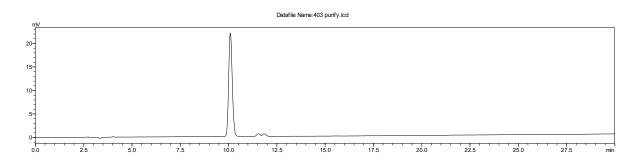

OG312 #799-836 RT: 6.58-6.85 AV: 13 NL: 2.74E6


Galβ1-4GlcNAcβ1-3(Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (80)

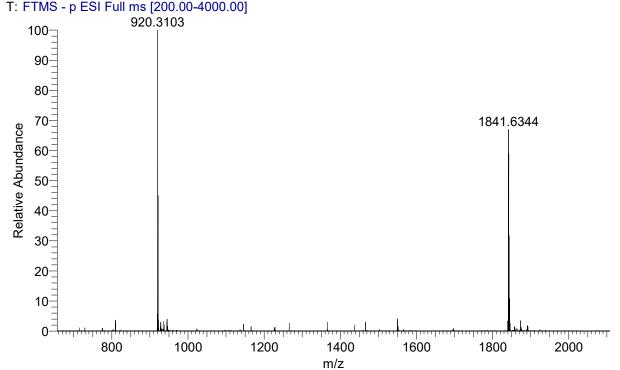

Compound **80** was prepared according to general procedure of β 1-4 galactosylation with NmLgtB. After lyophilization, **80** was obtained as white solid. Compound was characterized by HPLC, T_R =12.556 min. ¹H NMR (600 MHz, D_2O) δ 7.88 – 7.74 (m, 2H), 7.69 – 7.50 (m, 2H), 7.48 - 7.31 (m, 4H), 4.70 (s, 1H), 4.57 (d, J = 4.6 Hz, 1H), 4.47 (d, J = 8.4 Hz, 3H), 4.39 – 4.31 (s, 2H), 4.24 - 4.09 (m, 3H), 3.98 – 3.85 (m, 7 H), 3.81 – 3.47 (m, 23H), 1.98 (s, 3H), 1.93 (s, 6H). HRMS, $C_{42}H_{56}N_4O_{20}$, Calcd for: 1260.4544; found [M-H]⁻ 1259.462.

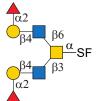

Neu5Acα2-3(GalNAcβ1-4)Galβ1-4GlcNAcβ1-3[Neu5Acα2-3(GalNAcβ1-4)Galβ1-4GlcNAcβ1-6]GalNAcα-Ser-Fmoc (81)

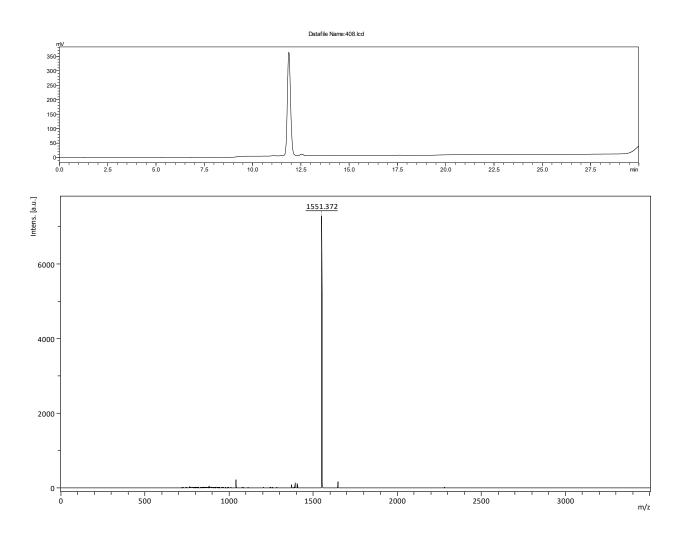

Compound **81** was prepared according to general procedure of β 1-4-*N*-acetylgalatosaminylation with CgtA. After lyophilization, **81** was obtained as white solid. Compound was characterized by HPLC, T_R =7.835 min. ¹H NMR (600 MHz, D₂O) δ 7.99 – 7.88 (m, 2H), 7.80 – 7.63 (m, 2H), 7.59 - 7.42 (m, 4H), 4.59 (d, J = 7.6 Hz, 2H), 4.57 - 4.44 (m, 4H), 4.44 – 4.33 (m, 3H), 4.28 - 4.06 (m, 7H), 4.05 – 3.35 (m, 54 H), 2.69 (d, J = 11.8 Hz, 2H), 2.05 (s, 3H), 2.04 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.96 (s, 3H), 1.96 (s, 3H), 1.95 (s, 3H). HRMS, $C_{92}H_{136}N_8O_{56}$, Calcd for: 2248.804; found [M-H]⁻² 2248.8014, [M-2H]²⁻¹ 1123.8902.

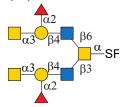

OG405 #99-116 RT: 2.14-2.51 AV: 18 NL: 6.68E2

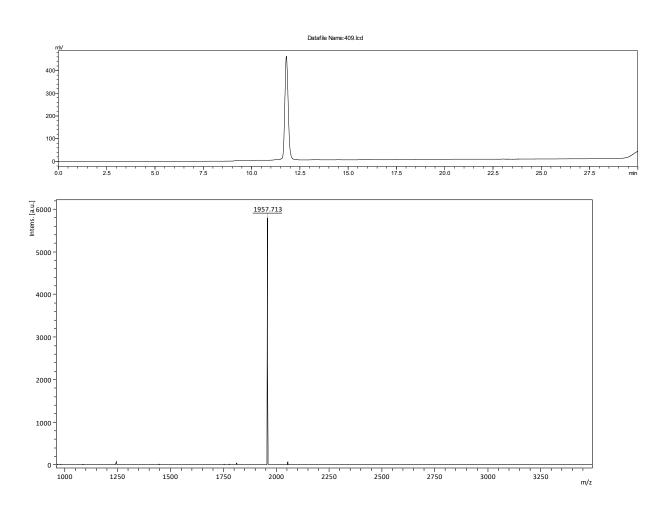


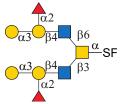

Neu5Acα2-6Galβ1-4GlcNAcβ1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (82)

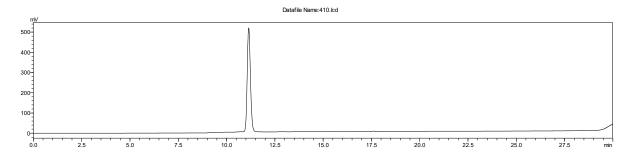

Compound **82** was prepared according to general procedure of α 2-6 sialylation with Pd2,6ST. After lyophilization, **82** was obtained as white solid. Compound was characterized by HPLC, $T_R = 10.092$ min. ¹H NMR (600 MHz, D₂O) δ 7.99 – 7.88 (m, 2H), 7.79 – 7.63 (m, 2H), 7.59 - 7.42 (m, 4H), 4.74 – 4.69 (m, 2H), 4.54 (d, J = 7.5 Hz, 2H), 4.48 (d, J = 7.5 Hz, 1H), 4.38 (m, 3H), 4.16 (s, 2H), 4.09 – 3.46 (m, 44 H), 2.67 (d, J = 13.0 Hz, 2H), 2.04 (s, 3H), 2.03 (s, 6H), 1.99 (s, 3H), 1.95 (s, 3H), 1.82 – 1.72 (m, 2H). HRMS, $C_{76}H_{110}N_6O_{46}$, Calcd for: 1842.6453; found [M-H]⁻ 1841.6353, [M-2H]²⁻ 920.3103.

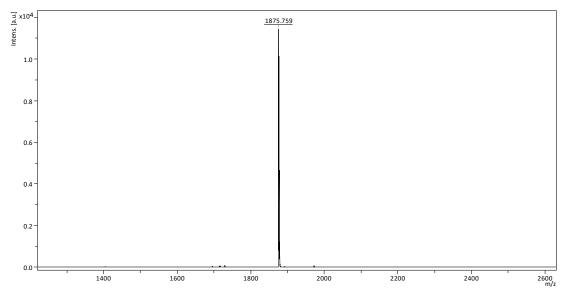



Fucα1-2Galβ1-4GlcNAcβ1-3(Fucα1-2Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (83)

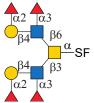

Compound **83** was prepared according to general procedure of α 1-2 fucosylation with Hm2FT. After lyophilization, **83** was obtained as white solid. Compound was characterized by HPLC, T_R =11.878 min. ¹H NMR (600 MHz, D₂O) δ 7.97 – 7.88 (m, 2H), 7.81 – 7.65 (m, 2H), 7.57 - 7.40 (m, 4H), 5.35 – 5.26 (m, 2H), 4.62 – 4.53 (m, 3H), 4.51 (d, J = 8.2 Hz, 1H), 4.45 - 4.32 (m, 3H), 4.25 – 4.13 (m, 4H), 4.02 - 3.57 (m, 32 H), 3.50 – 3.37 (m, 2H), 2.78 (d, J = 12.5, 4.5 Hz, 2H), 2.02 (s, 3H), 1.97 (s, 3H), 1.96 (s, 3H), 1.23 (d, J = 6.5 Hz, 3H), 1.21 (d, J = 6.6 Hz, 3H). HRMS, $C_{66}H_{96}N_4O_{38}$, Calcd for: 1552.5703; found [M-H]⁻ 1551.372.


GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-3[GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-6]GalNAcα-Ser-Fmoc (84)

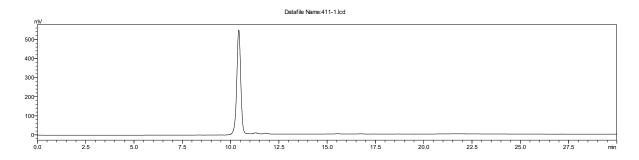

Compound **84** was prepared according to general procedure of α 1-3-*N*-acetylgalatosaminylation with BgtA. After lyophilization, **84** was obtained as white solid. Compound was characterized by HPLC, T_R =11.803 min. ¹H NMR (600 MHz, D₂O) δ 7.97 – 7.84 (m, 2H), 7.79 – 7.60 (m, 2H), 7.55 - 7.37 (m, 4H), 5.36 (d, J = 3.9 Hz, 2H), 5.18 (d, J = 3.9 Hz, 2H), 4.65 – 4.54 (m, 3H), 4.49 (d, J = 8.1 Hz, 2H), 4.44 - 4.34 (m, 2H), 4.31 (d, J = 6.9 Hz, 2H), 4.25 (dd, J = 10.8, 3.5 Hz, 1H), 4.25 – 4.09 (m, 7H), 4.07 - 3.60 (m, 44 H), 3.49 – 3.35 (m, 2H), 2.05 (s, 6H), 2.01 (s, 3H), 1.95 (s, 6H), 1.32 - 1.19 (m, 6H). HRMS, $C_{82}H_{122}N_6O_{48}$, Calcd for: 1958.7290; found [M-H]⁻ 1957.713.

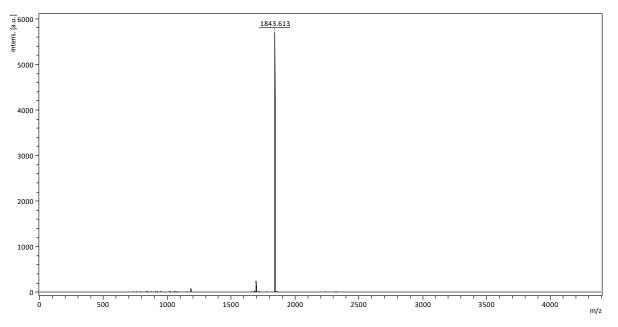


Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-3[Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-6]GalNAcα-Ser-Fmoc (85)

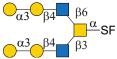


Compound **85** was prepared according to general procedure of α 1-3 galactosylation with GTB. After lyophilization, **85** was obtained as white solid. Compound was characterized by HPLC, $T_R = 11.146$ min. ¹H NMR (600 MHz, D₂O) δ 7.96 – 7.83 (m, 2H), 7.79 – 7.60 (m, 2H), 7.56 - 7.36 (m, 4H), 5.34 (d, J = 3.4 Hz, 2H), 5.25 (d, J = 3.7 Hz, 2H), 4.57 – 4.46 (m, 3H), 4.40 – 4.26 (m, 7H), 4.25 - 4.11 (m, 5H), 4.04 - 3.59 (m, 45 H), 3.50 – 3.35 (m, 2H), 2.01 (s, 3H), 1.95 (s, 6H), 1.25 (d, J = 6.8 Hz, 3H), 1.22 (d, J = 7.3 Hz, 3H). HRMS, $C_{78}H_{116}N_4O_{48}$, Calcd for: 1876.6759; found [M-H]⁻ 1875.759.

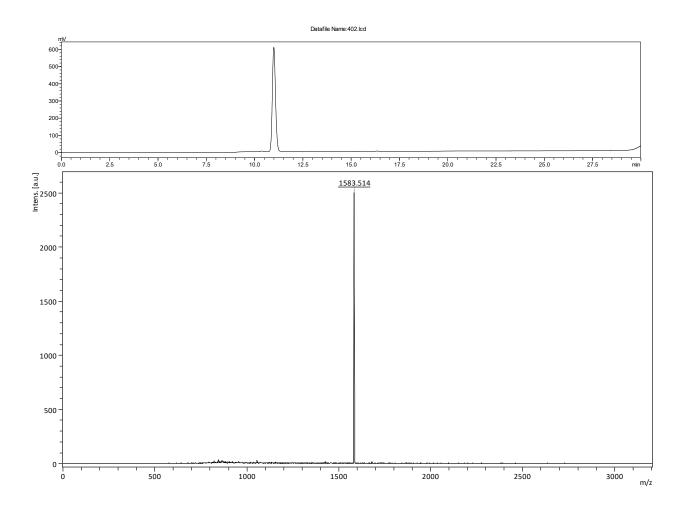


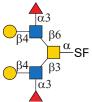


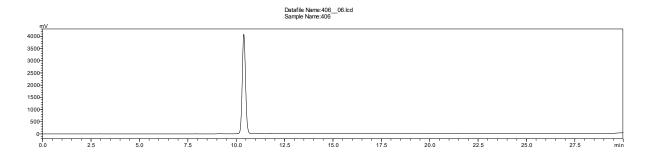
Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-3[Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-6]GalNAcα-Ser-Fmoc (86)

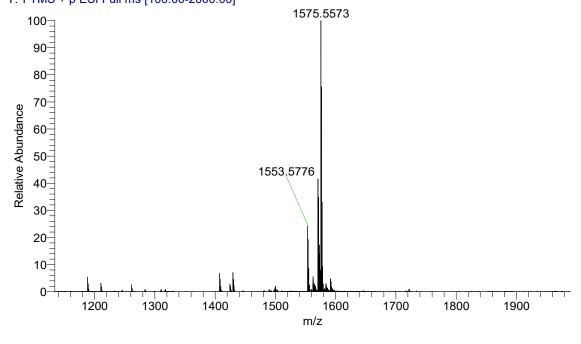


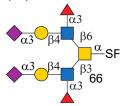
Compound **86** was prepared according to general procedure of α 1-3 fucosylation with Hp3FT. After lyophilization, **86** was obtained as white solid. Compound was characterized by HPLC, T_R =10.425 min. ¹H NMR (600 MHz, D₂O) δ 7.96 – 7.85 (m, 2H), 7.80 – 7.62 (m, 2H), 7.56 - 7.39 (m, 4H), 5.27 (d, J = 3.2 Hz, 2H), 5.09 (d, J = 3.3 Hz, 2H), 4.56 – 4.50 (m, 2H), 4.43 – 4.32 (m, 3H), 4.24 (d, J = 6.6 Hz, 2H), 4.22 - 4.12 (m, 3H), 4.04 - 3.36 (m, 46 H), 1.99 (s, 3H), 1.96 (s, 6H), 1.33 – 1.17 (m, 12H). HRMS, $C_{78}H_{116}N_4O_{46}$, Calcd for: 1844.6861; found [M-H]⁻ 1843.613.

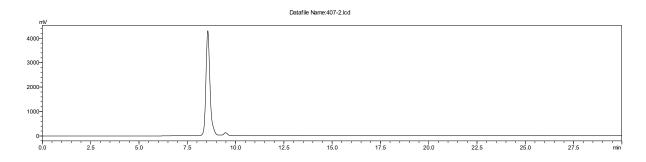


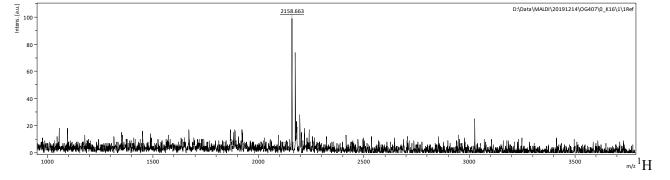

Galα1-3Galβ1-4GlcNAcβ1-3(Galα1-3Galβ1-4GlcNAcβ1-6)GalNAcα-Ser-Fmoc (87)


Compound **87** was prepared according to general procedure of α 1-3 galactosylation with α 3GalT. After lyophilization, **87** was obtained as white solid. Compound was characterized by HPLC, $T_R = 10.996$ min. 1 H NMR (600 MHz, D_2O) δ 7.97 – 7.86 (m, 2H), 7.79 – 7.62 (m, 2H), 7.57 - 7.39 (m, 4H), 5.18 (d, J = 3.9 Hz, 1H), 5.15 (d, J = 4.0 Hz, 1H), 4.74 – 4.67 (m, 2H), 4.58 (d, J = 7.9 Hz, 1H), 4.51 (d, J = 7.6 Hz, 2H), 4.46 (d, J = 7.6 Hz, 1H), 4.34 (s, 2H), 4.25 – 4.10 (m, 6H), 4.03 (d, J = 2.9 Hz, 1H), 4.01 – 3.47 (m, 37H), 2.00 (s, 3H), 1.95 (s, 6H). HRMS, Calcd for: 1584.5601; found [M-H]⁻ 1583.514.


$Gal\beta 1-4(Fuc\alpha 1-3)GlcNAc\beta 1-3[Gal\beta 1-4(Fuc\alpha 1-3)GlcNAc\beta 1-6]GalNAc\alpha -Ser-Fmoc~(88)$

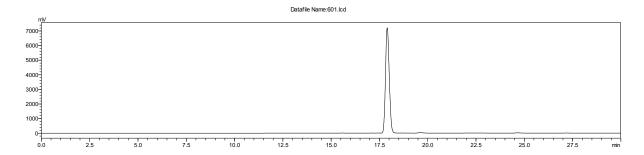

Compound **88** was prepared according to general procedure of $\alpha 1$ -3 fucosylation with Hp3FT. After lyophilization, **88** was obtained as white solid. Compound was characterized by HPLC, $T_R = 10.394$ min. 1H NMR (600 MHz, D_2O) δ 7.96 – 7.84 (m, 2H), 7.78 – 7.58 (m, 2H), 7.57 - 7.36 (m, 4H), 5.14 – 5.06 (m, 2H, 2×Fuc-H-1), F4.58 – 4.45 (m, 3H), 4.44 - 4.28 (m, 3H), 4.18 – 4.09 (m, 2H), 4.05 - 3.45 (m, 36 H), 1.98 (s, 3H), 1.94 (s, 3H), 1.93 (s, 3H), 1.31 – 1.13 (m, 6H, 2× Fuc-CH₃). HRMS, $C_{66}H_{96}N_4O_{38}$, Calcd for: 1552.5703; found [M+H]⁺ 1553.5776, [M+Na]⁺ 1575.5573.

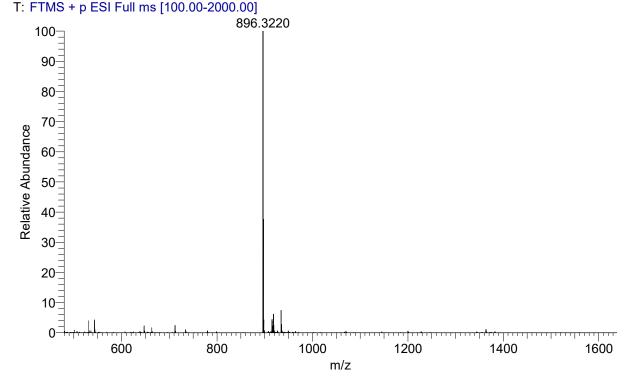

OG406 #158-171 RT: 2.25-2.44 AV: 14 NL: 3.55E5 T: FTMS + p ESI Full ms [100.00-2000.00]



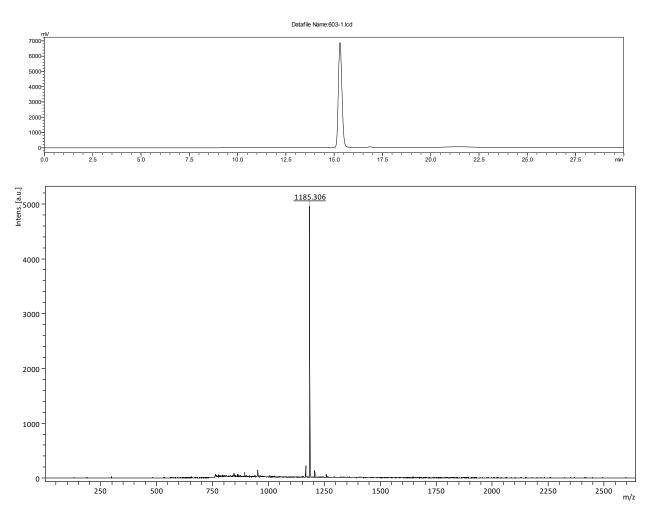
 $Neu 5 A c \alpha 2 - 3 G a l \beta 1 - 4 (Fu c \alpha 1 - 3) G l c NA c \beta 1 - 3 [Neu 5 A c \alpha 2 - 3 G a l \beta 1 - 4 (Fu c \alpha 1 - 3) G l c NA c \beta 1 - 6] G a l NA c \alpha - Ser - Fmoc (89)$

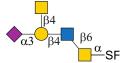
Compound **89** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **89** was obtained as white solid. Compound was characterized by HPLC, T_R =8.518 min. NMR (600 MHz, D₂O) δ 8.01 – 7.87 (m, 2H), 7.80 – 7.62 (m, 2H), 7.59 - 7.38 (m, 4H), 5.13 – 5.08 (m, 2H, 2×Fuc-H-1), 4.61 – 4.47 (m, 4H), 4.43 (d, J = 7.8 Hz, 1H), 4.41 - 4.31 (m, 2H), 4.20 – 4.06 (m, 4H), 4.05 - 3.47 (m, 51 H), 2.78 (d, J = 12.5, 4.5 Hz, 2H, 2×Neu5Ac H), 2.05 (s, 3H), 2.04 (s, 3H), 1.98 (s, 3H), 1.96 (s, 3H),1.94 (s, 3H), 1.84 (t, J = 12.3 Hz, 2H), 1.21 (d, J = 5.7 Hz, 3H), 1.17 (d, J = 6.1 Hz, 3H). HRMS, $C_{88}H_{130}N_6O_{54}$, Calcd for: 2134.7611; found [M+Na]⁺ 2158.663.



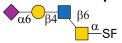

Galβ1-4GlcNAcβ1-6GalNAcα-Ser-Fmoc (90)

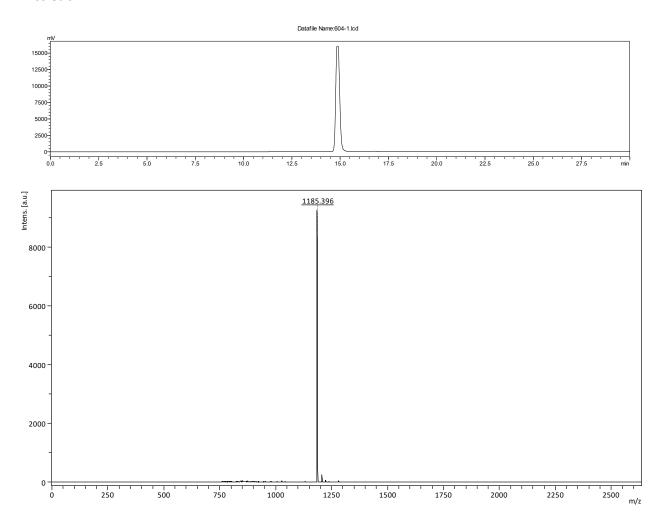

Compound **90** was prepared according to general procedure of β 1-4 galactosylation with NmLgtB. After lyophilization, **90** was obtained as white solid. Compound was characterized by HPLC, T_R =17.904 min. ¹H NMR (600 MHz, D₂O) δ 7.93 – 7.82 (m, 2H), 7.76 – 7.59 (m, 2H), 7.54 - 7.36 (m, 4H), 4.65 – 4.57 (m, 1H), 4.51 (d, J = 8.2 Hz, 1H), 4.38 (d, J = 7.8 Hz, 1H), 4.32 (s, 1H), 4.30 (s, 1H), 4.10 - 3.49 (m, 21 H), 1.95 (s, 3H), 1.94 (s, 3H). HRMS, $C_{40}H_{53}N_3O_{20}$, Calcd for: 895.3222; found [M+H]⁺ 896.3263.


OG601_180201154238 #118-133 RT: 1.65-1.86 AV: 16 NL: 3.06E6

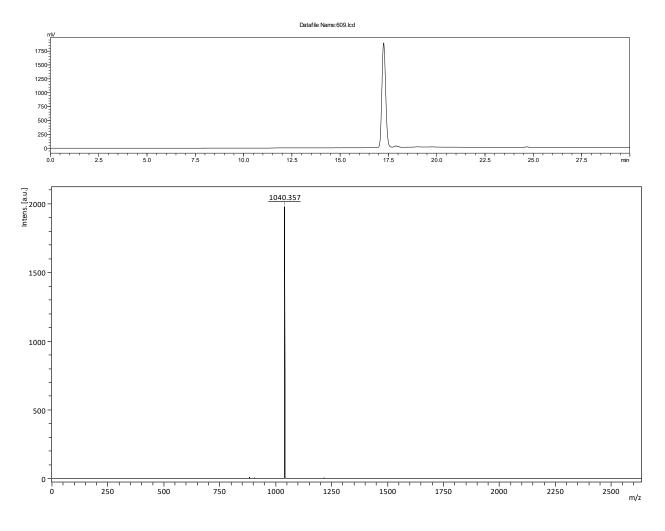

Neu5Acα2-3Galβ1-4GlcNAcβ1-6GalNAcα-Ser-Fmoc (91)

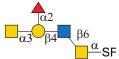

Compound **91** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **91** was obtained as white solid. Compound was characterized by HPLC, T_R =15.103 min. 1 H NMR (600 MHz, D₂O) δ 7.95 – 7.85 (m, 2H), 7.76 – 7.60 (m, 2H), 7.54 - 7.38 (m, 4H), 4.71 (m, 1H), 4.62 (m, 1H), 4.50 (d, J = 8.2 Hz, 1H), 4.44 (d, J = 7.8 Hz, 1H), 4.33 (m, 2H), 4.17 – 3.86 (m, 10H), 3.84 – 3.47 (m, 17H), 2.77 (dd, J = 12.5, 4.6 Hz, 1H), 2.04 (s, 3H), 1.95 (s, 3H), 1.94 (s, 3H), 1.84 (t, J = 12.2 Hz, 1H). HRMS, $C_{51}H_{70}N_4O_{28}$, Calcd for: 1186.4177; found [M-H] $^-$ 1185.306.

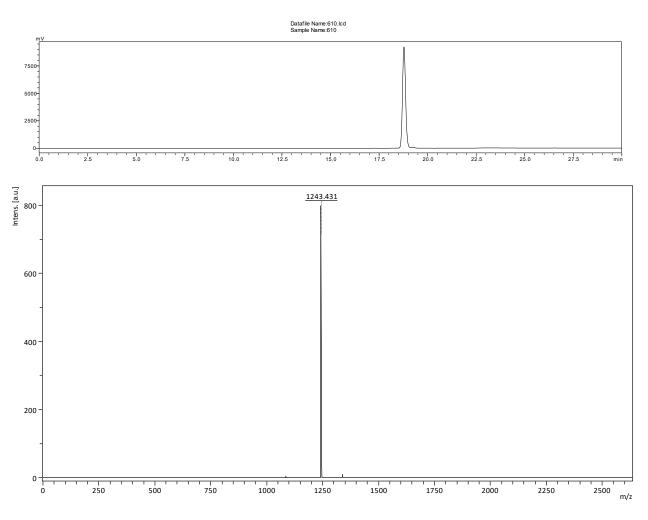

Neu5Acα2-3(GalNAcβ1-4)Galβ1-4GlcNAcβ1-6GalNAcα-Ser-Fmoc (92)

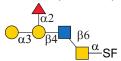

Compound **92** was prepared according to general procedure of β 1-4-N-acetylgalatosaminylation with CgtA. After lyophilization, **92** was obtained as white solid. Compound was characterized by HPLC, $T_R = 13.680$ min. ¹H NMR (600 MHz, D₂O) δ 7.97 – 7.86 (m, 2H), 7.77 – 7.62 (m, 2H), 7.55 - 7.39 (m, 4H), 4.72 (d, J = 8.5 Hz, 2H), 4.66 (m, 1H), 4.50 (d, J = 8.2 Hz, 1H), 4.50 (d, J = 8.3 Hz, 1H), 4.35 (m, 2H), 4.17 – 4.10 (m, 2H), 4.09 – 3.48 (m, 32H), 3.37 (t, J = 8.64 Hz, 1H), 2.04 (s, 3H), 1.02 (s, 3H), 1.95 (s, 3H), 1.94 (s, 3H). HRMS, $C_{59}H_{83}N_5O_{33}$, Calcd for: 1389.479; found [M-H]⁻ 1388.472.

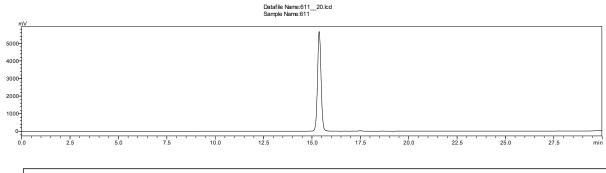
Neu5Acα2-6Galβ1-4GlcNAcβ1-6GalNAcα-Ser-Fmoc (93)

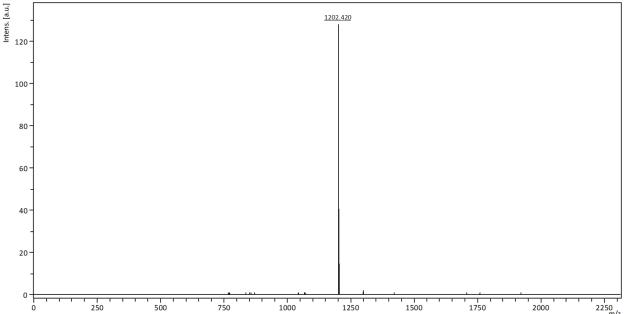

Compound **93** was prepared according to general procedure of α 2-6 sialylation with Pd2,6ST. After lyophilization, **93** was obtained as white solid. Compound was characterized by HPLC, T_R =14.753 min. ¹H NMR (600 MHz, D₂O) δ 7.94 – 7.85 (m, 2H), 7.77 – 7.60 (m, 2H), 7.54 - 7.38 (m, 4H), 4.71 (m, 1H), 4.62 (m, 1H), 4.55 (d, J = 7.8 Hz, 1H), 4.41 – 4.29 (m, 3H), 4.10 – 3.46 (m, 27H), 2.67 (dd, J = 12.5, 4.6 Hz, 1H), 2.03 (s, 3H), 1.99 (s, 3H), 1.94 (s, 3H), 1.78 (t, J = 12.2 Hz, 1H). HRMS, $C_{51}H_{70}N_4O_{28}$, Calcd for: 1186.4177; found [M-H]⁻ 1185.396.


Fucα1-2Galβ1-4GlcNAcβ1-6GalNAcα-Ser-Fmoc (94)


Compound **94** was prepared according to general procedure of α 1-2 fucosylation with Hm2FT. After lyophilization, **94** was obtained as white solid. Compound was characterized by HPLC, T_R =17.252 min. ¹H NMR (600 MHz, D₂O) δ 7.94 – 7.84 (m, 2H), 7.76 – 7.60 (m, 2H), 7.53 -7.38 (m, 4H), 5.29 (d, J = 3.3 Hz, 1H), 4.74 – 4.67 (m, 1H), 4.59 (s, 1H), 4.51 (d, J = 8.3 Hz, 2H), 4.43 (d, J = 7.6 Hz, 1H), 4.33 (d, J = 15.6 Hz, 2H), 4.17 (d, J = 8.0 Hz, 1H), 4.07 (d, J = 12.0 Hz, 1H), 3.99 – 3.59 (m, 19H), 3.42 (s, 2H), 1.96 (s, 3H), 1.95 (s, 3H), 1.21 (d, J = 6.9 Hz, 3H). HRMS, $C_{46}H_{63}N_3O_{24}$, Calcd for: 1041.3801; found [M-H]⁻ 1040.357.

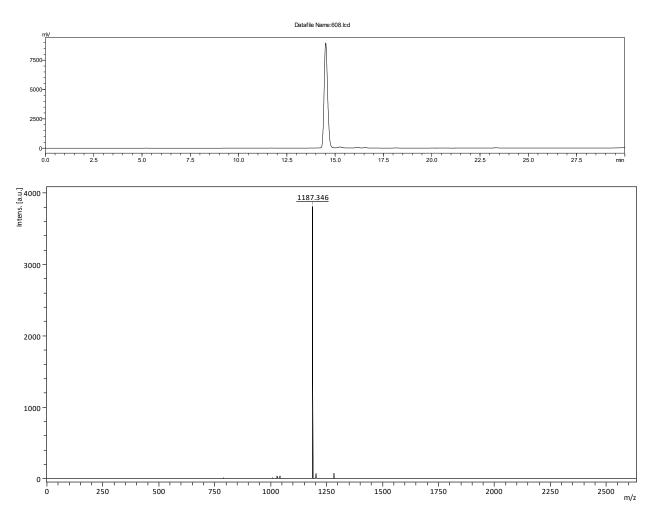

GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-6GalNAcα-Ser-Fmoc (95)


Compound **95** was prepared according to general procedure of α 1-3-*N*-acetylgalatosaminylation with BgtA. After lyophilization, **95** was obtained as white solid. Compound was characterized by HPLC, T_R =16.753 min. ¹H NMR (600 MHz, D₂O) δ 7.93 – 7.82 (m, 2H), 7.76 – 7.57 (m, 2H), 7.53 – 7.37 (m, 4H), 5.36 (d, *J* = 3.9 Hz, 1H), 5.19 (d, *J* = 3.9 Hz, 1H), 4.71 (dd, *J* = 10.3, 5.4 Hz, 1H), 4.59 (s, 1H), 4.55 – 4.49 (m, 2H), 4.36 – 4.28 (m, 3H), 4.26 (d, *J* = 3.7 Hz, 1H), 4.25 – 4.21 (m, 2H), 4.11 – 3.60 (m, 25H), 3.43 (s, 1H), 2.05 (s, 3H), 1.96 (s, 3H), 1.94 (s, 3H), 1.24 (d, *J* = 6.8 Hz, 3H). HRMS, $C_{54}H_{76}N_4O_{29}$, Calcd for: 1244.4595; found [M-H]⁻ 1243.431.

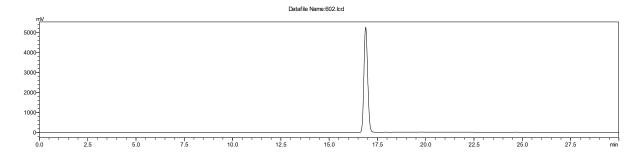


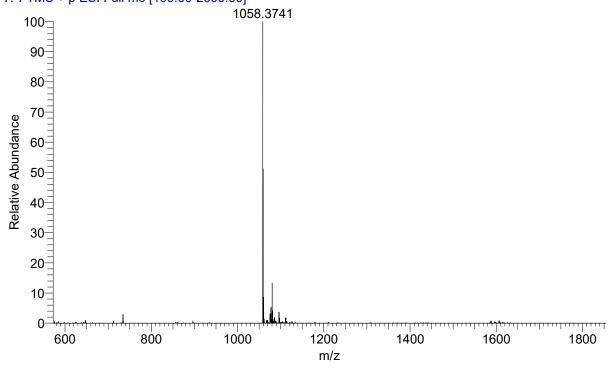
Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-6GalNAcα-Ser-Fmoc (96)

Compound **96** was prepared according to general procedure of α 1-3 galactosylation with GTB. After lyophilization, **96** was obtained as white solid. Compound was characterized by HPLC, T_R =15.376 min. ¹H NMR (600 MHz, D₂O) δ 7.94 – 7.85 (m, 2H), 7.78 – 7.60 (m, 2H), 7.55 - 7.38 (m, 4H), 5.33 (d, J = 3.2 Hz, 1H), 5.26 (d, J = 2.8 Hz, 1H), 4.73 (s, 1H), 4.59 (s, 1H), 4.54 (d, J = 7.9 Hz, 1H), 4.51 (d, J = 8.4 Hz, 1H), 4.33 (s, 2H), 4.29 (s, 2H), 4.21 (t, J = 6.3 Hz, 1H), 4.07 (d, J = 11.5 Hz, 1H), 3.99 (s, 2H), 3.96 – 3.87 (m, 6H), 3.85 – 3.60 (m, 17H), 3.40 (s, 1H), 1.96 (s, 3H), 1.95 (s, 3H), 1.22 (d, J = 6.9 Hz, 3H). HRMS, $C_{52}H_{73}N_3O_{29}$, Calcd for: 1203.433, found [M-H]⁻ 1202.420.

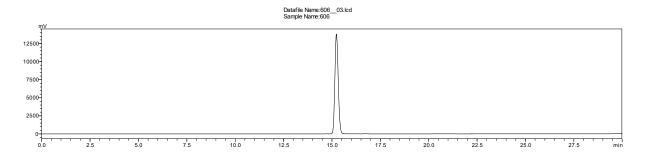


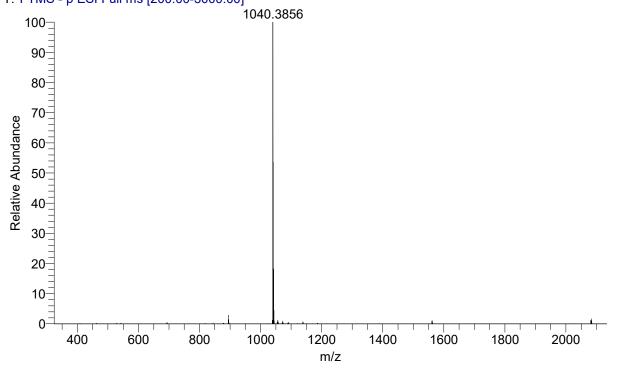
Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-6GalNAcα-Ser-Fmoc (97)

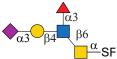

Compound **97** was prepared according to general procedure of α 1-3 fucosylation with Hp3FT. After lyophilization, **97** was obtained as white solid. Compound was characterized by HPLC, T_R =14.510 min. ¹H NMR (600 MHz, D₂O) δ 7.94 – 7.79 (m, 2H), 7.75 – 7.58 (m, 2H), 7.53 – 7.36 (m, 4H), 5.26 (d, J = 3.4 Hz, 1H), 5.09 (d, J = 3.6 Hz, 1H), 4.68 (s, 1H), 4.53 (d, J = 8.2 Hz, 1H), 4.41 (d, J = 7.7 Hz, 1H), 4.31 (m, 2H), 4.24 – 4.16 (m, 1H), 4.07 (d, J = 11.7 Hz, 1H), 4.02 – 3.59 (m, 24H), 3.59 – 3.34 (m, 3H), 1.99 (s, 3H), 1.95 (s, 3H), 1.24 (t, J = 7.7 Hz, 6H). HRMS, $C_{52}H_{73}N_3O_{28}$, Calcd for: 1187.4381; found [M-H]⁻ 1187.346.

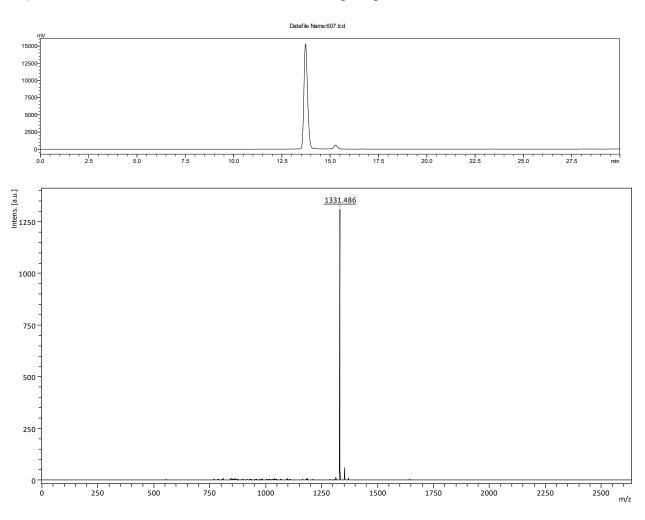

Galα1-3Galβ1-4GlcNAcβ1-6GalNAcα-Ser-Fmoc (98)

Compound **98** was prepared according to general procedure of α 1-3 galactosylation with α 3GalT. After lyophilization, **98** was obtained as white solid. Compound was characterized by HPLC, $T_R = 16.891$ min. ¹H NMR (600 MHz, D_2O) δ 7.85 – 7.74 (m, 2H), 7.70 – 7.51 (m, 2H), 7.48 - 7.30 (m, 4H), 5.14 (d, J = 3.9 Hz, 1H), 4.50 (d, J = 8.2 Hz, 2H), 4.45 (d, J = 7.8 Hz, 1H), 4.33 (s, 1H), 4.20 (d, J = 6.4 Hz, 1H), 4.18 (d, J = 7.6 Hz, 2H), 4.10 – 4.01 (m, 2H), 3.96 (d, J = 3.3 Hz, 1H), 3.94 (d, J = 3.3 Hz, 1H), 3.94 – 3.84 (m, 4H), 3.83 3.62 (m, 17H), 1.95 (s, 3H), 1.94 (s, 3H). HRMS, $C_{46}H_{63}N_3O_{25}$, Calcd for: 1057.3751; found [M+H]⁺ 1058.3741.

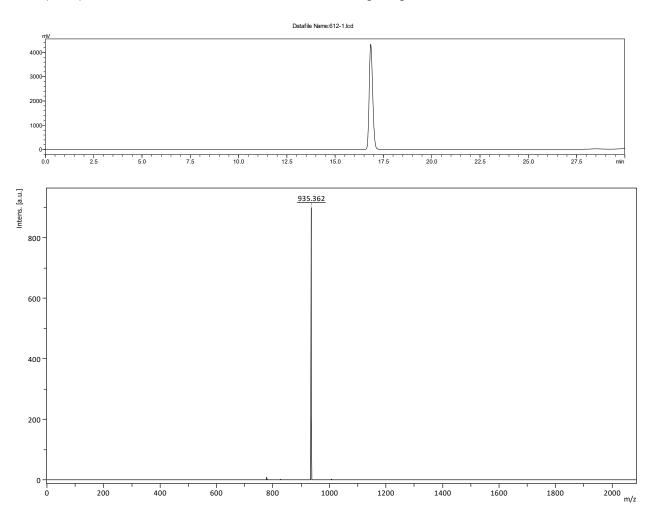


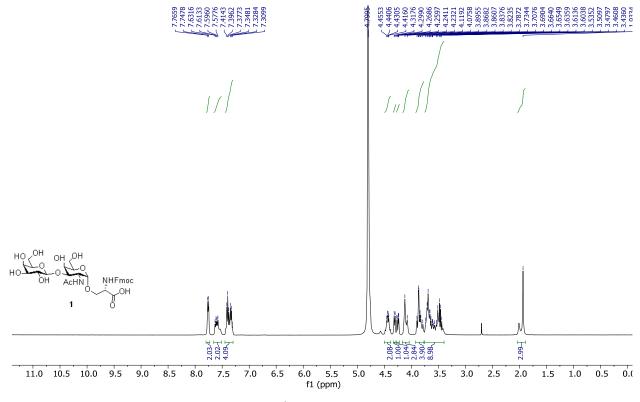

Galβ1-4(Fucα1-3)GlcNAcβ1-6GalNAcα-Ser-Fmoc (99)


Compound **99** was prepared according to general procedure of α 1-3 fucosylation with Hp3FT. After lyophilization, **99** was obtained as white solid. Compound was characterized by HPLC, T_R =15.232 min. ¹H NMR (600 MHz, D₂O) δ 7.95 – 7.85 (m, 2H), 7.78 – 7.60 (m, 2H), 7.56 - 7.38 (m, 4H), 5.09 (d, J = 3.2 Hz, 1H), 4.64 (m, 1H), 4.53 (d, J = 8.0 Hz, 1H), 4.38 (d, J = 7.5 Hz, 1H), 4.33 (m, 2H), 4.10 – 3.46 (m, 28 H), 3.37 (t, J = 8.64 Hz, 1H), 1.96 (s, 3H), 1.94 (s, 3H), 1.18 (d, J = 6.5 Hz, 1H). HRMS, C₄₆H₆₃N₃O₂₄, Calcd for: 1041.3801; found [M-H]⁻ 1040.3856.

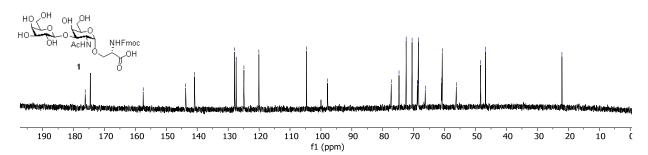


Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ1-6GalNAcα-Ser-Fmoc (100)

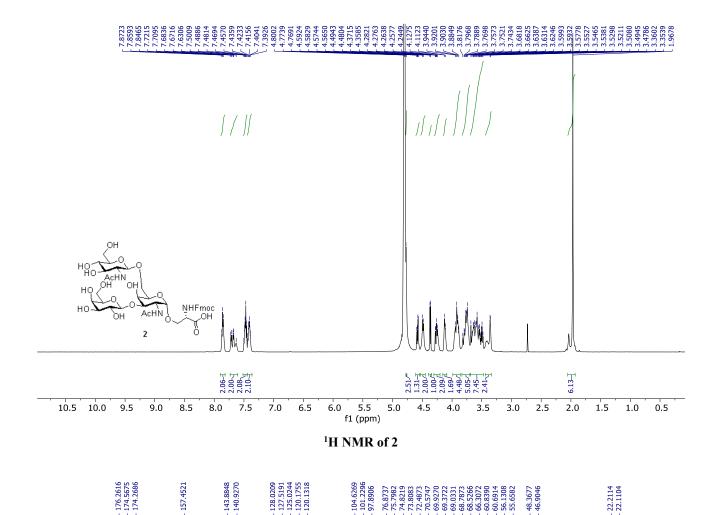

Compound **100** was prepared according to general procedure of α 2-3 sialylation with PmST1-M144D. After lyophilization, **100** was obtained as white solid. Compound was characterized by HPLC, $T_R = 13.724$ min. 1H NMR (600 MHz, D_2O) δ 7.96 – 7.87 (m, 2H), 7.78 – 7.63 (m, 2H), 7.56 - 7.40 (m, 4H), 5.09 (d, J = 3.6 Hz, 1H), 4.65 (s, 1H), 4.52 (d, J = 8.3 Hz, 2H), 4.43 (d, J = 7.7 Hz, 1H), 4.36 (s, 1H), 4.31 (s, 1H), 4.08 (s, 2H), 3.99 – 3.48 (m, 31H), 2.78 (dd, J = 12.4, 4.6 Hz, 1H), 2.05 (s, 3H), 1.96 (s, 3H), 1.82 (t, J = 12.2 Hz, 1H), 1.17 (d, J = 6.5 Hz, 3H). HRMS, $C_{57}H_{80}N_4O_{32}$, Calcd for: 1332.4756; found [M-H]⁻ 1331.486.

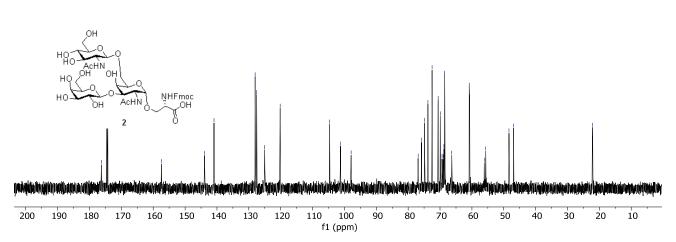

GalNAcβ1-4GlcNAcβ1-6GalNAcα-Ser-Fmoc (101)

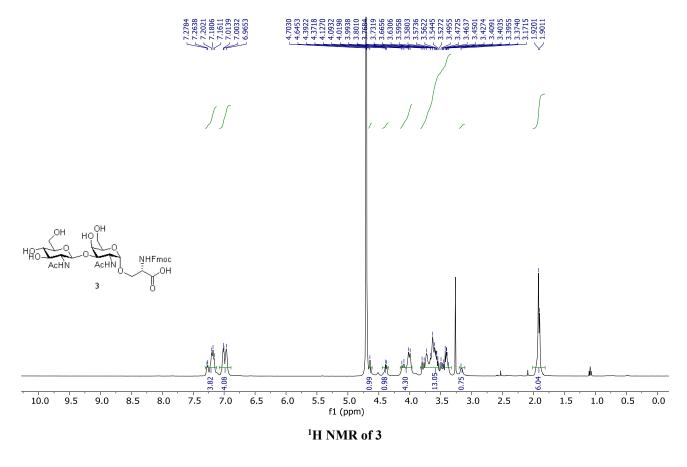
Compound **101** was prepared according to general procedure of β 1-4-N-acetylgalatosaminylation with NmLgtBm. After lyophilization, **101** was obtained as white solid. Compound was characterized by HPLC, T_R =16.843 min. 1 H NMR (600 MHz, D_2O) δ 7.91 – 7.73 (m, 2H), 7.72 – 7.57 (m, 2H), 7.49 – 7.31 (m, 4H), 4.66 (s, 1H), 4.58 (d, J = 6.0 Hz, 1H), 4.46 – 4.35 (m, 2H), 4.30 (s, 1H), 4.24 (s, 1H), 4.01 (d, J = 12.1 Hz, 1H), 3.93 – 3.80 (m, 5H), 3.80 – 3.54 (m, 12H), 3.54 – 3.40 (m, 2H), 3.35 (s, 1H), 3.20 (s, 1H), 2.01 (s, 3H), 1.95 (s, 3H), 1.89 (s, 3H). HRMS, $C_{42}H_{56}N_4O_{20}$, Calcd for: ${}_{936.3488}$; found [M-H] $^-$ 935.362.



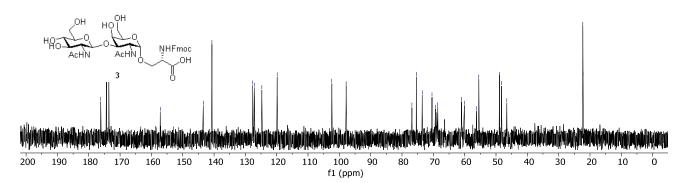
VI. NMR Spectra

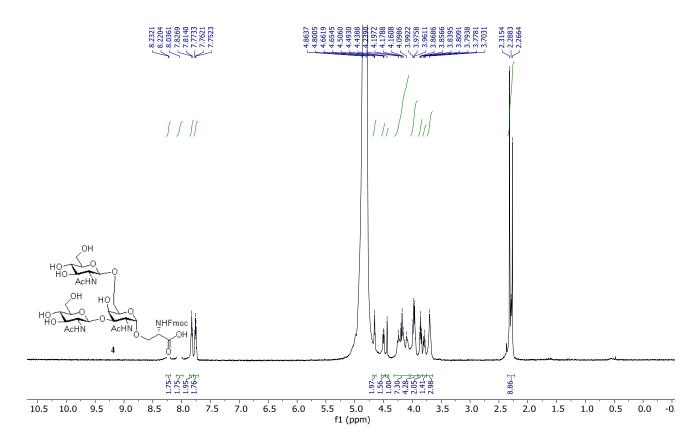


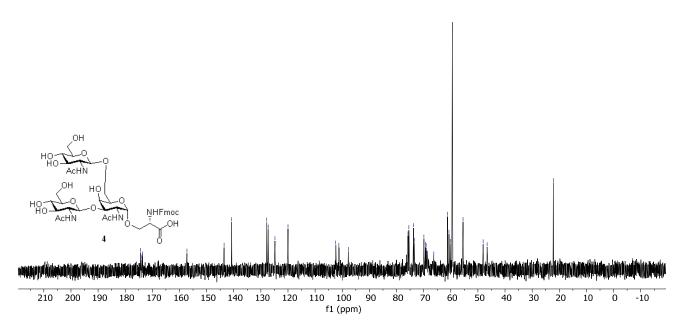

¹H NMR of 1



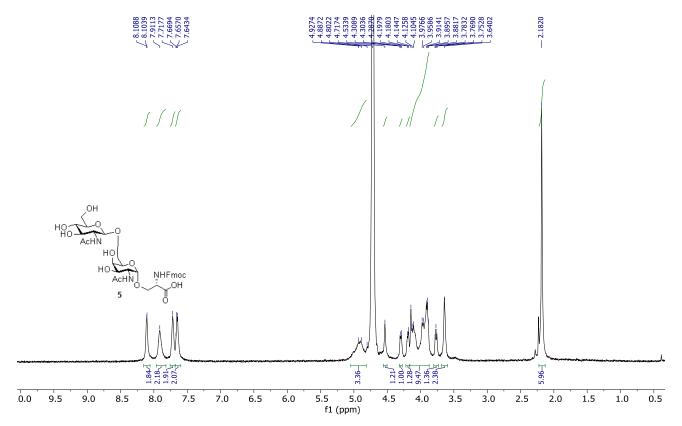
¹³C NMR of 1



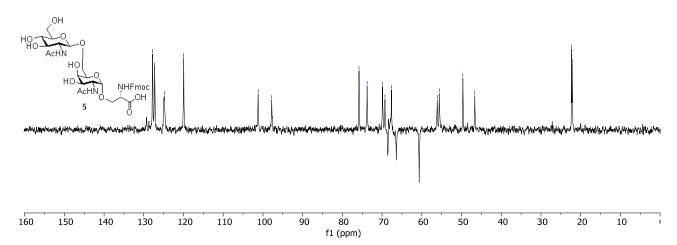

¹³C NMR of 2



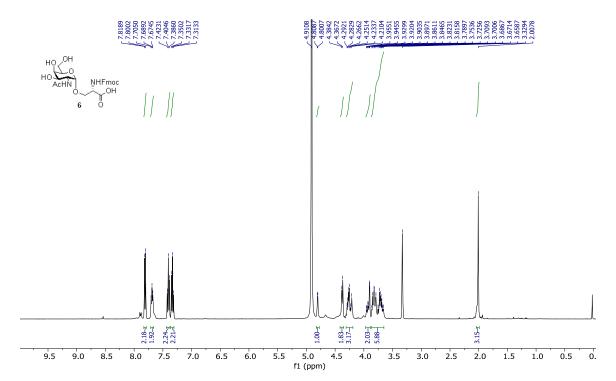
¹³C NMR of 3



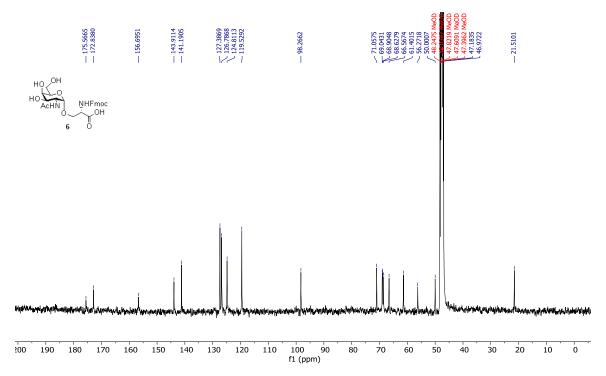
¹H NMR of 4

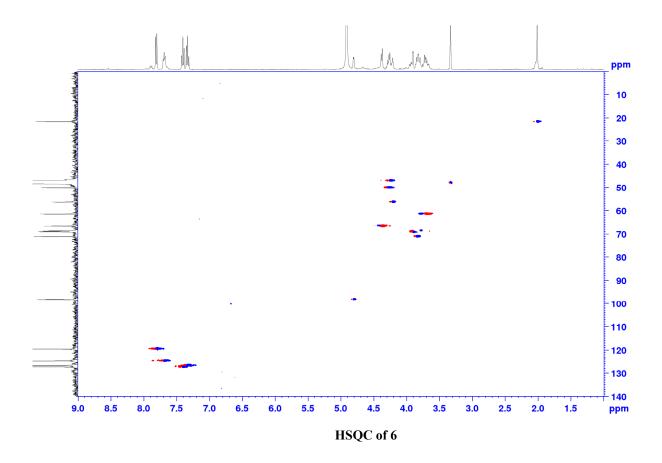


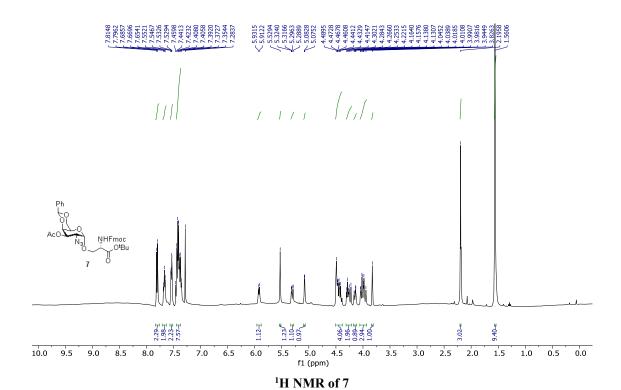
¹³C NMR of 4



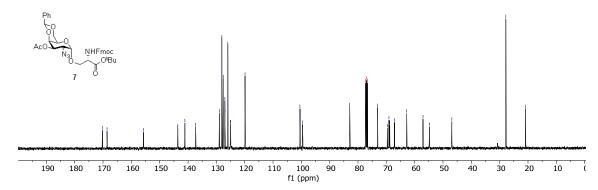
¹H NMR of 5



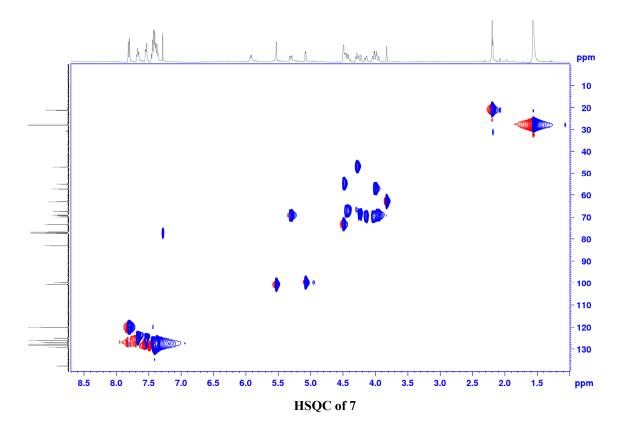

¹³C NMR of 5

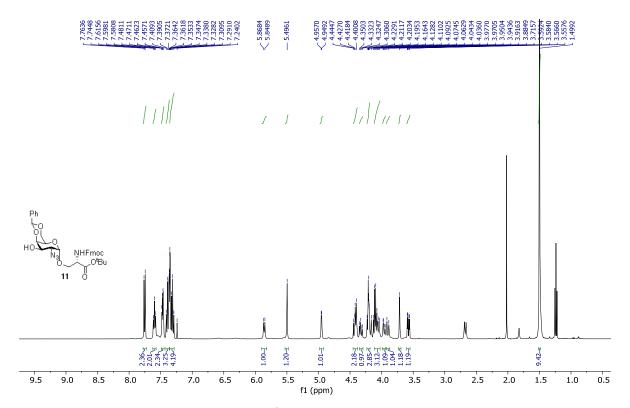


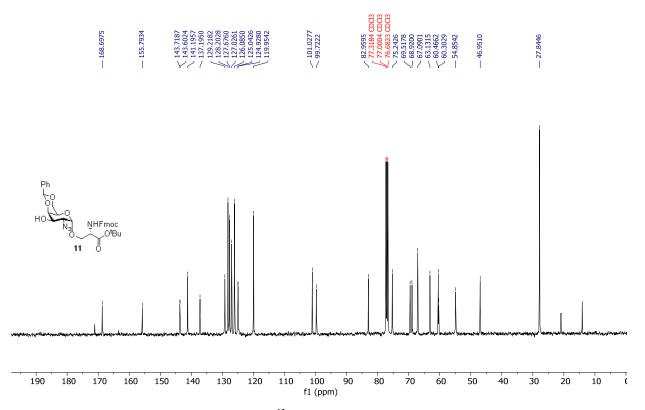
¹H NMR of 6



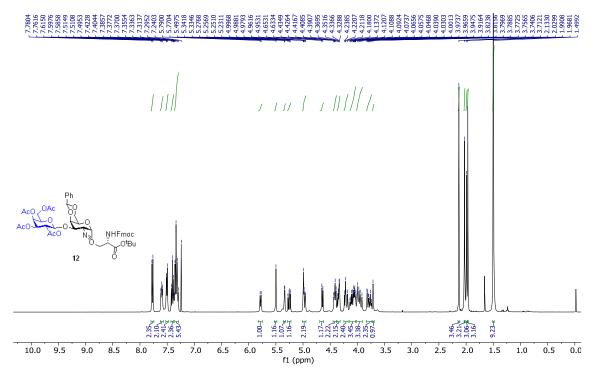
 ^{13}C NMR of 6

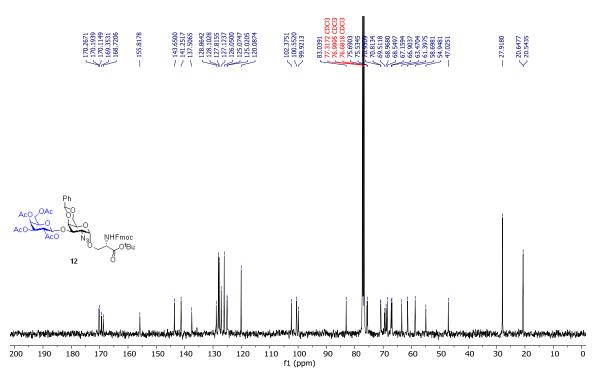


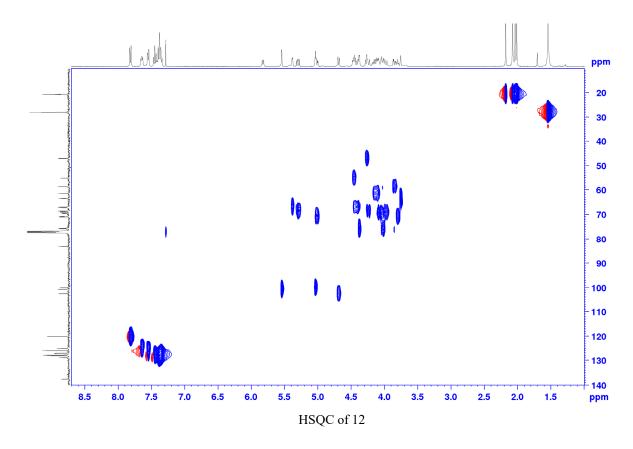


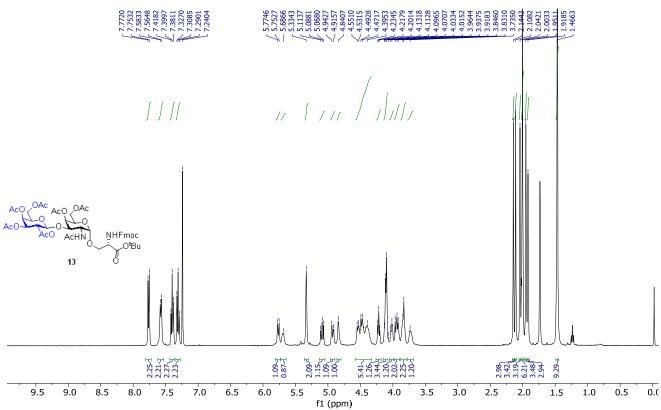


¹³C NMR of 7

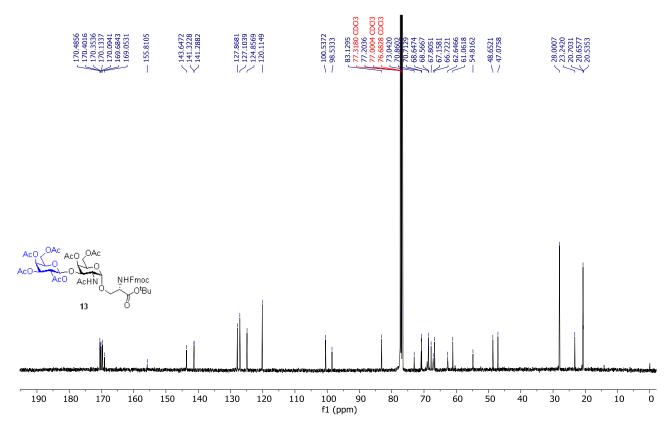



¹H NMR of 11

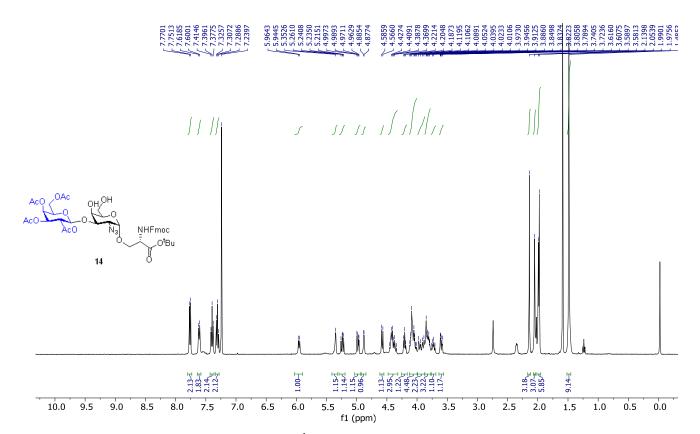

¹³C NMR of 11

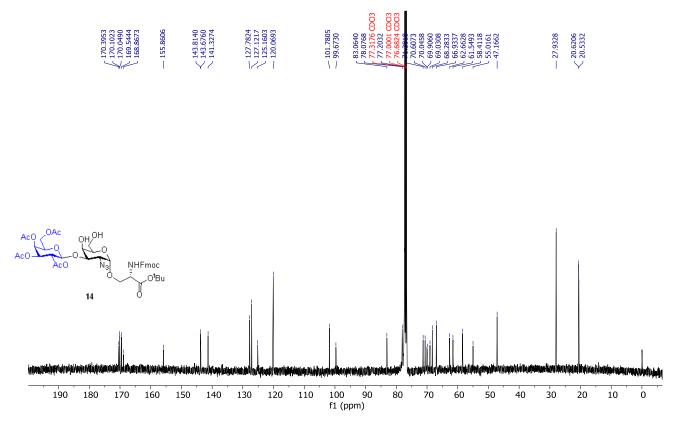


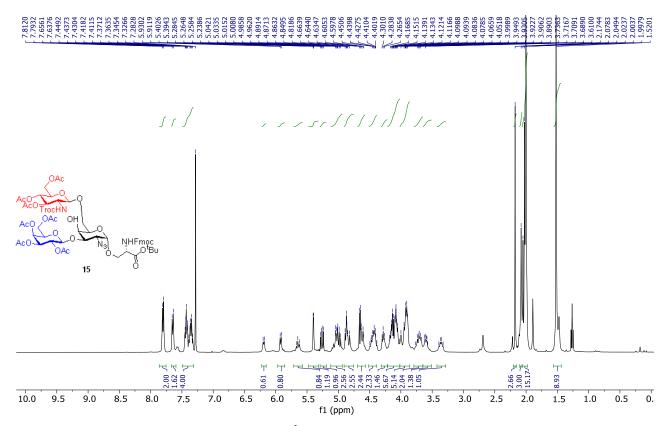
¹H NMR of 12

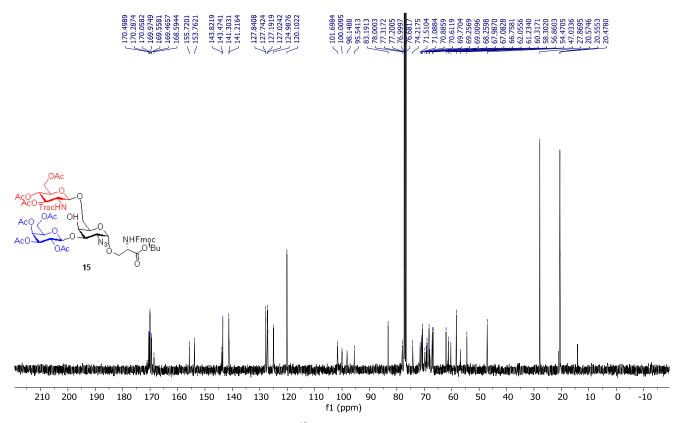


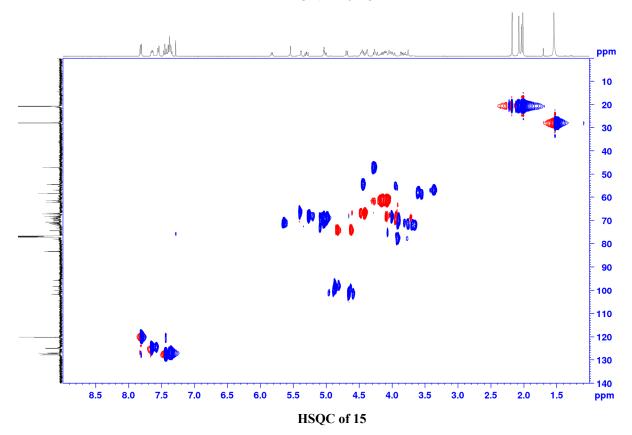
¹³C NMR of 12

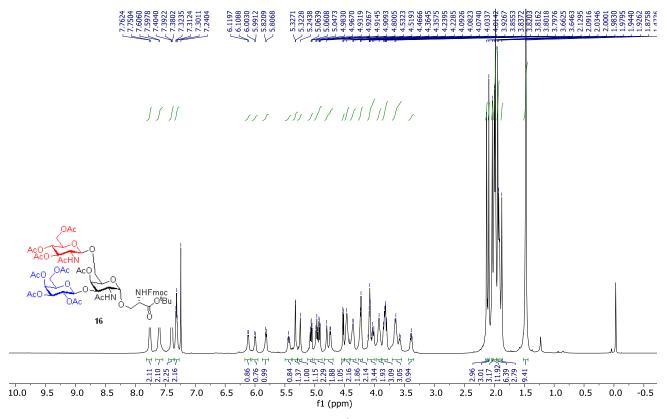


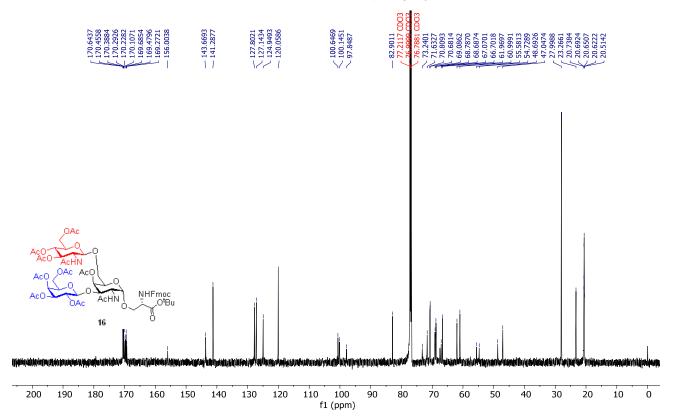

S128

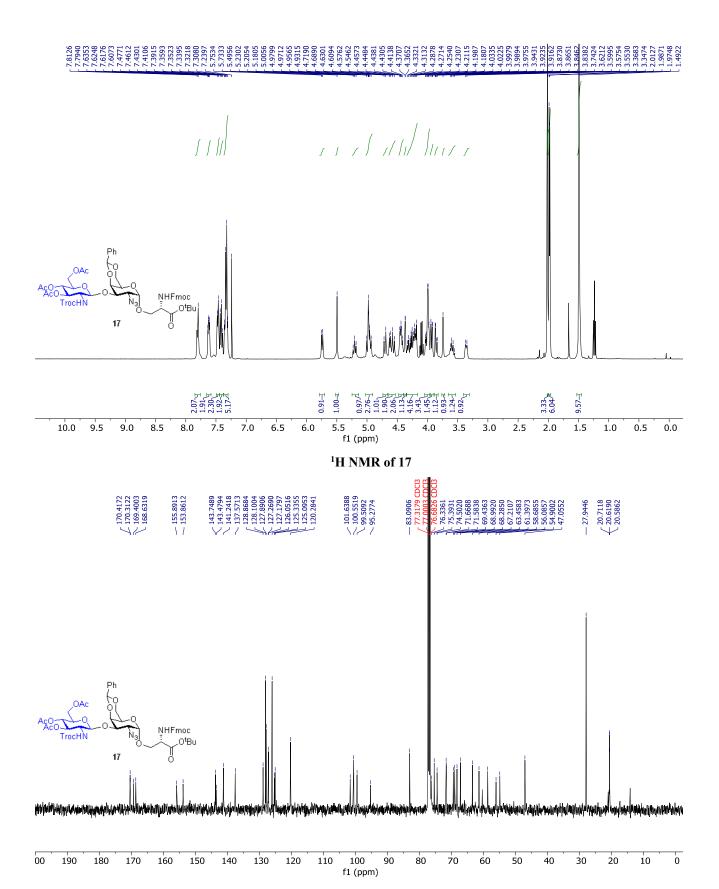


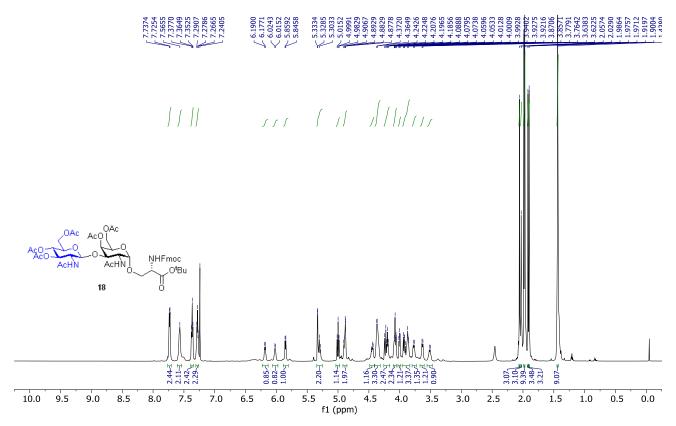

¹H NMR of 14

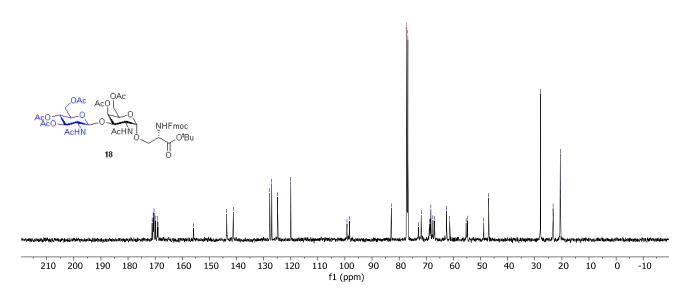


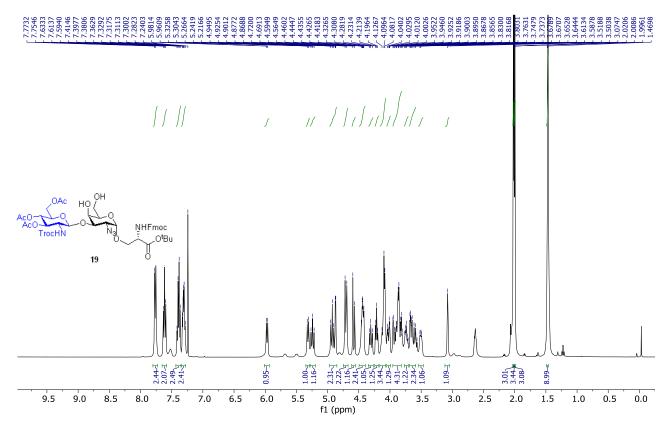


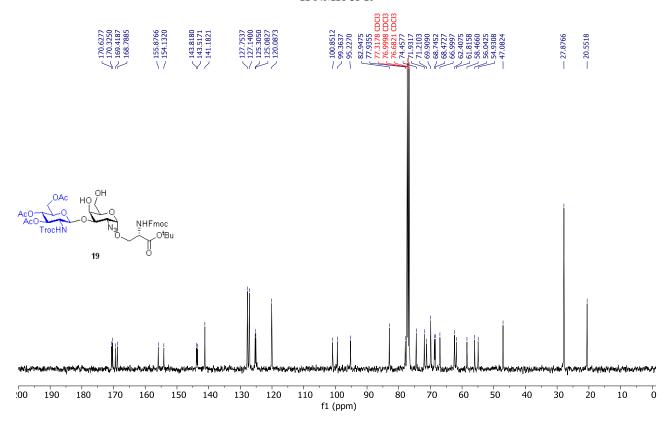

¹H NMR of 15

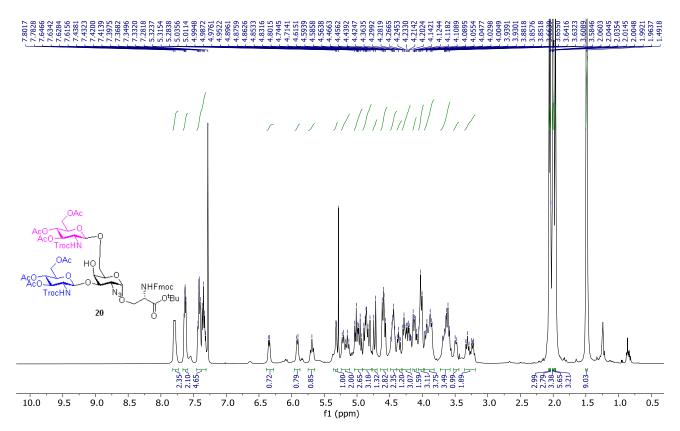


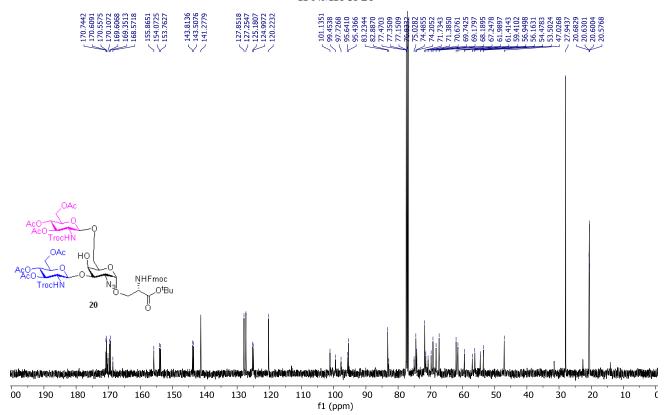


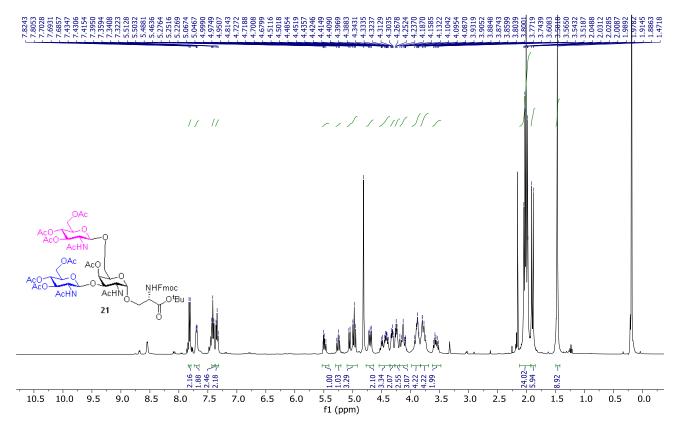

¹³C NMR of 16


¹³C NMR of 17

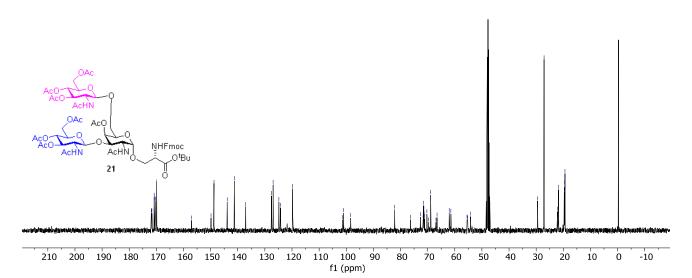




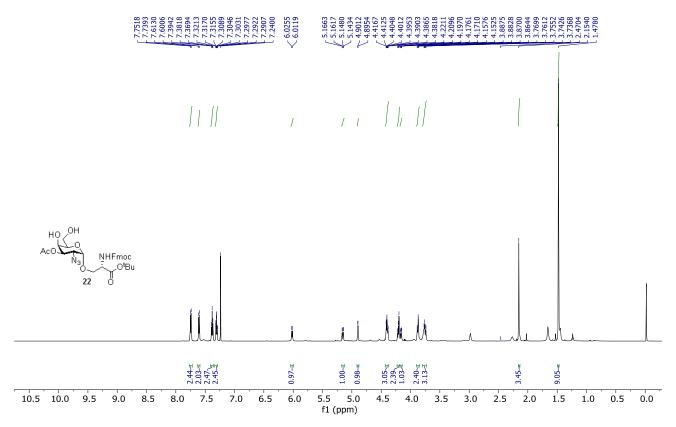

¹³C NMR of 18

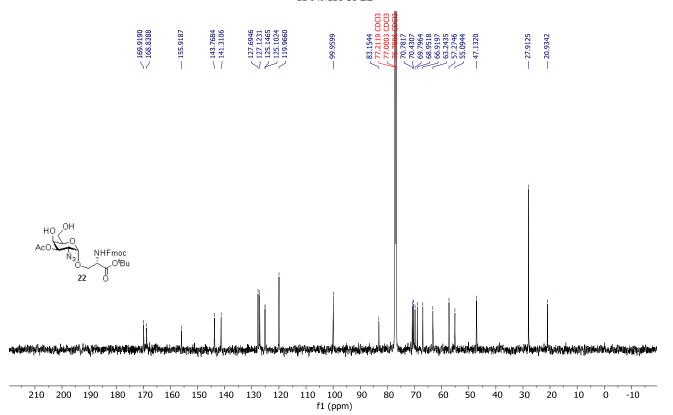


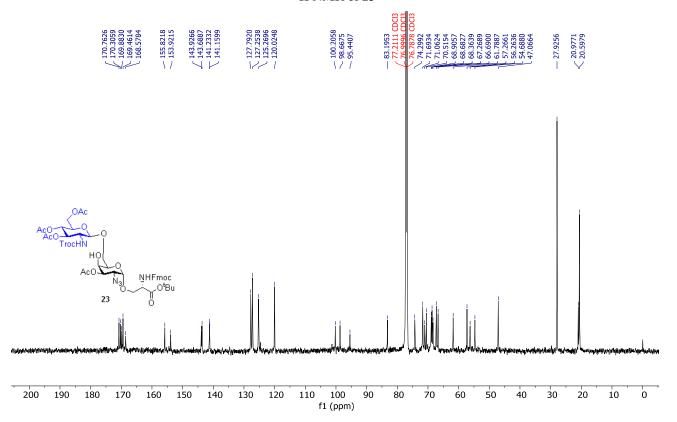
¹³C NMR of 19

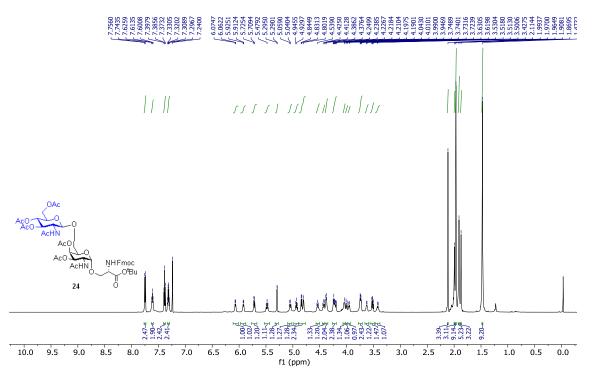


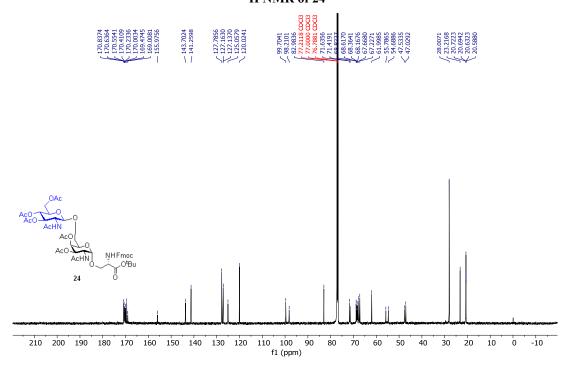
¹³C NMR of 20

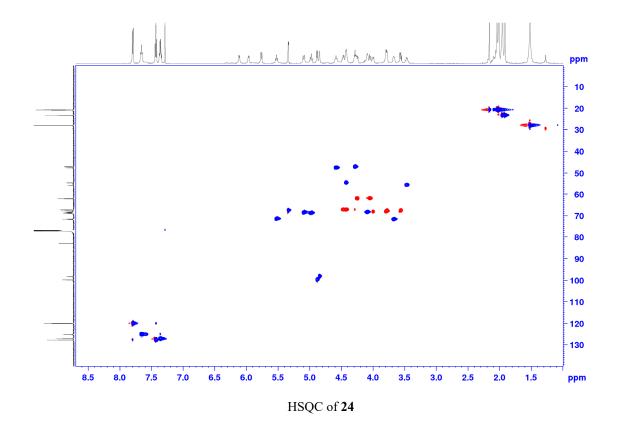


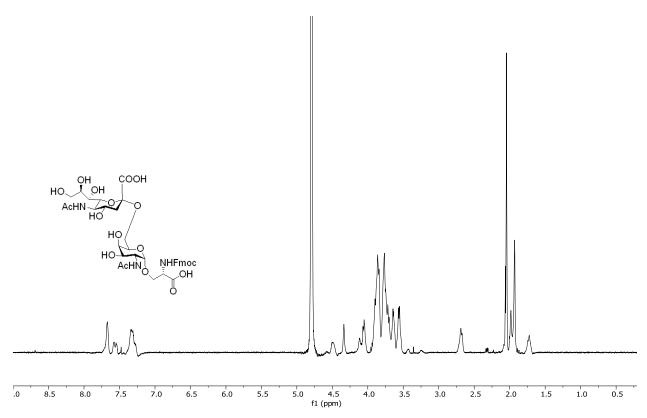

¹H NMR of 21

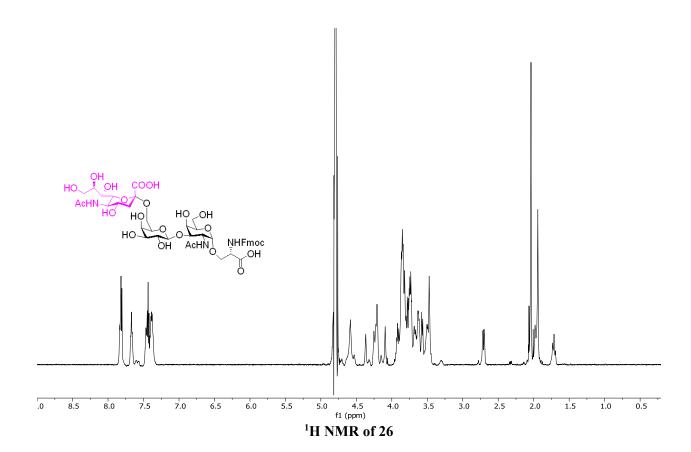

13C NMR of 21

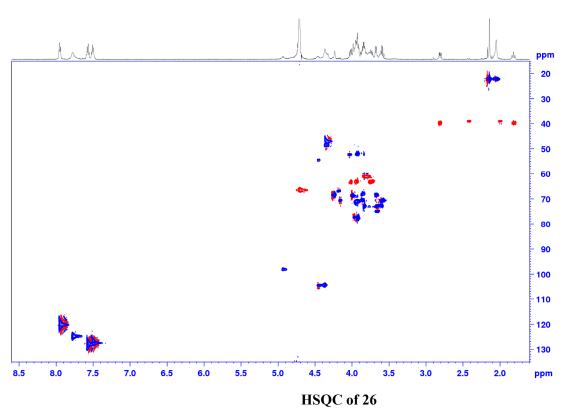


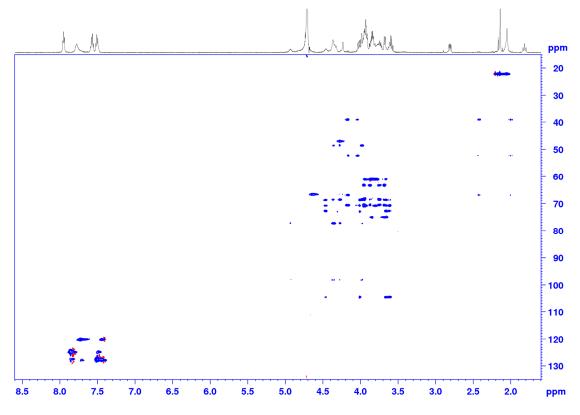

¹³C NMR of 22

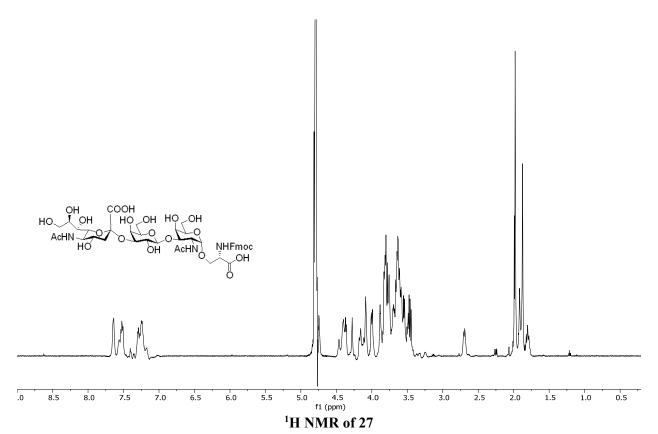


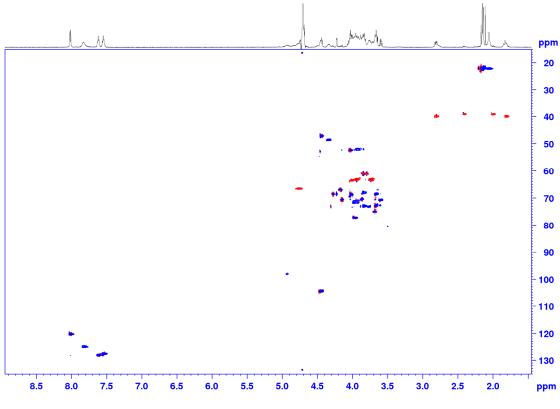

¹³C NMR of 23



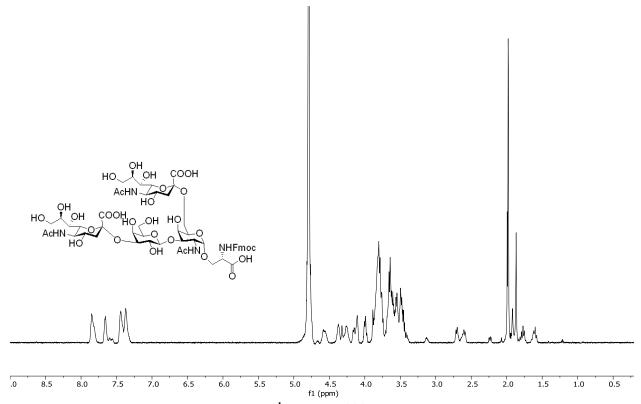

¹³C NMR of 24

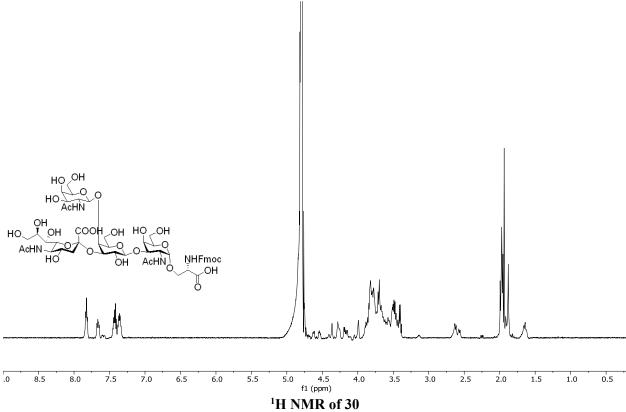


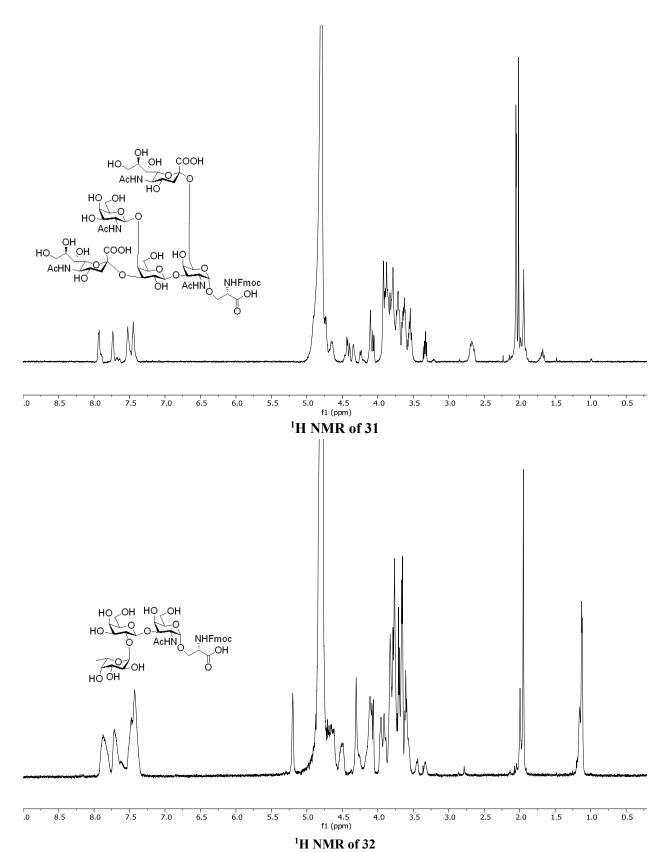

¹H NMR of 25



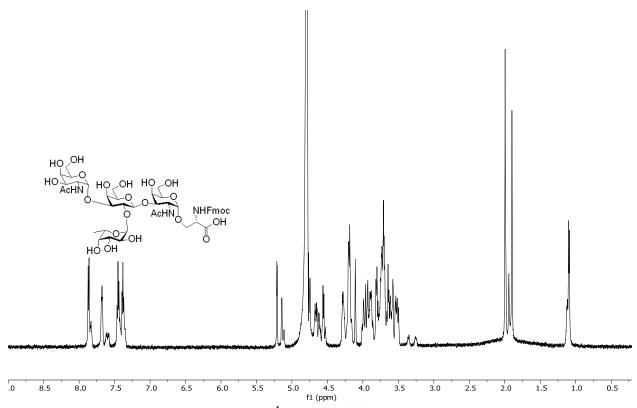
HSQC-Tocsy of 26

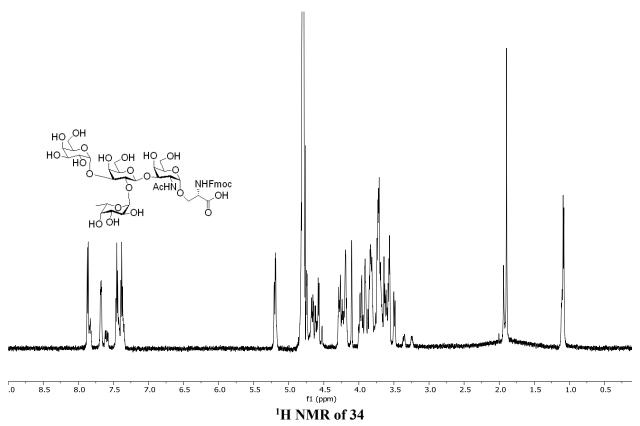


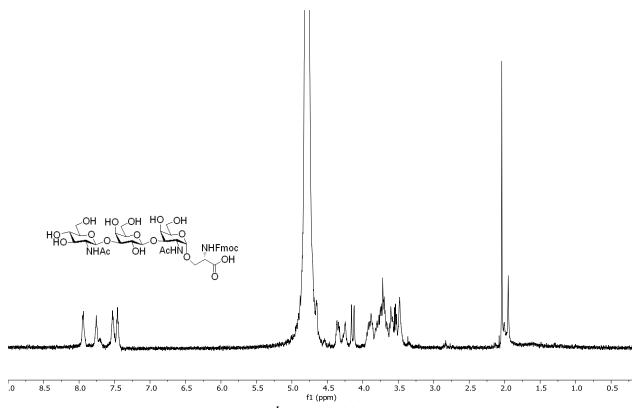




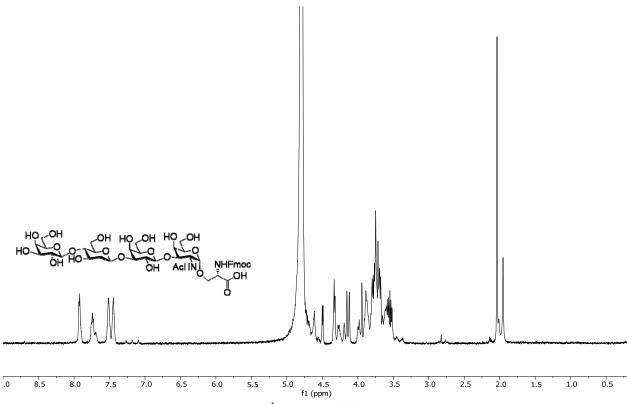
HSQC of 28

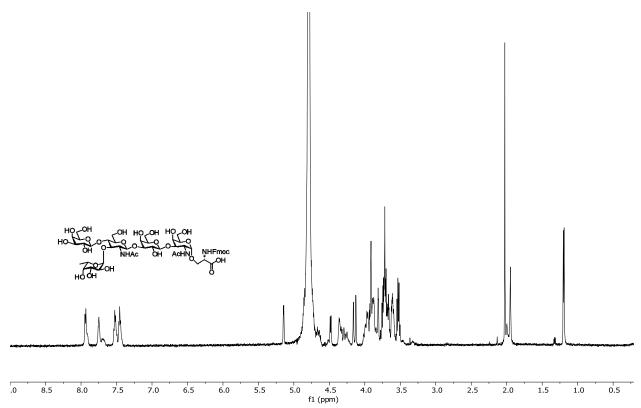


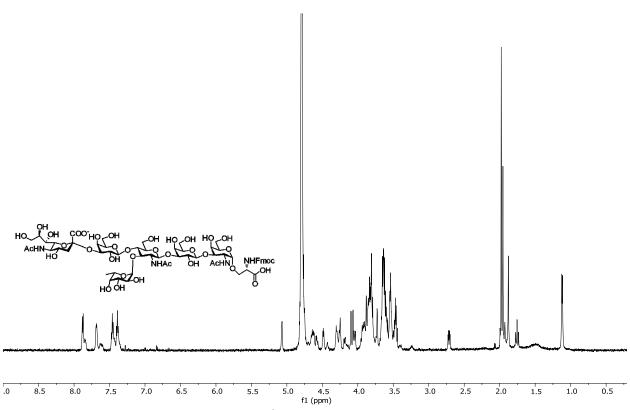


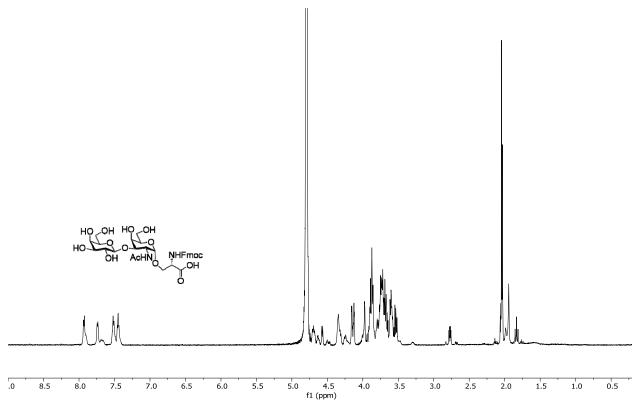


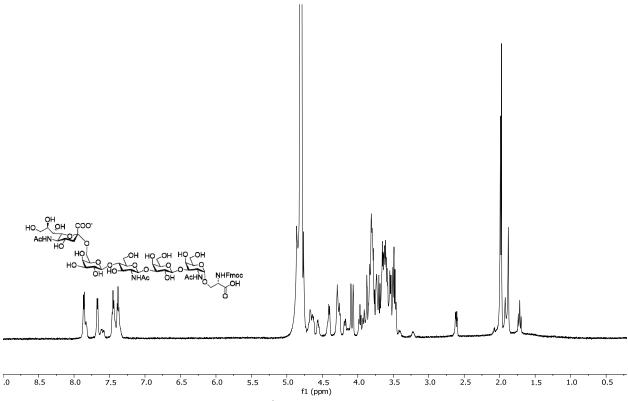
11 1 (1) 111 01 52

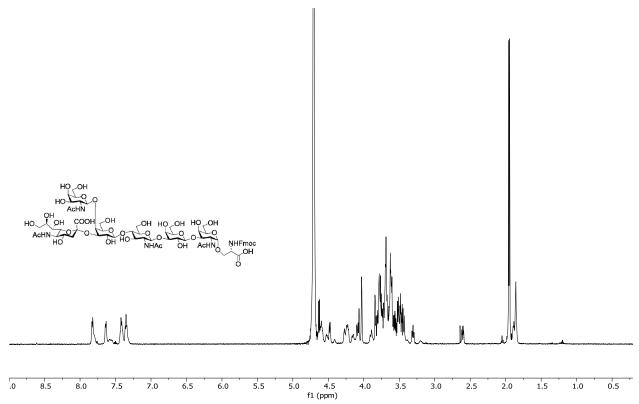


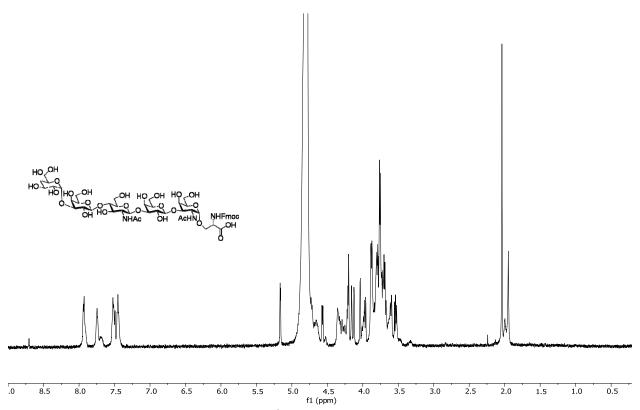


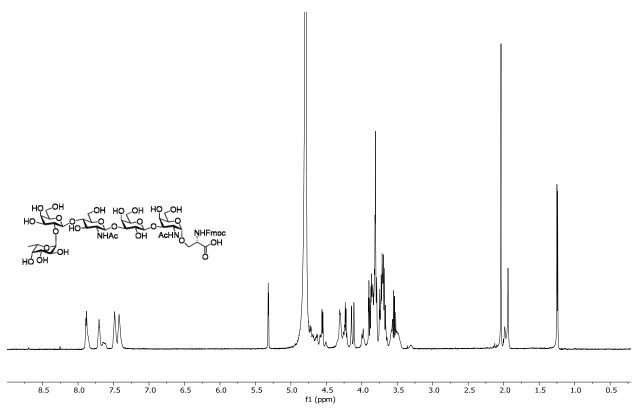


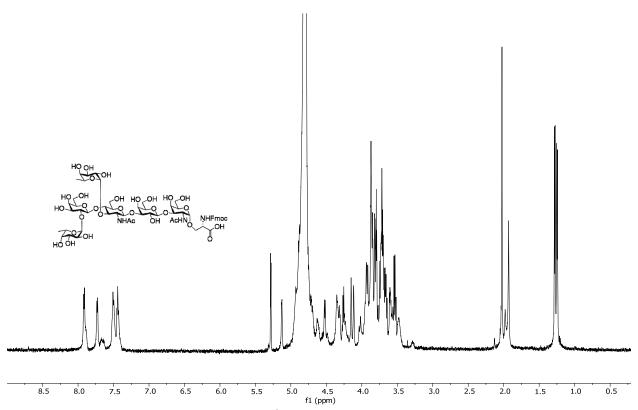

¹H NMR of 36

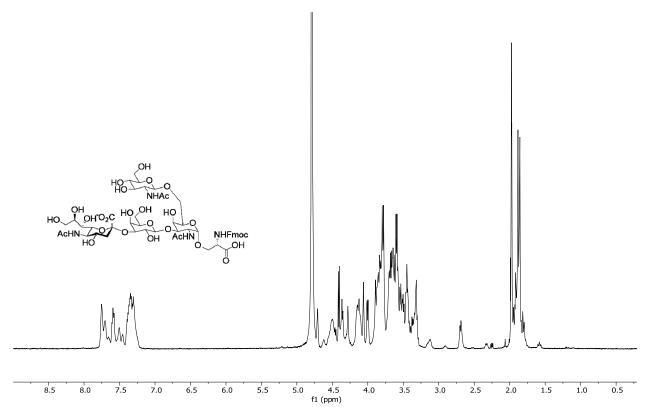


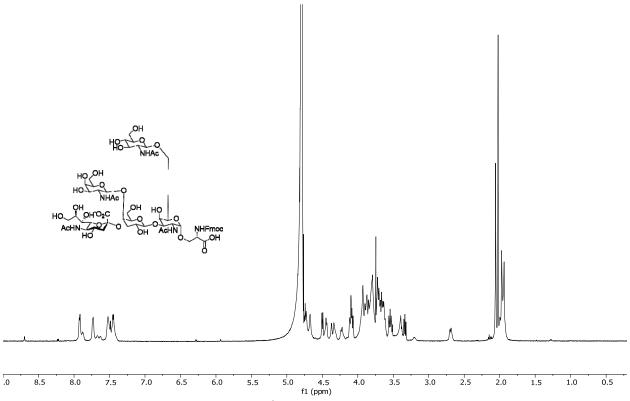

¹H NMR of 38

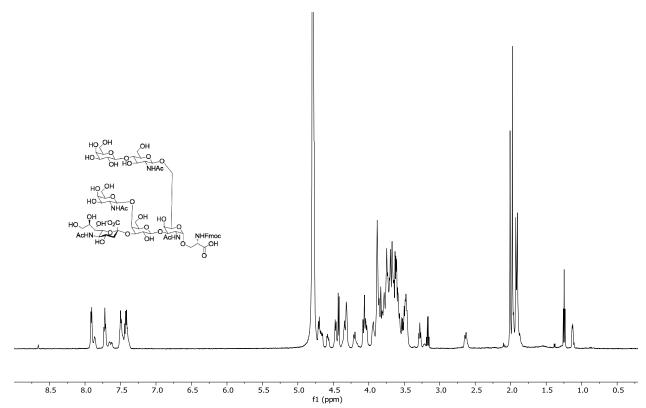


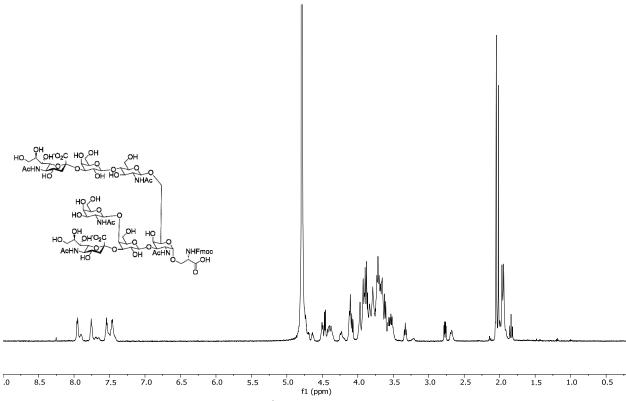

¹H NMR of 40

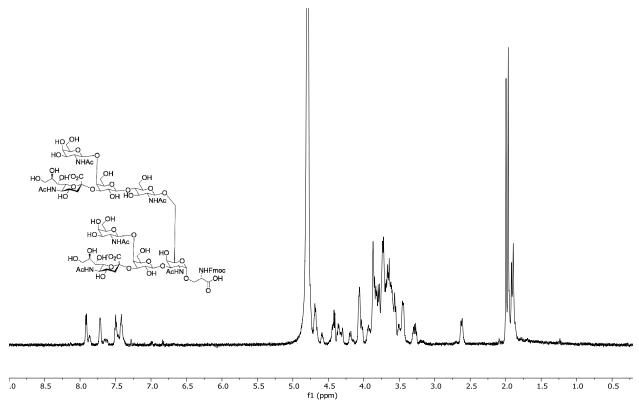


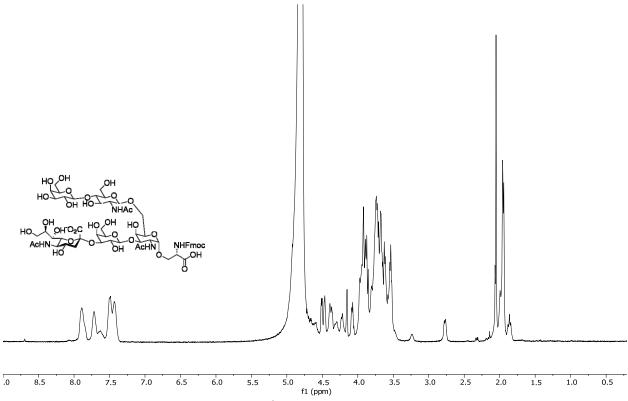

¹H NMR of 42

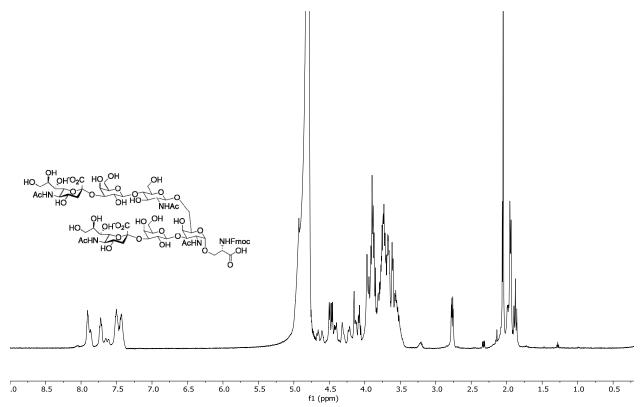


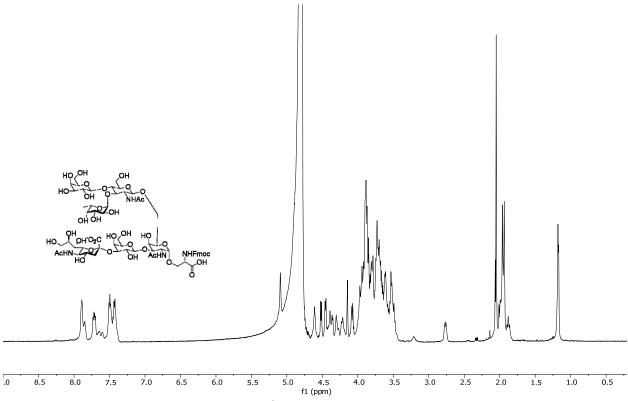

¹H NMR of 44

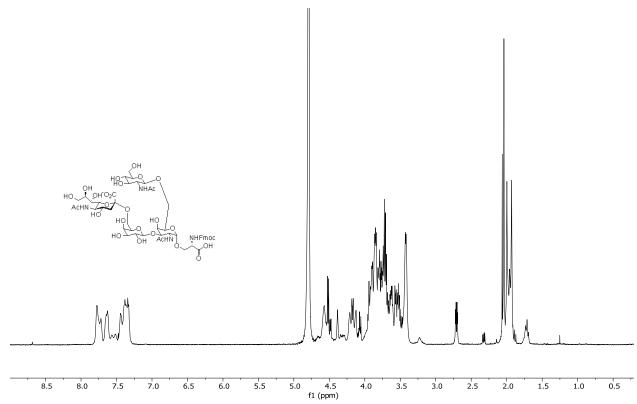


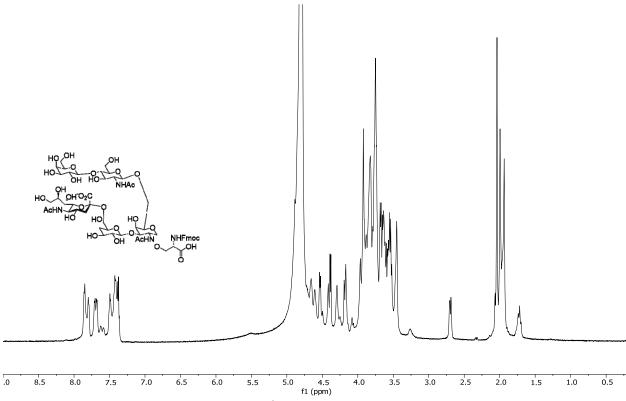

¹H NMR of 46

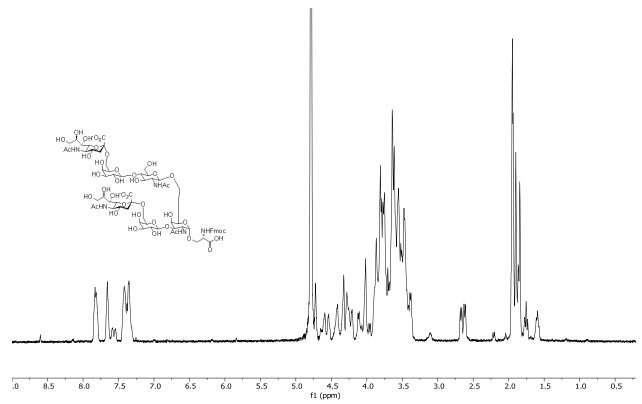


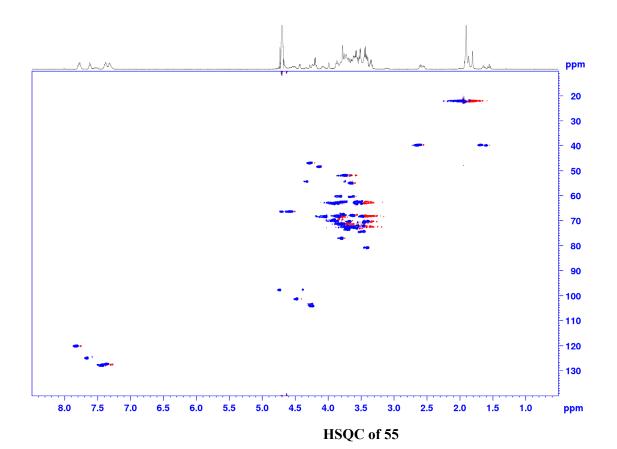

¹H NMR of 48

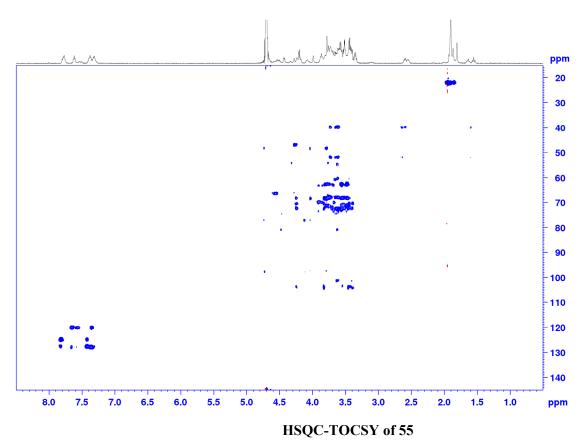


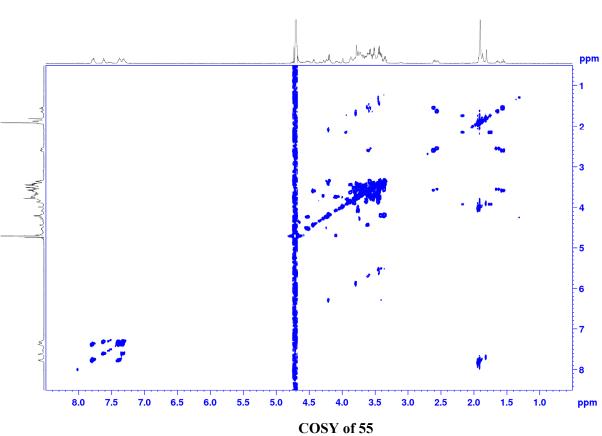

¹H NMR of 50

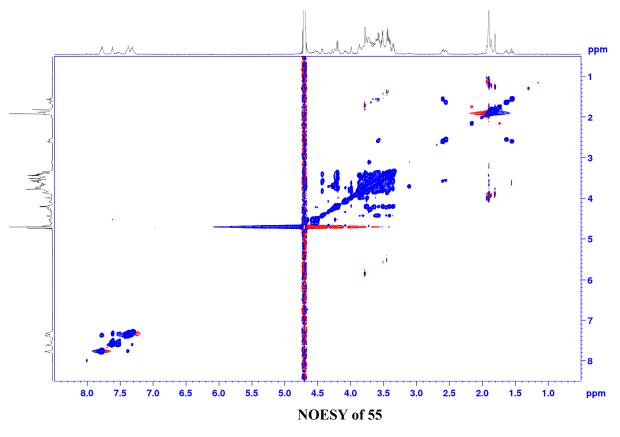


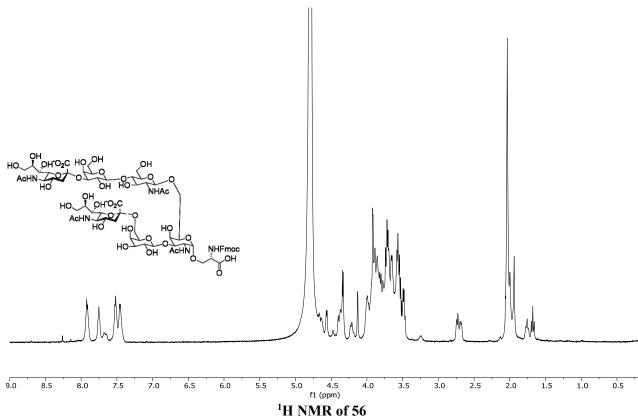

¹H NMR of 52

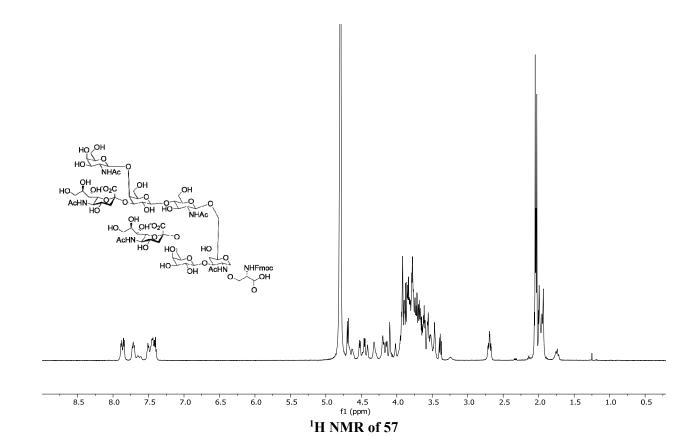


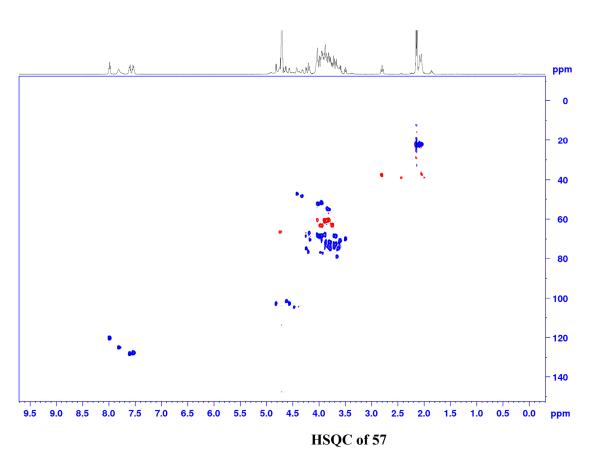

¹H NMR of 54

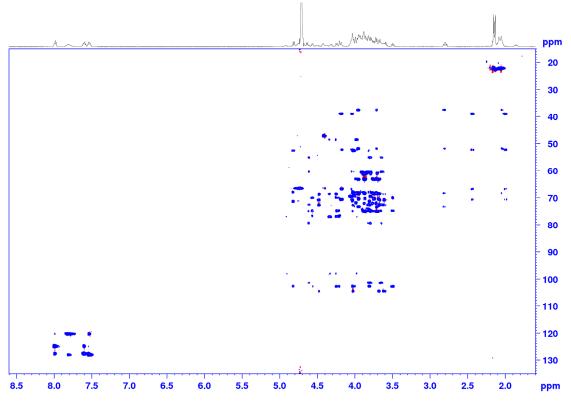


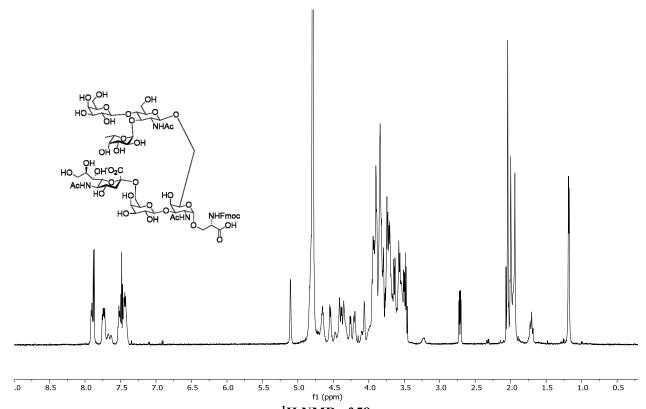


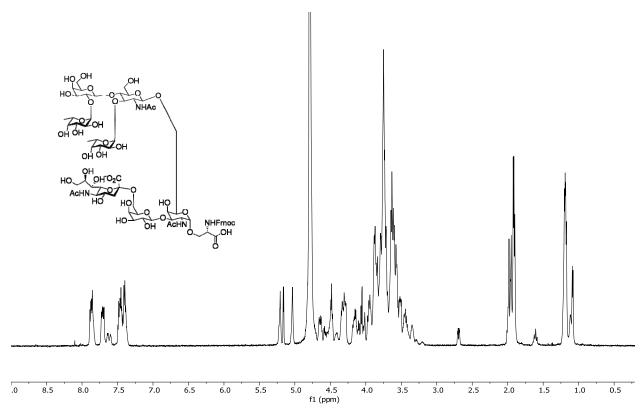


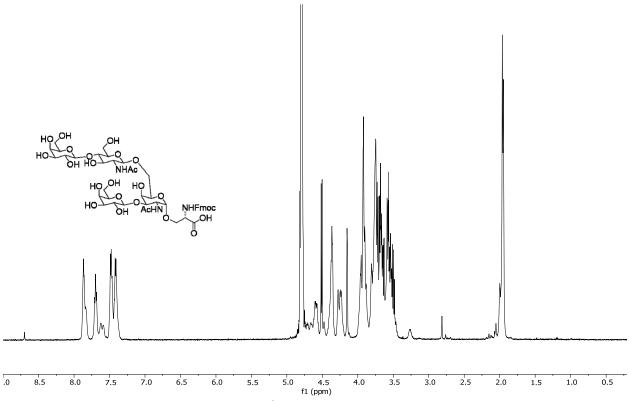

S158

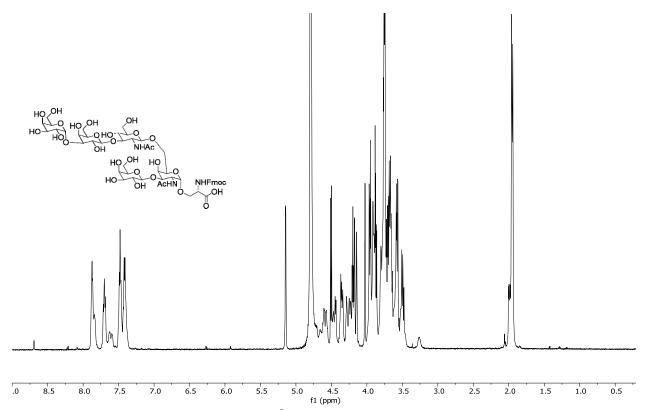


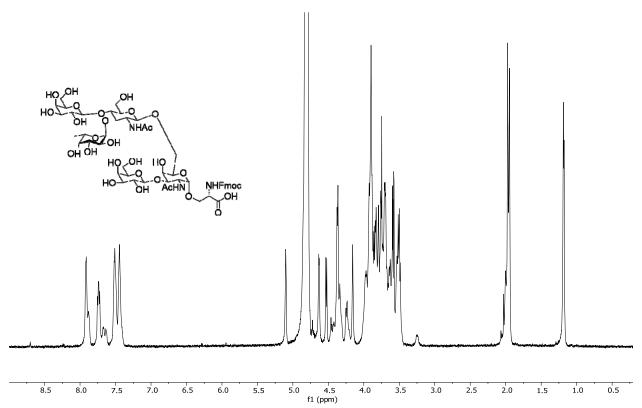


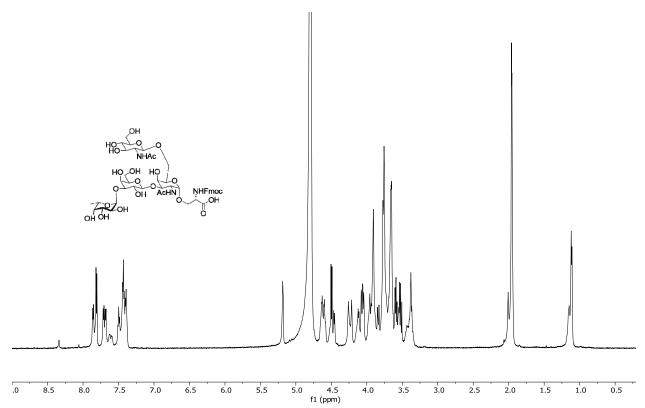


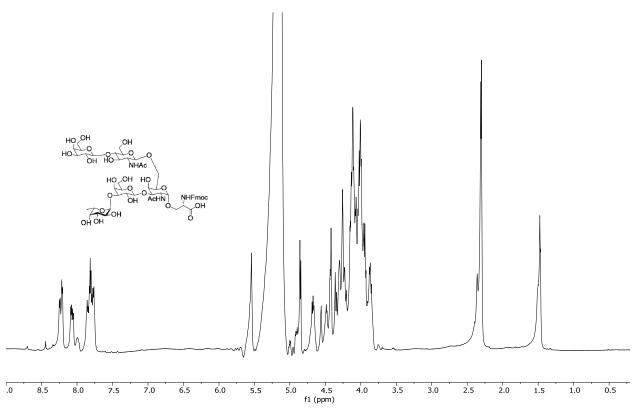


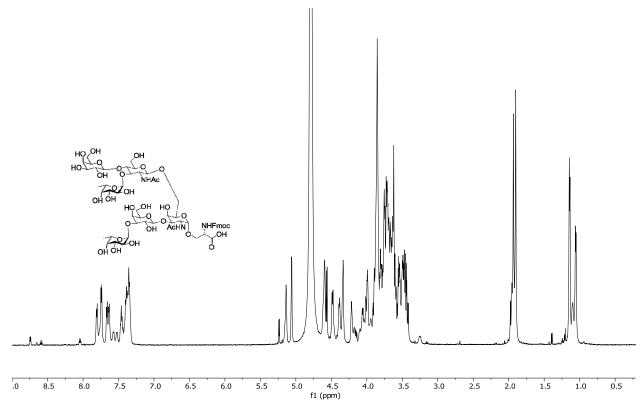


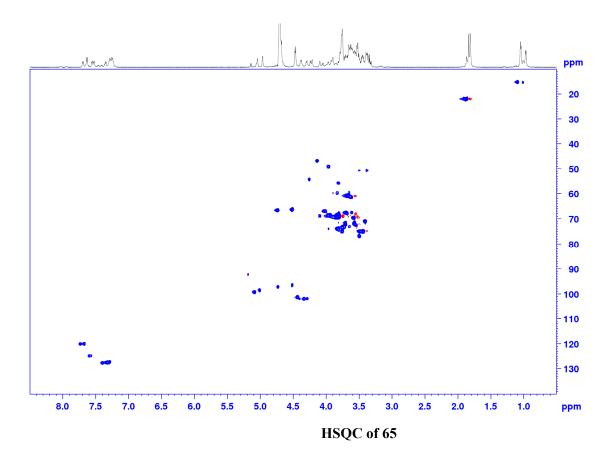

¹H NMR of 58

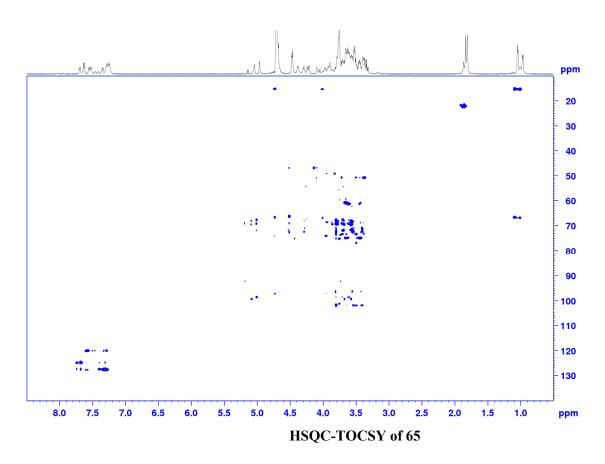


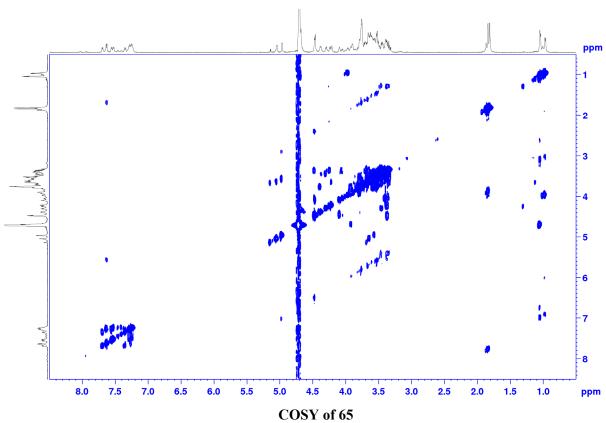

¹H NMR of 60

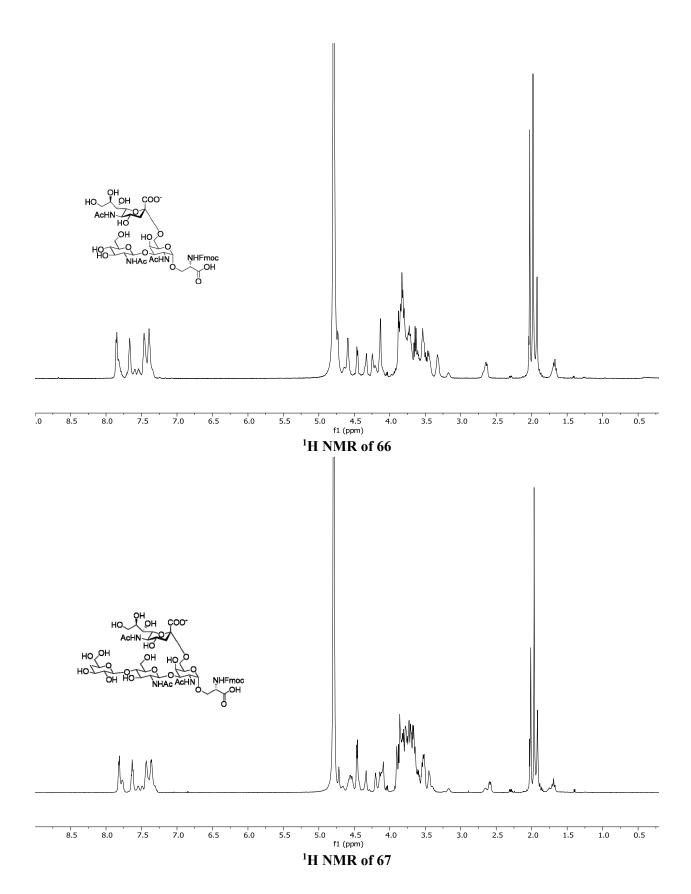


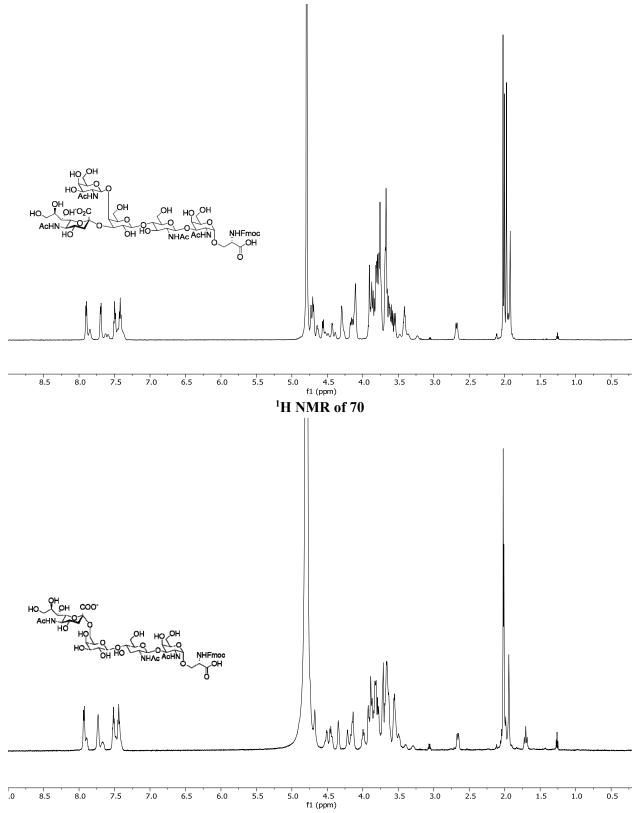

¹H NMR of 62

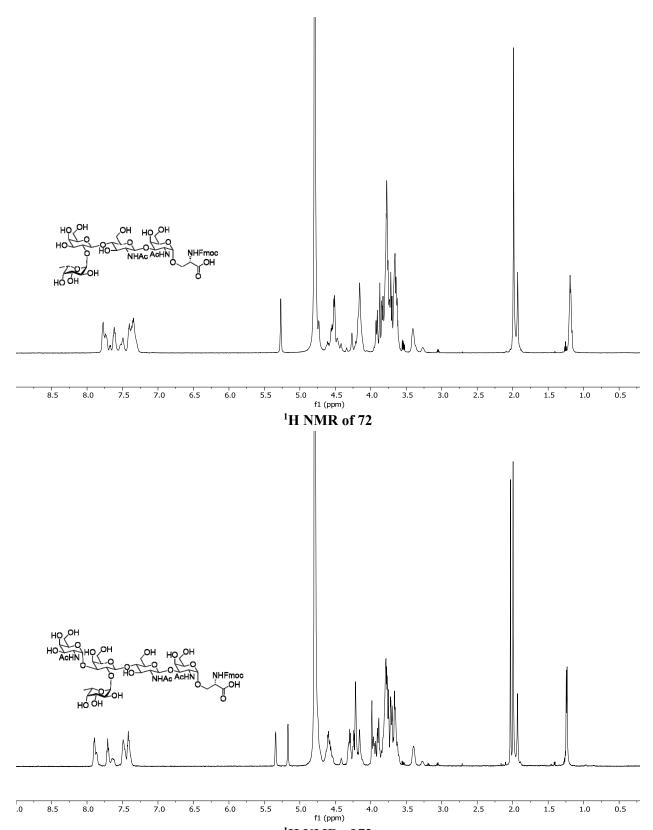


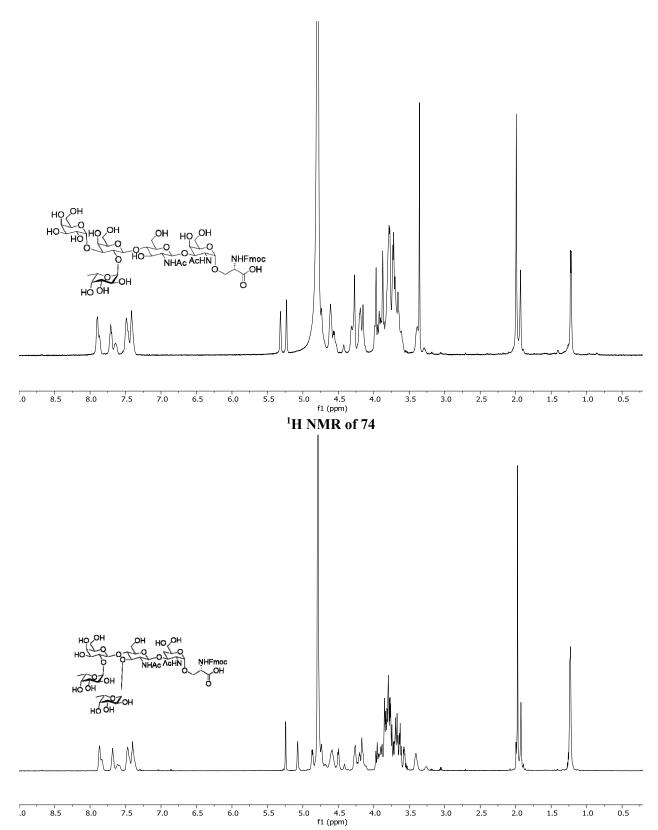


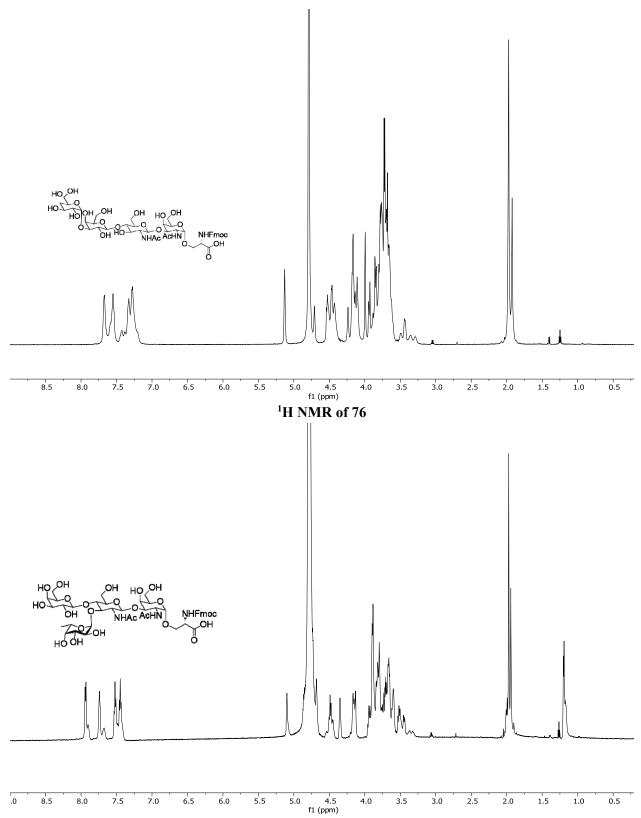

¹H NMR of 64

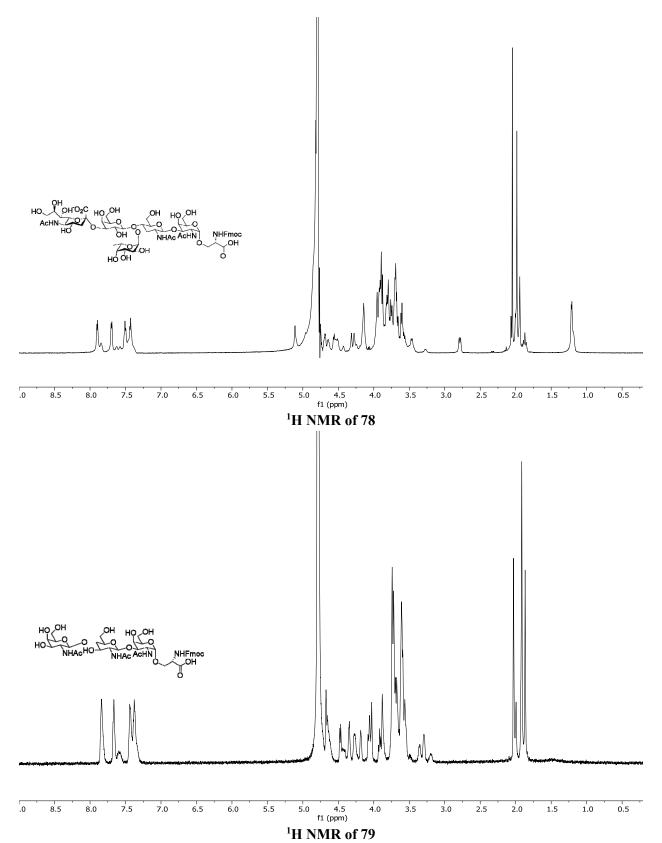


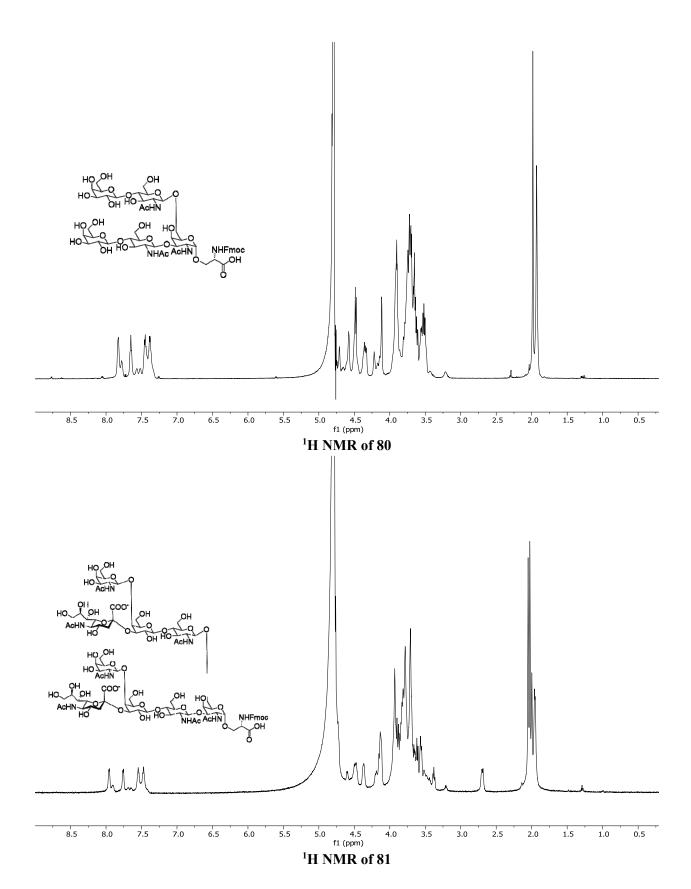




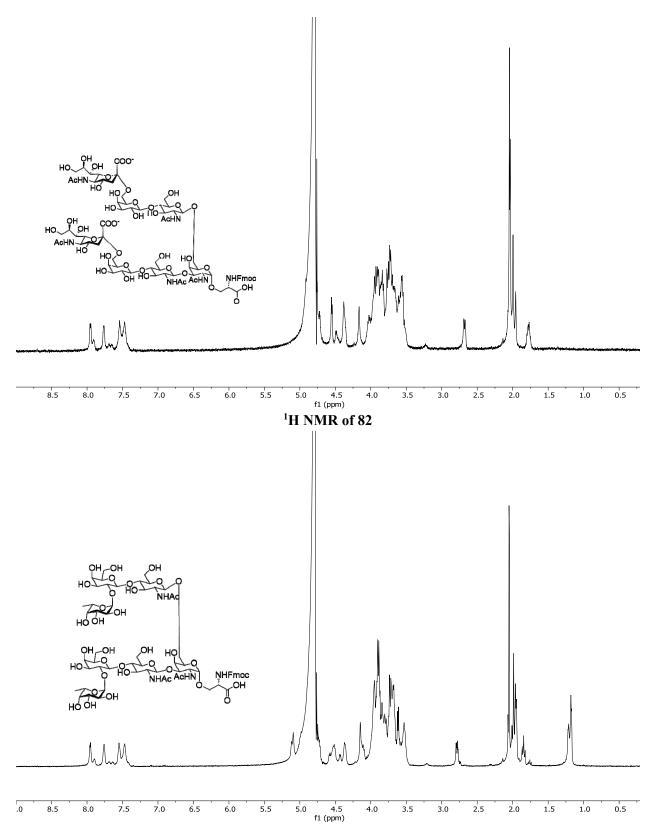



¹H NMR of 71

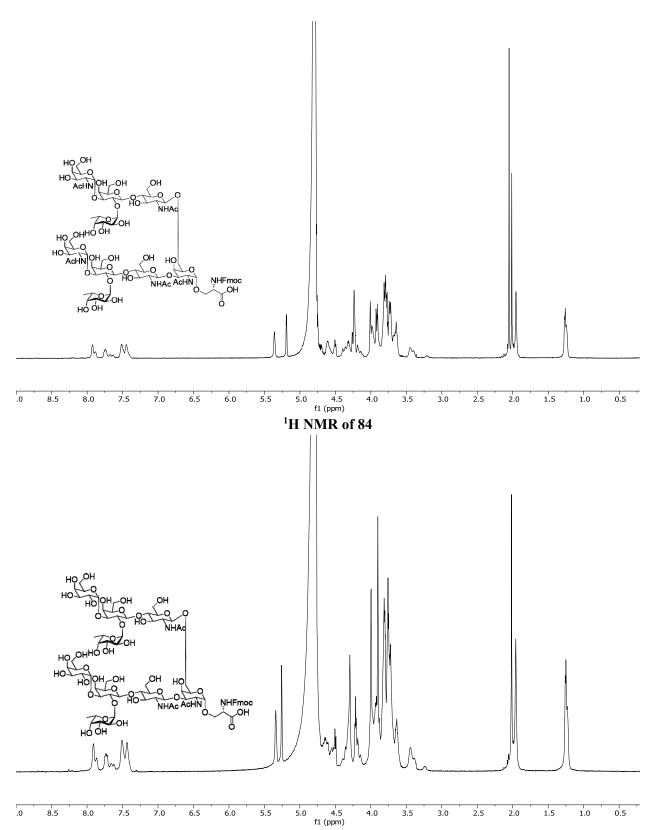

¹H NMR of 73

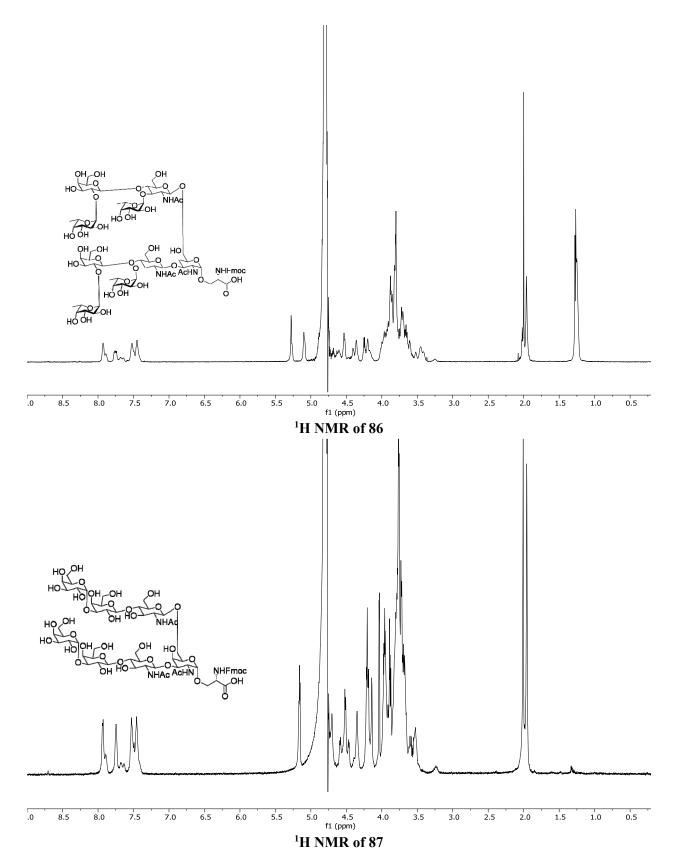


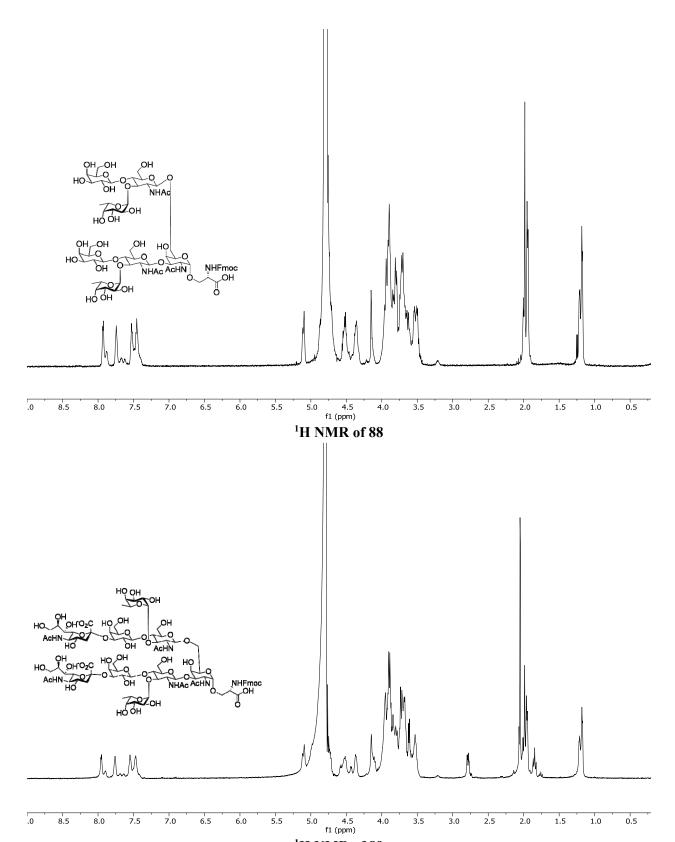
¹H NMR of 75



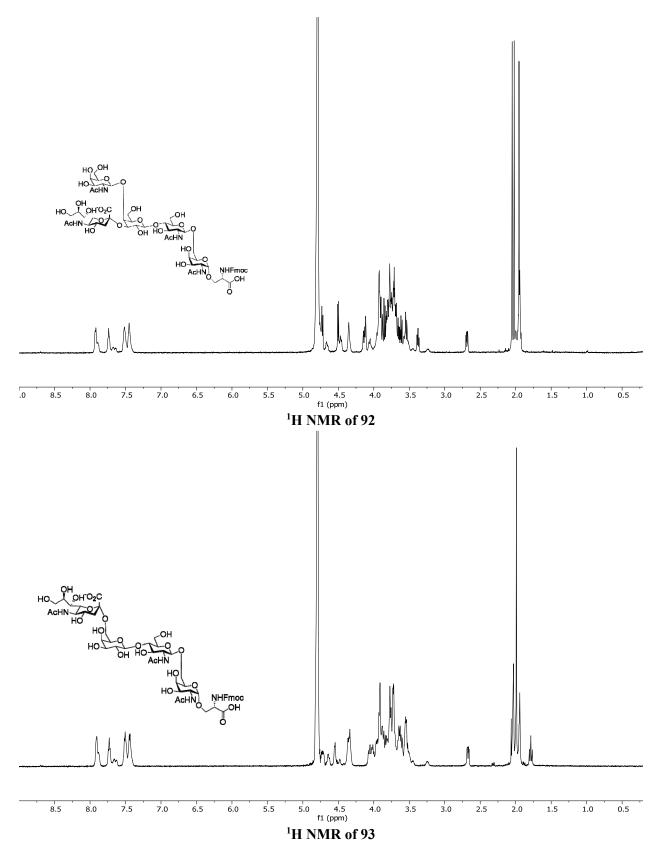
¹H NMR of 77

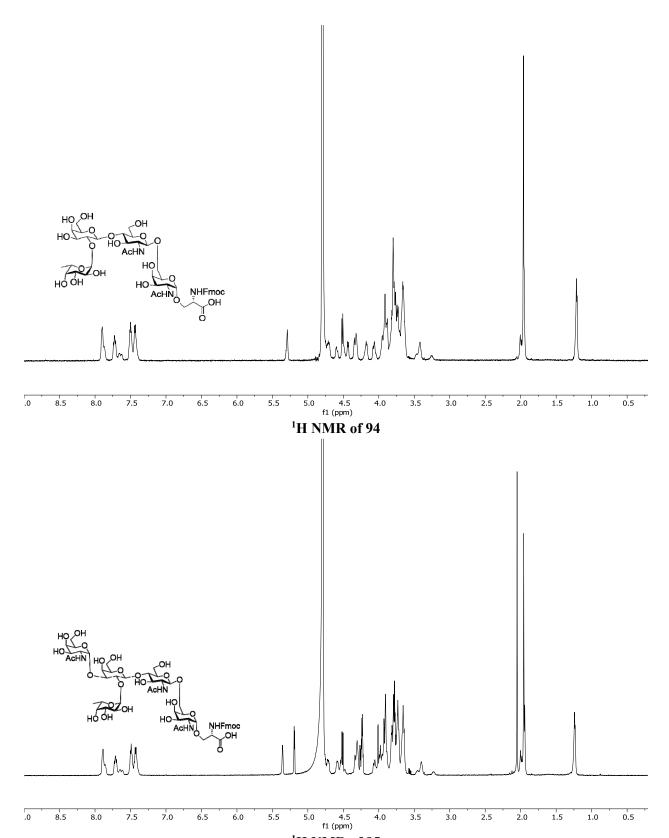


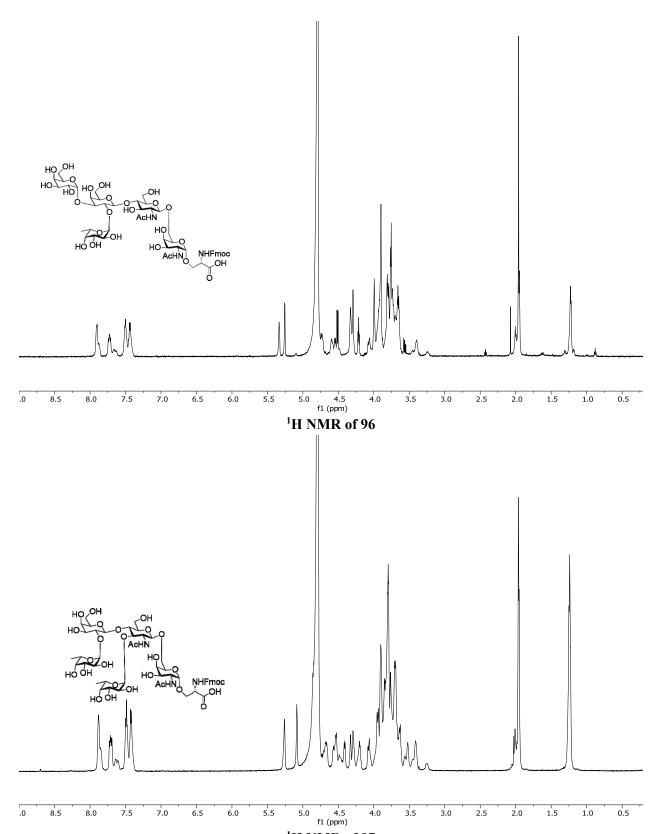

S175

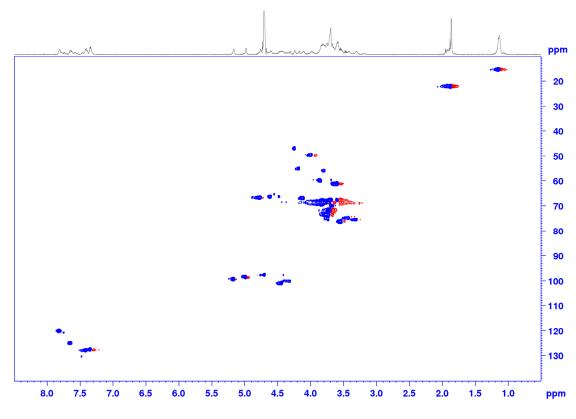


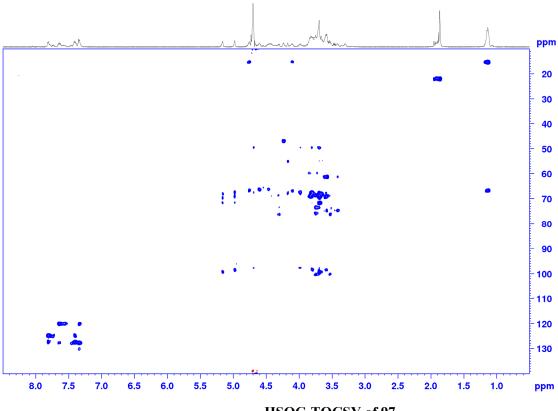
¹H NMR of 83


¹H NMR of 85

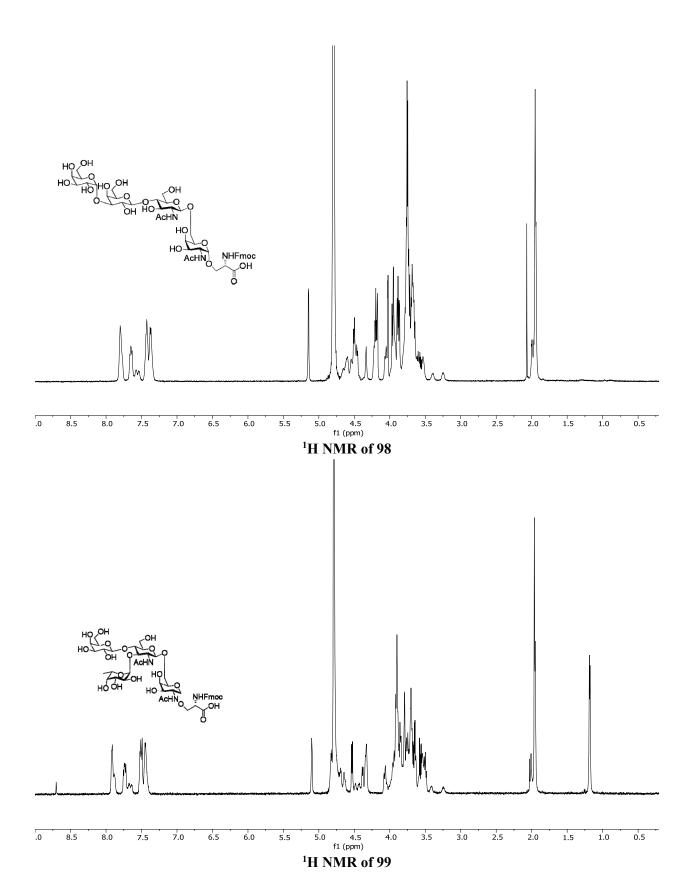


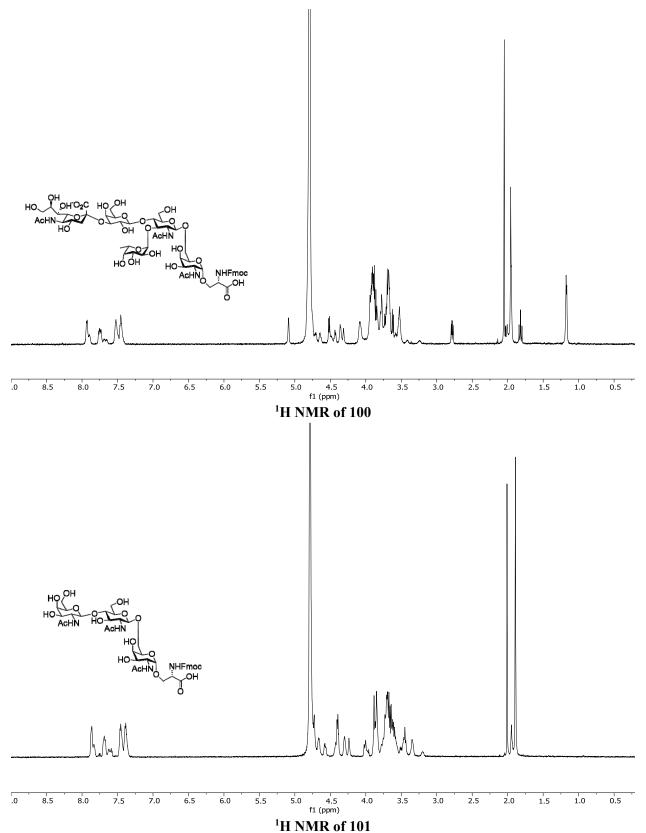

¹H NMR of 89




¹H NMR of 95

¹H NMR of 97


HSQC of 97



HSQC-TOCSY of 97

NOESY of 97

VII. Supplementary References

- 1. Santra A, Ghosh T, Misra AK. Expedient synthesis of two structurally close tetrasaccharides corresponding to the O-antigens of Escherichia coli O127 and Salmonella enterica O13. *Tetrahedron: Asymmetry* **23**, 1385-1392 (2012).
- 2. Knerr PJ, van der Donk WA. Chemical Synthesis and Biological Activity of Analogues of the Lantibiotic Epilancin 15X. *J Am Chem Soc* **134**, 7648-7651 (2012).
- 3. Cheng H, *et al.* Synthesis and enzyme-specific activation of carbohydrate—geldanamycin conjugates with potent anticancer activity. *J Med Chem* **48**, 645-652 (2005).
- 4. Paulsen H, Helpap B. Building blocks of oligosaccharides. Part XCVI. Synthesis and partial structures of the N-glycoproteins of the complex type. *Carbohydr Res* **216**, 289-313 (1991).
- 5. Muthana MM, *et al.* Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). *Chem Commun* **48**, 2728-2730 (2012).
- 6. Zhao G, Guan W, Cai L, Wang PG. Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose. *Nat Protoc* **5**, 636-646 (2010).
- 7. Lau K, *et al.* Highly efficient chemoenzymatic synthesis of β 1–4-linked galactosides with promiscuous bacterial β 1–4-galactosyltransferases. *Chem Commun* **46**, 6066-6068 (2010).
- 8. Ye J, *et al.* Diversity-Oriented Enzymatic Modular Assembly of ABO Histo-blood Group Antigens. *ACS Catal* **6**, 8140-8144 (2016).
- 9. Fang J, et al. Highly Efficient Chemoenzymatic Synthesis of α -Galactosyl Epitopes with a Recombinant α (1 \rightarrow 3)-Galactosyltransferase. J Am Chem Soc 120, 6635-6638 (1998).
- 10. Yu H, Yu H, Karpel R, Chen X. Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. *Bioorg Med Chem* **12**, 6427-6435 (2004).
- 11. Sugiarto G, *et al.* A Sialyltransferase Mutant with Decreased Donor Hydrolysis and Reduced Sialidase Activities for Directly Sialylating Lewisx. *ACS Chem Biol* **7**, 1232-1240 (2012).
- 12. McArthur JB, Yu H, Zeng J, Chen X. Converting Pasteurella multocidaalpha2-3-sialyltransferase 1 (PmST1) to a regioselective alpha2-6-sialyltransferase by saturation mutagenesis and regioselective screening. *Org Biomol Chem* **15**, 1700-1709 (2017).
- 13. Yu H, Huang S, Chokhawala H, Sun M, Zheng H, Chen X. Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. *Angew Chem Int Ed* **45**, 3938-3944 (2006).
- 14. Yu H, *et al.* Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. *J Org Chem* **81**, 10809-10824 (2016).
- 15. Yi W, Shen J, Zhou G, Li J, Wang PG. Bacterial homologue of human blood group A transferase. *J Am Chem Soc* **130**, 14420-14421 (2008).
- 16. Li Y, et al. Donor substrate promiscuity of bacterial beta1-3-N-acetylglucosaminyltransferases and acceptor substrate flexibility of beta1-4-galactosyltransferases. *Bioorg Med Chem* **24**, 1696-1705 (2016).
- 17. Kamada N, Koizumi S. α1, 2-fucosyltransferase and DNA encoding the same. Google Patents (2007).
- 18. Lin SW, Yuan TM, Li JR, Lin CH. Carboxyl terminus of Helicobacter pylori alpha1,3-fucosyltransferase determines the structure and stability. *Biochem* **45**, 8108-8116 (2006).
- 19. Ramakrishnan B, Qasba PK. Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity. *J Biol Chem* **277**, 20833-20839 (2002).
- 20. Wen L, et al. A One-Step Chemoenzymatic Labeling Strategy for Probing Sialylated Thomsen-Friedenreich Antigen. ACS Cent Sci 4, 451-457 (2018).
- 21. Einarsson S, Josefsson B, Lagerkvist S. Determination of amino acids with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. *J Chromatogr A* **282**, 609-618 (1983).