- SUPPLEMENTARY INFORMATION for

Highly sensitive active pixel image sensor array driven by large-area bilayer MoS₂ transistor

- circuitry

Authors

Seongin Hong^{†,1}, Nicolò Zagni^{†,2}, Sooho Choo^{†,1}, Na Liu^{†,1}, Seungho Baek¹, Arindam Bala¹, Hocheon Yoo³, Byung Ha Kang⁴, Hyun Jae Kim⁴, Hyung Joong Yun⁵, Muhammad Ashraful Alam^{*,6} and Sunkook Kim^{*,1}

Affiliations

11	¹ School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon
12	440-746, Republic of Korea
13	² Department of Engineering "Enzo Ferrari" (DIEF), University of Modena and Reggio
14	Emilia, Modena 41125, Italy
15	³ Department of Electronic Engineering, Gachon University, Seognam 13120, Republic of
16	Korea
17	⁴ School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic
18	of Korea
19	⁵ Research Center for Materials Analysis, Korea Basic Science Institute (KBSI), Daejeon
20	34133, Republic of Korea.
21	⁶ School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
22	47907, USA
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	*Corresponding author. Email: alam@purdue.edu, intel0616@gmail.com

- - Supplementary Figure 1 I TEM images of bilayer MoS₂ films. a, Low-magnification and b and c, high-magnification TEM images. The inset of b is a FFT pattern corresponding to the TEM image.

52 53 Supplementary Figure 2 I Thickness of a bilayer MoS₂ film directly synthesized on a SiO₂/Si substrate using the two-step growth method. a, AFM image of the 54 bilayer MoS_2 film. **b**. Line profile data of dark-dashed line in the AFM image. The 55 thickness of the MoS₂ film was estimated to be approximately 1.3 nm. 56 57

59 60

Supplementary Figure 3 I Comparison of the electrical properties of MoS₂ phototransistors. Transfer curves of a, bilayer, b, few-layer, and c, multilayer MoS₂ phototransistor under back-gate modulation without Al₂O₃ passivation (black line), back-gate modulation with Al₂O₃ passivation (red line), and top-gate modulation (blue line).

- 66
- 67

74

Supplementary Figure 5 I Statistical analysis of switching transistors in the bilayer MoS₂ image sensor array. Histograms of **a**, field effect mobility (average $\mu_{eff} = 4.70 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), **b**, threshold voltage (average $V_{th} = -24.08 \text{ V}$), and **c**, on/off current ratio (average $I_{on}/I_{off} = 3.03 \times 10^5$) of the 64 MoS₂ switching transistors.

Supplementary Figure 6 I Measured noise current as a function of frequency for the bilayer MoS_2 phototransistors at V_{ds} = 5 V.

Supplementary Figure 7 I Comparison of the photoresponsivity of the proposed

⁸⁶ phototransistor based on the synthesized MoS₂ with those of previous studies.

88

Supplementary Figure 8 I Threshold voltage and photocurrent variation of the bilayer MoS₂ phototransistor as a function of P_{inc} under RGB light illumination. a, $\Delta V_{th}-P_{inc}$ curves of the MoS₂ phototransistor under RGB light illumination. The inset is the energy band diagram of the MoS₂ phototransistor, indicating the mechanism of the PG effect. $I_{ph} - P_{inc}$ curves of the MoS₂ phototransistor at various V_{gs} under **b**, red **c**, green and **d**, blue light illumination.

97 Supplementary Figure 9 I Photoswitching characteristics with gate pulse of a 98 bilayer MoS₂ phototransistor in the image sensor array. a, Measurement 99 conditions for photoswitching properties with gate pulse. Switching curves were 100 measured at $V_{ds} = 1$ V, $V_{gs} = -35$ V and $P_{inc} = 4.5$ mW cm⁻² with illumination 101 frequency of 1 Hz. The applied gate pulse is 20 V with a width of 40 ms. b, Time 102 resolved photoresponsive characteristics of the bilayer MoS₂ phototransistor under 103 temporal light illumination with $\lambda_{ex} = 638$ nm without and with gate voltage pulse. The 104 fall time is improved from 104.80 ms to 23.99 ms.

105

107

108 Supplementary Figure 10 I Photoresponsive characteristics of a bilayer MoS₂ photodetector without a top-gate electrode in the image sensor array. I-V109 curves of a photodetector without a top-gate electrode based on a bilayer MoS₂ 110 channel under a, red b, green and c, blue light illumination with various incident 111 power densities (λ_{ex} = 638 nm (R), 532 nm (G), 405 nm (B), and P_{inc} = 0.1, 0.2, 0.4, 112 0.8, 1.6, 3.2 mW cm⁻²). **d**, Photoresponsivity, **e**, specific detectivity, and **f**, 113 photosensitivity of the MoS₂ photodetector without a top-gate electrode calculated 114 115 from Supplementary Fig. 10a–c. g-i, Photoswitching characteristics of the MoS₂ phototransistor under temporal light illumination with λ_{ex} = 638, 532, and 405 nm, 116 respectively. All the switching curves were measured at V_{ds} = 5 V and P_{inc} = 4.5 mW 117 cm⁻² with the illumination frequency of 1 Hz. The rise and fall times were calculated 118 119 as the times taken for the current to change from 20-80% and 80-20% of the 120 maximum current, respectively.

123 Supplementary Figure 11 | Cross-talk characterization of a light-illuminated pixel and its adjacent pixels. a, Schematic of the light-illuminated pixel and 124 125 adjacent pixels. b, Optical microscopy image of the light-illuminated pixel and 126 adjacent pixels. The specific length between channel of phototransistors in the light-127 illuminated pixel and that of phototransistors in adjacent pixels (top, bottom: 310 μ m, 128 right, left: 300 μ m, and diagonal: 430 μ m, respectively). **c**, Photocurrent mapping of the light-illuminated pixel and adjacent pixels under red light (λ_{ex} = 638 nm) with P_{inc} 129 of 3.2 mW cm⁻² at V_{gs} = -35 V and V_{ds} = 1 V. 130

Supplementary Figure 12 I Grayscale image of a phototransistor in the image sensor array under various incident power density. The RGB color scale split by

various incident power density and their grayscale equivalences, respectively.

Supplementary Table 1 I Comparison of the performance of the proposed photodetector with those of previous studies

Method	Layer	Large area	Spectrum range ()	() Photo responsivity	Configuration	Active pixel array	Year	Ref.
CVD	1L	×	532 nm	780 A W ⁻¹ in ambient air	Phototransistor SiO ₂ - Si	×	2013	S 1
Two-step (thermolysis process)	3L	0	532 nm	0.57 A W^{-1}	MSM	×	2013	S2
CVD	1L	×	488 nm 514.5 nm	1.1 mA W^{-1}	MSM	×	2014	S3
CVD	1L	0	650 nm	10^7 A W^{-1}	Phototransistor SiO ₂ - Si	×	2014	S4
CVD	1L	×	475 nm 535 nm 575 nm 630 nm	7.7 mA W^{-1}	MSM	×	2015	S5
CVD	2L	0	650 nm	32 mA W^{-1}	Phototransistor SiO ₂ - Si	×	2016	S6
CVD	6L	0	515 nm	$4-5 \text{ A W}^{-1}$	Phototransistor Al ₂ O ₃ - Ti/Au	×	2017	S 7
CVD	Multilayer	0	405 nm 532 nm	12.1 mA W^{-1}	MSM	×	2017	S8
CVD	1L	×	575 nm	308 mA W^{-1}	Homojunction photodiode	×	2017	S9
CVD	1L	0	405 nm 520 nm 658 nm 780 nm	20 mA W^{-1}	Phototransistor PVP - PEDOT:PSS	×	2017	S10
CVD	1L	×	632 nm	15.6 A W^{-1}	Phototransistor SiO ₂ - Si	×	2017	S11
E-gun evaporator/CVD	2L	Ο	408 nm 515 nm 640 nm	8.0 mA W^{-1}	MSM	×	2019	S12
Pulsed laser deposition (PLD)	1–5L	0	300 nm ~ 800 nm	1.96 A W ⁻¹	MSM	×	2019	S13
Sputtering/ e-beam irradiation/ CVD	Multilayer	0	405 nm	3.7 A W^{-1}	Phototransistor SiO ₂ - Si	×	2020	S14
MOCVD	1L	0	532 nm	150 A W ⁻¹	Phototransistor SiO ₂ - Si	0	2020	S15
Two-step (sputtering/CVD)	2L	0	405 nm 532 nm 638 nm	119.16 A W ⁻¹ 116.70 A W ⁻¹ 109.00 A W ⁻¹	Phototransistor Al ₂ O ₃ - IZO	0	2021	This work

Supplementary Table 2 I Comparison with the response time of the phototransistor in image sensor array without and with gate pulse.

	$ au_{ m r}$	${ au_{ m f}}$	Gate pulse (V, ms)
Bilayer MoS ₂	169.19 ms	104.8 ms	NA
phototransistor	111.11 ms	22.99 ms	20, 40

147 Supplementary Note 1 I Simulations

The 2-D numerical simulations under illumination and in the dark are performed with a commercial software^{S16}. Carrier transport was treated with the drift-diffusion formalism (see Supplementary Table 3 for the equations set). With this approach Poisson equation and continuity equations are solved self-consistently for each applied bias (in terms of gate-tosource and drain-to-source voltage) to obtain the electrostatic potential and the carriers' concentration. The light source is considered to be ideal, i.e., providing constant generation rates, for simplicity.

155 **Supplementary Table 3 I** Drift-Diffusion Equations used to model electrostatics and 156 carrier transport in the device simulations.

Poisson Equation	$\nabla \cdot (\varepsilon \nabla \psi) = -q(p-n+N_D-N_A)$
Continuity Equation	$\mp \nabla J_{n,p} = q(G_{n,p} - R_{n,p})$
Drift-Diffusion Equations	$J_n = \mu_n n(-\nabla \psi) + D_n \nabla n$ $J_p = \mu_p p(-\nabla \psi) - D_p \nabla p$
Recombination Equation	$R_{n,p} = \frac{np - n_i^2}{\tau_n(p + p_1) + \tau_p(n + n_1)}$

157

The device structure implemented in the simulator is schematically represented in Fig. 1, with indication of device dimensions. The geometrical parameters adopted in the simulations are collected in Supplementary Table 4.

Symbol Description		Parameter value	
L _G	Gate Length	15 μm	
W _G	Gate Width	250 μm	
t _{ox}	Gate Oxide Thickness	80 nm	
t _{chan}	MoS ₂ Channel Thickness	2 nm	
t _{box}	Buried Oxide Thickness	300 nm	

162 **Supplementary Table 4 I** Geometrical dimensions adopted in the device simulations.

Supplementary Table 5 collects the MoS_2 material parameters used in the simulations. Supplementary Table 6 includes additional device parameters used in the simulations. Schottky barriers are considered at the boundaries of the MoS_2 layer with the source and drain contacts. SHR and Radiative recombination in the semiconductor layer are also taken into account. The Al₂O₃ is the gate oxide material ($\varepsilon_r \sim 7$).

163

169 Simulation results with no traps included are shown in Supplementary Figure 13a. No 170 appreciable negative $V_{\rm th}$ shift can be observed in this case in contrast with the case with traps 171 included, see Supplementary Figure 13b. This confirms the hypothesis concerning PG as the dominant effect determining photoresponsivity. Simulated band diagrams at different V_{gs} are 172 shown in Supplementary Figure 14 under light illumination (i.e., $P_{inc} \approx 10^{-1} \text{ mW cm}^{-2}$) with 173 174 (Supplementary Figures 14a-e) and without traps (Supplementary Figures 14f-j) included in 175 the simulations. When light generates electron-hole pairs the excess holes get trapped into the 176 trap level at 0.2 eV above E_V causing V_{th} to shift. This is illustrated by Supplementary Figure 15, that shows the trapped charge density (N_T^+) at different V_{gs} in the dark and with light 177 178 illumination, clearly indicating that more charge gets trapped in the latter case than in the 179 former.

Symbol	Description	Parameter value
E _G	Band Gap	1.4 eV
χ	Electron Affinity	4.4 eV
<i>E</i> r	MoS ₂ Relative Dielectric Constant	5
N _C	Effective Density of States in the Conduction Band	$1.12 \times 10^{19} \text{ cm}^{-3}$
$N_{ m V}$	Effective Density of States in the Valence Band	$2.54 \times 10^{19} \text{ cm}^{-3}$
n _i	Intrinsic Carrier Concentration	$2.93 \times 10^7 \text{ cm}^{-3}$
N _A	Doping Concentration (p-type)	$5.0 \times 10^{19} \text{ cm}^{-3}$
$\mu_{\mathrm{n,p}}$	Carriers' Mobility	$5 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$
$ au_{\mathrm{n,p}}$	Carriers' Lifetime	1 μs

Supplementary Table 5 I MoS₂ material parameters^{S17}.

Supplementary Table 6 I Additional device parameters used in the simulations.

Symbol	Description	Parameter value
E _{r,ox}	Relative Dielectric Constant (Al ₂ O ₃)	7
$arPsi_{ m G}$	Gate Contact Work-Function	5 eV (IZO)
$\Phi_{ m S,D}$	Source, Drain Contacts Work-Function	5 eV (Gold)

186 **Supplementary Figure 13 I Additional simulation results. a**, Simulated I_{ds} - V_{gs} with 187 no traps included under light illumination, for different incident power densities (P_{inc}). 188 **b**, Comparison of the Threshold Voltage Shift (ΔV_{th}) vs P_{inc} extracted from the I_{ds} - V_{gs}

simulation with and without traps included.

192 **Supplementary Figure 14 I** Simulated energy band diagrams for different V_{gs} = (-40, 193 -20, 0, 20, 40) V under light illumination ($P_{inc} \approx 10^{-1}$ mW cm⁻²) with (**a-e**) and without 194 traps (**f-j**).

197 **Supplementary Figure 15 I Trapped charge density. a-e,** Trapped charge density 198 (N_T^+) for different $V_{gs} = (-40, -20, 0, 20, 40)$ V in the dark ($P_{inc} = 0$ mW cm⁻², black 199 lines). and under light illumination ($P_{inc} \approx 10^{-1}$ mW cm⁻², red-dashed lines).

201 Supplementary References

- S1. Zhang, W. et al. High gain phototransistors based on a CVD MoS₂ monolayer. *Adv. Mater.* 25, 3456-3461 (2013).
- S2. Tsai, D.-S. et al. Few-layer MoS₂ with high broadband photogain and fast optical switching for use in harsh environments. *ACS Nano* **7**, 3905-3911 (2013).
- 206 S3. Perea-López, N. et al. CVD-grown monolayered MoS_2 as an effective photosensor 207 operating at low-voltage. 2D Mater: **1**, 011004 (2014).
- S4. Zhang, W. *et al.* Ultrahigh-gain photodetectors based on atomically thin graphene MoS₂ heterostructures. *Sci. Rep.* 4, 1-8 (2014).
- S5. Le, C. T. et al. Photosensitivity Study of Metal-Semiconductor-Metal Photodetector
 Based on Chemical Vapor Deposited Monolayer MoS₂. J. Nanosci. Nanotechnol. 15, 8133-8138 (2015).
- S6. Chen, C. et al. Large-scale synthesis of a uniform film of bilayer MoS₂ on graphene for 2D heterostructure phototransistors. *ACS Appl. Mater. Interfaces* 8, 19004-19011 (2016).
- S7. Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density
 MoS₂-graphene curved image sensor array. *Nat. Commun.* 8, 1-11 (2017).
- 218 S8. Lee, S. H. et al. Large area growth of multi layered MoS₂ for violet (\sim 405 nm) 219 photodetector applications. *Phys. Status Solidi A* **214**, 1700221 (2017).
- S9. Zhang, X. et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy
 for monolayer MoS₂ homojunction photodiode. *Nat. Commun.* 8, 1-8 (2017).
- S10. Kim, T.-Y. et al. Transparent large-area MoS₂ Phototransistors with inkjet-printed components on flexible platforms. *ACS Nano* 11, 10273-10280 (2017).
- S11. Nie, C. et al. Ultrafast growth of large-area monolayer MoS₂ film via gold foil
 assistant CVD for a highly sensitive photodetector. *Nanotechnology* 28, 275203
 (2017).
- S12. Chen, S.-W. H. et al. Enhanced wavelength-selective photoresponsivity with a MoS₂
 bilayer grown conformally on a patterned sapphire substrate. J. Mater. Chem. C 7, 1622-1629 (2019).
- S13. Jiao, L. et al. Layer-dependent photoresponse of 2D MoS₂ films prepared by pulsed
 laser deposition. J. Mater. Chem. C 7, 2522-2529 (2019).
- S14. Park, H. et al. Exceptionally Uniform and Scalable Multilayer MoS₂ Phototransistor
 Array Based on Large-Scale MoS₂ Grown by RF Sputtering, Electron Beam
 Irradiation, and Sulfurization. ACS Appl. Mater. Interfaces 12, 20645-20652 (2020).
- S15. Jang, H. *et al.* An atomically thin optoelectronic machine vision processor. *Adv. Mater.*32, 2002431 (2020).
- 237 S16. Synopsys Sentaurus SDevice Manual (O-2018.06) (2018).
- S17. K.-C. Wang *et al.* Control of interlayer physics in 2H transition metal dichalcogenides.
 J. Appl. Phys. **122**, 224302 (2017).