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 47 
Supplementary Figure 1 l TEM images of bilayer MoS2 films. a, Low-48 
magnification and b and c, high-magnification TEM images. The inset of b is a FFT 49 
pattern corresponding to the TEM image. 50 
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 52 
Supplementary Figure 2 l Thickness of a bilayer MoS2 film directly synthesized 53 
on a SiO2/Si substrate using the two-step growth method. a, AFM image of the 54 
bilayer MoS2 film. b. Line profile data of dark-dashed line in the AFM image. The 55 
thickness of the MoS2 film was estimated to be approximately 1.3 nm. 56 
 57 
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 59 
 60 
Supplementary Figure 3 l Comparison of the electrical properties of MoS2 61 
phototransistors. Transfer curves of a, bilayer, b, few-layer, and c, multilayer MoS2 62 
phototransistor under back-gate modulation without Al2O3 passivation (black line), 63 
back-gate modulation with Al2O3 passivation (red line), and top-gate modulation 64 
(blue line). 65 
 66 
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 68 
Supplementary Figure 4 l Electrical properties of all the phototransistors and 69 
switching transistors in the 8 × 8 active image sensor array with a bilayer MoS2 70 
film. Transfer characteristics of a, 64 phototransistors and b, 64 switching transistors 71 
at Vds = 5 V. 72 
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 74 
Supplementary Figure 5 l Statistical analysis of switching transistors in the 75 
bilayer MoS2 image sensor array. Histograms of a, field effect mobility (average 76 ߤeff = 4.70 cm2 V−1 s−1), b, threshold voltage (average Vth = −24.08 V), and c, on/off 77 
current ratio (average Ion/Ioff = 3.03 × 105) of the 64 MoS2 switching transistors. 78 
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 80 

Supplementary Figure 6 l Measured noise current as a function of frequency for the 81 
bilayer MoS2 phototransistors at Vds = 5 V. 82 
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 84 
Supplementary Figure 7 l Comparison of the photoresponsivity of the proposed 85 
phototransistor based on the synthesized MoS2 with those of previous studies. 86 
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 88 
Supplementary Figure 8 l Threshold voltage and photocurrent variation of the 89 
bilayer MoS2 phototransistor as a function of Pinc under RGB light illumination. 90 
a, ∆Vth–Pinc curves of the MoS2 phototransistor under RGB light illumination. The 91 
inset is the energy band diagram of the MoS2 phototransistor, indicating the 92 
mechanism of the PG effect. Iph - Pinc curves of the MoS2 phototransistor at various 93 
Vgs under b, red c, green and d, blue light illumination. 94 
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 96 

Supplementary Figure 9 l Photoswitching characteristics with gate pulse of a 97 
bilayer MoS2 phototransistor in the image sensor array. a, Measurement 98 
conditions for photoswitching properties with gate pulse. Switching curves were 99 
measured at Vds = 1 V, Vgs = −35 V and Pinc = 4.5 mW cm−2 with illumination 100 
frequency of 1 Hz. The applied gate pulse is 20 V with a width of 40 ms. b, Time 101 
resolved photoresponsive characteristics of the bilayer MoS2 phototransistor under 102 
temporal light illumination with λex = 638 nm without and with gate voltage pulse. The 103 
fall time is improved from 104.80 ms to 23.99 ms. 104 

 105 
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 107 
Supplementary Figure 10 l Photoresponsive characteristics of a bilayer MoS2 108 
photodetector without a top-gate electrode in the image sensor array. I–V 109 
curves of a photodetector without a top-gate electrode based on a bilayer MoS2 110 
channel under a, red b, green and c, blue light illumination with various incident 111 
power densities (λex = 638 nm (R), 532 nm (G), 405 nm (B), and Pinc = 0.1, 0.2, 0.4, 112 
0.8, 1.6, 3.2 mW cm−2). d, Photoresponsivity, e, specific detectivity, and f, 113 
photosensitivity of the MoS2 photodetector without a top-gate electrode calculated 114 
from Supplementary Fig. 10a–c. g–i, Photoswitching characteristics of the MoS2 115 
phototransistor under temporal light illumination with λex = 638, 532, and 405 nm, 116 
respectively. All the switching curves were measured at Vds = 5 V and Pinc = 4.5 mW 117 
cm−2 with the illumination frequency of 1 Hz. The rise and fall times were calculated 118 
as the times taken for the current to change from 20–80% and 80–20% of the 119 
maximum current, respectively.  120 
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 122 

Supplementary Figure 11 l Cross-talk characterization of a light-illuminated 123 
pixel and its adjacent pixels. a, Schematic of the light-illuminated pixel and 124 
adjacent pixels. b, Optical microscopy image of the light-illuminated pixel and 125 
adjacent pixels. The specific length between channel of phototransistors in the light-126 
illuminated pixel and that of phototransistors in adjacent pixels (top, bottom: 310 ߤm, 127 
right, left: 300 ߤm, and diagonal: 430 ߤm, respectively). c, Photocurrent mapping of 128 
the light-illuminated pixel and adjacent pixels under red light (λex = 638 nm) with Pinc 129 
of 3.2 mW cm-2 at Vgs = -35 V and Vds = 1 V. 130 
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 132 

Supplementary Figure 12 l Grayscale image of a phototransistor in the image 133 
sensor array under various incident power density. The RGB color scale split by 134 
various incident power density and their grayscale equivalences, respectively. 135 
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Supplementary Table 1 l Comparison of the performance of the proposed 137 

photodetector with those of previous studies 138 

 139 

 140 

141 

Method Layer Large area Spectrum range (ૃ) Photo responsivity Configuration 
Active pixel 

array 
Year Ref. 

CVD 1L × 532 nm 
780 A W−1 in 
ambient air 

Phototransistor 
SiO2 - Si × 2013 S1 

Two-step  
(thermolysis process) 

3L ○ 532 nm 0.57 A W−1 MSM × 2013 S2 

CVD 1L × 
488 nm 

514.5 nm 
1.1 mA W−1  MSM × 2014 S3 

CVD 1L ○  650 nm 107 A W-1 
Phototransistor 

SiO2 - Si 
× 2014 S4 

CVD 1L × 

475 nm 
535 nm 
575 nm 
630 nm 

7.7 mA W−1 MSM × 2015 S5 

CVD 2L ○ 650 nm 32 mA W−1 
Phototransistor 

SiO2 - Si × 2016 S6 

CVD 6L ○ 515 nm 4–5 A W−1 
Phototransistor 
Al2O3 - Ti/Au × 2017 S7 

CVD Multilayer ○ 
405 nm 
532 nm 

12.1 mA W−1 MSM × 2017 S8 

CVD 1L × 575 nm 308 mA W−1 
Homojunction  

photodiode × 2017 S9 

CVD 1L ○ 

405 nm 
520 nm 
658 nm 
780 nm 

20 mA W−1 
Phototransistor 

PVP - PEDOT:PSS 
× 2017 S10 

CVD 1L × 632 nm 15.6 A W−1 
Phototransistor 

SiO2 - Si × 2017 S11 

E-gun evaporator/CVD 2L ○ 

 
408 nm  
515 nm 
640 nm 

8.0 mA W−1 MSM × 2019 S12 

Pulsed laser deposition 
(PLD) 

1–5L ○ 
300 nm 

~ 
800 nm 

1.96 A W−1 MSM × 2019 S13 

Sputtering/ 
e-beam irradiation/ 

CVD 
Multilayer ○ 405 nm 3.7 A W−1 

Phototransistor 
SiO2 - Si × 2020 S14 

MOCVD 1L ○  532 nm 150 A W-1 
Phototransistor 

SiO2 - Si ○ 2020 S15 

Two-step 
(sputtering/CVD) 

2L ○ 
405 nm  
532 nm 
638 nm 

119.16 A W−1

116.70 A W−1

109.00 A W−1 

Phototransistor 
Al2O3 - IZO ○ 2021 

This 
work 



  

Supplementary Table 2 l Comparison with the response time of the phototransistor 142 
in image sensor array without and with gate pulse. 143 
 144 

 
߬r ߬f Gate pulse (V, ms) 

Bilayer MoS2 

phototransistor 

169.19 ms 104.8 ms NA 

111.11 ms 22.99 ms 20, 40 

 145 
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Supplementary Note 1 l Simulations 147 

The 2-D numerical simulations under illumination and in the dark are performed with a 148 

commercial softwareS16. Carrier transport was treated with the drift-diffusion formalism (see 149 

Supplementary Table 3 for the equations set). With this approach Poisson equation and 150 

continuity equations are solved self-consistently for each applied bias (in terms of gate-to-151 

source and drain-to-source voltage) to obtain the electrostatic potential and the carriers’ 152 

concentration. The light source is considered to be ideal, i.e., providing constant generation 153 

rates, for simplicity. 154 

Supplementary Table 3 l Drift-Diffusion Equations used to model electrostatics and 155 

carrier transport in the device simulations. 156 

157 
The device structure implemented in the simulator is schematically represented in Fig. 1, with 158 

indication of device dimensions. The geometrical parameters adopted in the simulations are 159 

collected in Supplementary Table 4. 160 

  161 

Poisson Equation ∇ ⋅ (߰∇ߝ) = )ݍ− − ݊ + ܰ − ܰ) 

Continuity Equation ∓∇ܬ, = ,ܩ)ݍ − ܴ,) 

Drift-Diffusion Equations 
ܬ = (߰∇−)݊ߤ + ܬ ݊∇ܦ = (߰∇−)ߤ −  ∇ܦ

Recombination Equation ܴ, = ݊ − ݊ଶ߬( + (ଵ + ߬(݊ + ݊ଵ) 



  

Supplementary Table 4 l Geometrical dimensions adopted in the device simulations. 162 

 163 

Supplementary Table 5 collects the MoS2 material parameters used in the simulations. 164 

Supplementary Table 6 includes additional device parameters used in the simulations. 165 

Schottky barriers are considered at the boundaries of the MoS2 layer with the source and 166 

drain contacts. SHR and Radiative recombination in the semiconductor layer are also taken 167 

into account. The Al2O3 is the gate oxide material (εr ~ 7). 168 

Simulation results with no traps included are shown in Supplementary Figure 13a. No 169 

appreciable negative Vth shift can be observed in this case in contrast with the case with traps 170 

included, see Supplementary Figure 13b. This confirms the hypothesis concerning PG as the 171 

dominant effect determining photoresponsivity. Simulated band diagrams at different Vgs are 172 

shown in Supplementary Figure 14 under light illumination (i.e., Pinc ≈ 10-1 mW cm-2) with 173 

(Supplementary Figures 14a-e) and without traps (Supplementary Figures 14f-j) included in 174 

the simulations. When light generates electron-hole pairs the excess holes get trapped into the 175 

trap level at 0.2 eV above EV causing Vth to shift. This is illustrated by Supplementary Figure 176 

15, that shows the trapped charge density (ܰା்) at different Vgs in the dark and with light 177 

illumination, clearly indicating that more charge gets trapped in the latter case than in the 178 

former. 179 

Symbol Description Parameter value 

LG Gate Length 15 μm 

WG Gate Width 250 μm 

tox Gate Oxide Thickness 80 nm 

tchan MoS2 Channel Thickness 2 nm 

tbox Buried Oxide Thickness 300 nm 



  

Supplementary Table 5 l MoS2 material parametersS17. 180 

 181 

Supplementary Table 6 l Additional device parameters used in the simulations. 182 

 183 

  184 

Symbol Description Parameter value 

EG Band Gap 1.4 eV 

χ Electron Affinity 4.4 eV 

εr MoS2 Relative Dielectric Constant 5 

NC 
Effective Density of States in the 

Conduction Band 
1.12 × 1019 cm-3 

NV 
Effective Density of States in the 

Valence Band 
2.54 × 1019 cm-3 

ni Intrinsic Carrier Concentration 2.93 × 107 cm-3 

NA Doping Concentration (p-type) 5.0 × 1019 cm-3 

µn,p Carriers’ Mobility 5 cm2 V-1 s-1 

τn,p Carriers’ Lifetime 1 µs 

 

Symbol Description Parameter value 

εr,ox Relative Dielectric Constant (Al2O3) 7 

ΦG Gate Contact Work-Function 5 eV (IZO) 

ΦS,D Source, Drain Contacts Work-Function 5 eV (Gold) 

 



  

 185 

Supplementary Figure 13 l Additional simulation results. a, Simulated Ids-Vgs with 186 
no traps included under light illumination, for different incident power densities (Pinc). 187 
b, Comparison of the Threshold Voltage Shift (∆Vth) vs Pinc extracted from the Ids-Vgs 188 
simulation with and without traps included. 189 
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 191 

Supplementary Figure 14 l Simulated energy band diagrams for different Vgs = (-40, 192 
-20, 0, 20, 40) V under light illumination (Pinc ≈ 10-1 mW cm-2) with (a-e) and without 193 
traps (f-j). 194 
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 196 

Supplementary Figure 15 l Trapped charge density. a-e, Trapped charge density 197 
(ܰା்) for different Vgs = (-40, -20, 0, 20, 40) V in the dark (Pinc = 0 mW cm-2, black 198 
lines). and under light illumination (Pinc ≈ 10-1 mW cm-2, red-dashed lines). 199 
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