SUPPLEMENTARY INFORMATION for

Highly sensitive active pixel image sensor array driven by large-area bilayer MoS₂ transistor

circuitry

Authors

7 Seongin Hong^{†,1}, Nicolò Zagni^{†,2}, Sooho Choo^{†,1}, Na Liu^{†,1}, Seungho Baek¹, Arindam Bala¹,

- *Hocheon Yoo³, Byung Ha Kang⁴, Hyun Jae Kim⁴, Hyung Joong Yun⁵, Muhammad Ashraful*
- *Alam*,6 and Sunkook Kim*,1*

Affiliations

-
- 48 Supplementary Figure 1 I TEM images of bilayer MoS₂ films. a, Low-
- magnification and **b and c,** high-magnification TEM images. The inset of **b** is a FFT
- pattern corresponding to the TEM image.
-

52 53 **Supplementary Figure 2 l Thickness of a bilayer MoS₂ film directly synthesized
54 on a SiO₂/Si substrate using the two-step growth method. a**, AFM image of the 54 **on a SiO2/Si substrate using the two-step growth method. a**, AFM image of the 55 bilayer MoS₂ film. **b**. Line profile data of dark-dashed line in the AFM image. The thickness of the MoS₂ film was estimated to be approximately 1.3 nm. thickness of the MoS₂ film was estimated to be approximately 1.3 nm. 57

 \bold{b}

Supplementary Figure 3 l Comparison of the electrical properties of MoS2 phototransistors. Transfer curves of **a**, bilayer, **b**, few-layer, and **c**, multilayer MoS2 63 phototransistor under back-gate modulation without Al_2O_3 passivation (black line), 64 back-gate modulation with Al_2O_3 passivation (red line), and top-gate modulation (blue line).

-
-

 Supplementary Figure 4 l Electrical properties of all the phototransistors and $\,$ switching transistors in the 8 \times 8 active image sensor array with a bilayer MoS $_2$ **film.** Transfer characteristics of **a**, 64 phototransistors and **b**, 64 switching transistors 72 **at** $V_{ds} = 5 V$ **.**

74

75 **Supplementary Figure 5 l Statistical analysis of switching transistors in the** 76 **bilayer MoS₂ image sensor array.** Histograms of a, field effect mobility (average μ_{eff} = 4.70 cm² V⁻¹ s⁻¹), **b**, threshold voltage (average V_{th} = −24.08 V), and **c**, on/off 78 current ratio (average I_{on}/I_{off} = 3.03 \times 10⁵) of the 64 MoS₂ switching transistors.

80

81 **Supplementary Figure 6 l** Measured noise current as a function of frequency for the

82 bilayer MoS₂ phototransistors at V_{ds} = 5 V.

85 **Supplementary Figure 7 l** Comparison of the photoresponsivity of the proposed

86 phototransistor based on the synthesized $MoS₂$ with those of previous studies.

88

89 **Supplementary Figure 8 l Threshold voltage and photocurrent variation of the** 90 **bilayer MoS₂ phototransistor as a function of** P_{inc} **under RGB light illumination.** 91 **a**, $ΔV_{th}-P_{inc}$ curves of the MoS₂ phototransistor under RGB light illumination. The 92 inset is the energy band diagram of the $MoS₂$ phototransistor, indicating the 93 mechanism of the PG effect. I_{ph} - P_{inc} curves of the MoS₂ phototransistor at various 94 *V*gs under **b**, red **c**, green and **d**, blue light illumination.

Supplementary Figure 9 l Photoswitching characteristics with gate pulse of a 98 **bilayer MoS₂ phototransistor in the image sensor array. a**, Measurement conditions for photoswitching properties with gate pulse. Switching curves were 100 measured at V_{ds} = 1 V, V_{gs} = −35 V and P_{inc} = 4.5 mW cm⁻² with illumination frequency of 1 Hz. The applied gate pulse is 20 V with a width of 40 ms. **b**, Time 102 resolved photoresponsive characteristics of the bilayer $MoS₂$ phototransistor under temporal light illumination with *λ*ex = 638 nm without and with gate voltage pulse. The fall time is improved from 104.80 ms to 23.99 ms.

107
108 Supplementary Figure 10 l Photoresponsive characteristics of a bilayer MoS₂ 109 **photodetector without a top-gate electrode in the image sensor array.** *I*–*V* 110 curves of a photodetector without a top-gate electrode based on a bilayer $MoS₂$ 111 channel under **a**, red **b**, green and **c**, blue light illumination with various incident 112 power densities ($λ_{ex}$ = 638 nm (R), 532 nm (G), 405 nm (B), and P_{inc} = 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 mW cm[−]² 113). **d**, Photoresponsivity, **e**, specific detectivity, and **f**, 114 photosensitivity of the MoS₂ photodetector without a top-gate electrode calculated 115 from Supplementary Fig. 10a–c. g–i, Photoswitching characteristics of the MoS₂ 116 phototransistor under temporal light illumination with *λ*ex = 638, 532, and 405 nm, 117 respectively. All the switching curves were measured at V_{ds} = 5 V and P_{inc} = 4.5 mW 118 cm⁻² with the illumination frequency of 1 Hz. The rise and fall times were calculated 119 as the times taken for the current to change from 20–80% and 80–20% of the 120 maximum current, respectively.

Supplementary Figure 11 l Cross-talk characterization of a light-illuminated pixel and its adjacent pixels. a, Schematic of the light-illuminated pixel and adjacent pixels. **b**, Optical microscopy image of the light-illuminated pixel and adjacent pixels. The specific length between channel of phototransistors in the light-127 illuminated pixel and that of phototransistors in adjacent pixels (top, bottom: 310 μ m, 128 right, left: 300 μ m, and diagonal: 430 μ m, respectively). **c**, Photocurrent mapping of the light-illuminated pixel and adjacent pixels under red light (*λ*ex = 638 nm) with *P*inc 130 of 3.2 mW cm⁻² at V_{gs} = -35 V and V_{ds} = 1 V.

Supplementary Figure 12 l Grayscale image of a phototransistor in the image sensor array under various incident power density. The RGB color scale split by

various incident power density and their grayscale equivalences, respectively.

137 **Supplementary Table 1 l** Comparison of the performance of the proposed

138 photodetector with those of previous studies

139

140

142 **Supplementary Table 2 l** Comparison with the response time of the phototransistor

143 in image sensor array without and with gate pulse.

144

145

147 **Supplementary Note 1 l Simulations**

The 2-D numerical simulations under illumination and in the dark are performed with a 149 commercial software^{S16}. Carrier transport was treated with the drift-diffusion formalism (see Supplementary Table 3 for the equations set). With this approach Poisson equation and continuity equations are solved self-consistently for each applied bias (in terms of gate-to-source and drain-to-source voltage) to obtain the electrostatic potential and the carriers' concentration. The light source is considered to be ideal, i.e., providing constant generation rates, for simplicity.

155 **Supplementary Table 3 l** Drift-Diffusion Equations used to model electrostatics and 156 carrier transport in the device simulations.

157
158 The device structure implemented in the simulator is schematically represented in Fig. 1, with 159 indication of device dimensions. The geometrical parameters adopted in the simulations are 160 collected in Supplementary Table 4.

Symbol	Description	Parameter value
L_G	Gate Length	$15 \mu m$
$W_{\rm G}$	Gate Width	$250 \mu m$
$t_{\rm ox}$	Gate Oxide Thickness	80 nm
$t_{\rm chan}$	$MoS2$ Channel Thickness	2 nm
$t_{\rm box}$	Buried Oxide Thickness	300 nm

162 **Supplementary Table 4 l** Geometrical dimensions adopted in the device simulations.

164 Supplementary Table 5 collects the MoS₂ material parameters used in the simulations. 165 Supplementary Table 6 includes additional device parameters used in the simulations. 166 Schottky barriers are considered at the boundaries of the $MoS₂$ layer with the source and 167 drain contacts. SHR and Radiative recombination in the semiconductor layer are also taken 168 into account. The Al₂O₃ is the gate oxide material ($\varepsilon_r \sim 7$).

169 Simulation results with no traps included are shown in Supplementary Figure 13a. No 170 appreciable negative V_{th} shift can be observed in this case in contrast with the case with traps 171 included, see Supplementary Figure 13b. This confirms the hypothesis concerning PG as the 172 dominant effect determining photoresponsivity. Simulated band diagrams at different V_{gs} are shown in Supplementary Figure 14 under light illumination (i.e., $P_{inc} \approx 10^{-1}$ mW cm⁻²) with 174 (Supplementary Figures 14a-e) and without traps (Supplementary Figures 14f-j) included in 175 the simulations. When light generates electron-hole pairs the excess holes get trapped into the 176 trap level at 0.2 eV above E_V causing V_{th} to shift. This is illustrated by Supplementary Figure 177 15, that shows the trapped charge density (N_T^+) at different V_{gs} in the dark and with light 178 illumination, clearly indicating that more charge gets trapped in the latter case than in the 179 former.

180 **Supplementary Table 5 I** MoS₂ material parameters^{S17}.

181

182 **Supplementary Table 6 l** Additional device parameters used in the simulations.

183

186 **Supplementary Figure 13 I Additional simulation results. a, Simulated** *I***_{ds}-V_{gs} with** no traps included under light illumination, for different incident power densities (*P*inc). **b,** Comparison of the Threshold Voltage Shift (*∆V*th) vs *P*inc extracted from the *I*ds-*V*gs simulation with and without traps included.

192 **Supplementary Figure 14 I** Simulated energy band diagrams for different $V_{gs} = (-40,$ 193 -20, 0, 20, 40) V under light illumination ($P_{inc} \approx 10^{-1}$ mW cm⁻²) with (a-e) and without

- 194 traps (**f-j**)**.**
- 195

197 **Supplementary Figure 15 l Trapped charge density. a-e,** Trapped charge density 198 (N_T^+) for different V_{gs} = (-40, -20, 0, 20, 40) V in the dark (P_{inc} = 0 mW cm⁻², black 199 lines). and under light illumination (P_{inc} ≈ 10⁻¹ mW cm⁻², red-dashed lines).

Supplementary References

- 202 S1. Zhang, W. et al. High gain phototransistors based on a CVD MoS₂ monolayer. *Adv. Mater.* **25**, 3456-3461 (2013).
- 204 S2. Tsai, D.-S. et al. Few-layer $MoS₂$ with high broadband photogain and fast optical switching for use in harsh environments. *ACS Nano* **7**, 3905-3911 (2013).
- 206 S3. Perea-López, N. et al. CVD-grown monolayered $MoS₂$ as an effective photosensor operating at low-voltage. *2D Mater.* **1**, 011004 (2014).
- S4. Zhang, W. *et al.* Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. *Sci. Rep.* **4**, 1-8 (2014).
- S5. Le, C. T. et al. Photosensitivity Study of Metal-Semiconductor-Metal Photodetector Based on Chemical Vapor Deposited Monolayer MoS2. *J. Nanosci. Nanotechnol.* **15**, 8133-8138 (2015).
- 213 S6. Chen, C. et al. Large-scale synthesis of a uniform film of bilayer $MoS₂$ on graphene for 2D heterostructure phototransistors. *ACS Appl. Mater. Interfaces* **8**, 19004-19011 (2016).
- S7. Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. *Nat. Commun.* **8**, 1-11 (2017).
- 218 S8. Lee, S. H. et al. Large area growth of multilayered MoS₂ for violet (∼405 nm) photodetector applications. *Phys. Status Solidi A* **214**, 1700221 (2017).
- S9. Zhang, X. et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. *Nat. Commun.* **8**, 1-8 (2017).
- S10. Kim, T.-Y. et al. Transparent large-area MoS2 Phototransistors with inkjet-printed components on flexible platforms. *ACS Nano* **11**, 10273-10280 (2017).
- 224 S11. Nie, C. et al. Ultrafast growth of large-area monolayer $MoS₂$ film via gold foil assistant CVD for a highly sensitive photodetector. *Nanotechnology* **28**, 275203 (2017).
- 227 S12. Chen, S.-W. H. et al. Enhanced wavelength-selective photoresponsivity with a M_0S_2 bilayer grown conformally on a patterned sapphire substrate. *J. Mater. Chem. C* **7**, 1622-1629 (2019).
- 230 S13. Jiao, L. et al. Layer-dependent photoresponse of $2D$ MoS₂ films prepared by pulsed laser deposition. *J. Mater. Chem. C* **7**, 2522-2529 (2019).
- 232 S14. Park, H. et al. Exceptionally Uniform and Scalable Multilayer M_0S_2 Phototransistor 233 Array Based on Large-Scale MoS₂ Grown by RF Sputtering, Electron Beam Irradiation, and Sulfurization. *ACS Appl. Mater. Interfaces* **12**, 20645-20652 (2020).
- S15. Jang, H. *et al.* An atomically thin optoelectronic machine vision processor. *Adv. Mater.* **32**, 2002431 (2020).
- S16. Synopsys Sentaurus SDevice Manual (O-2018.06) (2018).
- S17. K.-C. Wang *et al.* Control of interlayer physics in 2H transition metal dichalcogenides. *J. Appl. Phys.* **122**, 224302 (2017).