Biomolecular phase separation through the lens of sodium-23 NMR

Juan Carlos Fuentes-Monteverde,^a Stefan Becker,^a Nasrollah Rezaei-Ghaleh a,b*

^a Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

^b Department of Neurology, University Medical Center Göttingen, Göttingen, Germany

***Correspondence to:**

Dr. Nasrollah Rezaei-Ghaleh, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany. Fax: +49-(0)551-2012202; E-Mail: nrezaei@gwdg.de

Figure S1. Temperature dependence of ²³Na longitudinal relaxation (R_1) rates in 100 mM NaCl solution. Recovery of ²³Na signal intensity following 180-degree inversion is shown at different temperatures ranging from 278 K to 333 K. The 23 Na signal intensities follow single-exponential recovery curves. More rapid recoveries are observed at lower temperatures.

Figure S2. The ²³NaCl longitudinal relaxation (R_1) and linewidth-based apparent transverse relaxation (*R*2,app) rates measured in the temperature range 278-333 K show strong correlation and a nice fit to a line with a slope close to 1. The error bars are smaller than the symbol size.

Figure S3. Viscosity dependence of ²³NaCl NMR in glycerol-water mixtures. 1D ²³Na NMR spectra show gradual peak displacement towards lower chemical shifts and broadening in dependence of glycerol (v/v, %) concentration.

Figure S4. The ²³NaCl longitudinal relaxation (R_1) and linewidth-based apparent transverse relaxation $(R_{2,app})$ rates measured in the glycerol-water mixtures from 0 to ca. 40% (v/v) glycerol concentration. Strong correlation and a nice fit to a line with a slope close to 1 is observed. The error bars for $R_{2,app}$ represent the standard deviation of multiple (at least five) measurements of linewidth. The error bars for R_I rates represent the fitting error and are smaller than the symbol size.

Figure S5. ²³NaCl translational diffusion coefficient (D_{tr}) as a function of glycerol concentration in glycerol-water mixtures. The decrease in D_{tr} is less pronounced than the glycerol concentrationdependent decrease in $1/\eta$ (shown as dashed line in dark red). The error bars represent the fitting errors for diffusion coefficients.

Figure S6. Viscosity determination based on ²³Na NMR measurements in glycerol-water mixtures (0-40%, v/v). Viscosity variation by ²³Na linewidth and longitudinal relaxation (R_1) rates are fitted to cubic equations. The initial variation of viscosity by ²³Na NMR linewidth or R_1 rates follows linear trends (solid lines). The error bars for 23 Na R_1 rates are smaller than the symbol size.

Figure S7. Viscosity determination based on ¹⁷O NMR measurements in glycerol-water mixtures (0-40%, v/v). Viscosity variation by ¹⁷O R_1 rates of water is fitted to a cubic relation in the whole region, however the initial variation obeys a linear relation (solid line). The error bars represent the fitting errors for $^{17}O R_1$ rates.

Figure S8. ²³NaCl NMR probes of confinement level in biological hydrogels. The ²³Na linewidth captures the agarose concentration-dependent restriction in rotational mobility of sodium ions. The degree of sodium ion (rotational) mobility inside FG-peptide hydrogel (3 mM) is revealed by its measured ²³NaCl linewidth, in comparison with the agarose gels.

Figure S9. ²³NaCl translational diffusion coefficient (D_{tr}) slightly decreases in dependence of agarose gel concentration, reflecting considerable albeit small restriction in translational mobility of sodium ions. The degree of sodium ion (translational) mobility inside FG-peptide hydrogel is revealed by its measured ²³NaCl diffusion coefficient, in comparison with the agarose gels.

Figure S10. ²³Na signal intensity recovery following 180-degree inversion in a 39.8% glycerol solution. The single- (red dashed line) and double-exponential (green dashed line) fits are indistinguishable, indicating that even at this sample exhibiting the largest 23 Na R₁ rate in our study the ²³Na NMR relaxation remains effectively single-exponential (as in fast "extreme-narrowing" regime).

Figure S11. Gradient calibration through PFG-NMR measurement of residual HDO in 99.8% D₂O at 298.14 K. The values of experimental diffusion times (big and little delta) are shown at top. The known value of HDO diffusion coefficient $(1.9*10⁻⁹ m².s⁻¹)$ was obtained after scaling nominal gradient values by 1.026.