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Supplementary Notes 

Supplementary Note 1 – Number of self-aggregating drugs 

Our pipeline identified 788 approved drugs as likely to self-aggregate. The total number of investigated 

drugs was 1857, meaning that 40% of approved drugs were anticipated as potential candidate 

structures. This is likely to be an overestimate at least at usually low testing concentrations. Seidler et al 

J. Med. Chem. 2003 reported that 13% of approved drugs aggregate as measured by unspecific inhibition 

of three enzymes. However, it is known that colloidal aggregates not always adsorb enzymes and 

therefore will not always show up in these type of screens (cf Feng et al Nat Chem Bio 2005). Other 

estimates have suggested that about 20% of molecular material might be self-aggregating (cf Reker et al 

Nat Chem 2019). While we recognize that our model overestimates self-aggregation, we believe this to 

be a useful property to span a large space of possible material for future investigations. Furthermore, 

most of the previously published estimates have been based on drug concentrations up to 30 μM. We 

are escalating these concentrations further in the context of nanoparticle formation, which suggests that 

potentially more drugs will aggregate at such higher concentrations. 

Supplementary Note 2 – Choice of solvent and anti-solvent 

We chose dimethyl sulfoxide (DMSO) as our primary solvent for several reasons: (i) it enabled dissolution 

of all our drugs and excipients at the stock concentration of 10mM, (ii) it is easily miscible with water, 

and (iii) it is routinely used in biological experiments and therefore enables rapid translation without 

additional purification. Phosphate-buffered saline (PBS) was selected as our anti-solvent since it is 

commonly used in biological research. Through this choice of solvent and anti-solvent, our particles were 

created in fixed buffer conditions of 1% DMSO in PBS. From an orthogonal perspective, our protocol 

directly augments established protocols for the detection of self-aggregation in high-throughput 

screening campaigns at 50 μM in 1% DMSO PBS to interrogate the ability of our excipients to prevent the 

colloidal self-aggregation of such drugs at these conditions. 

Supplementary Note 3 – Bias in random forest feature importance measure 

We observed that the chemical fingerprint was considered slightly less important compared to the 

physicochemical properties and interaction descriptors, but this could be in part due to the random 
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forest model’s preference for continuous, versus binary descriptors (see Strobl et al. BMC Bioinformatics 

8, 25, 2007). 

Supplementary Note 4 – Challenges in measuring tumour accumulation 

While we were unable to measure tumour accumulation given the multifocal, heterogenous and diffused 

growth of tumours in our genetic model, the accumulation of our particles in the liver combined with the 

active endocytosis-driven active drug uptake of the nanoparticles into hepatocellular carcinoma cells 

(Figure 4E) provides good evidence that our nanoparticles are able to actively target the tumours. 

Supplementary Note 5 – Effect of route of administration 

Given lower tumour targeting of intravenous injected sorafenib dissolved in cremophor-ethanol (Figure 

4I) and the lack of AFP reduction through this treatment (Supplementary Figure 15), we can refute that 

the injection route alone is responsible for the improved efficacy of our sorafenib-glycyrrhizin 

nanoparticles. 

Supplementary Note 6 – Alternative experimental and computational techniques 

We used DLS to analyse the relative sizes of our nanoparticles. Multiple other aggregation 

characterization techniques are available, often with higher accuracy but lower throughput. These other 

techniques can inform future co-aggregation pipelines. For example, a clear limitation of DLS is its 

sensitivity to larger aggregates, indicating that our platform might be more prone to false negative 

readouts in the presence of multiple particle populations. Similarly, a 50% size reduction leading to 

particles smaller than 1 μm was an appropriate threshold for our study but might not be applicable for 

all types of particles and applications. Other readouts, experimental protocols and data processing might 

become helpful as orthogonal assessments of particle populations. In addition to altering experimental 

readouts, future studies can explore the application of different machine learning models, such as deep 

neural networks, for co-aggregation prediction. Such studies could potentially improve the accuracy of 

nanoparticle prediction and detection and would enable the customization of such platforms in 

laboratories with distinct computational or experimental preferences and capabilities.  

Supplementary Note 7 – Alternative nanoformulation approaches 

Multiple more matured nanoformulation techniques exist that can provide these capabilities. For 

example, liposomes will continue to be some of the most important tools in nanoformulations with clear 

advantages over our current protocol, for example by using established protocols for ligand-based 

targeting or for the delivery of hydrophilic drugs such as doxorubicin. Our approach is not meant as a 

replacement for other delivery techniques but instead an exciting new option with clear benefits in 

terms of drug loading and ease of synthesis. Ultimately, the decision to pursue a certain formulation 

technique is driven by a host of contributing factors and our study validates self-assembled drug 

nanoparticles as a competitive and orthogonal technique that expands the drug formulation 

armamentarium. To the best of our knowledge, there has been no direct head-to-head comparison of 

self-assembling drug nanoparticles with other nanomedicine approaches. Such a comparison would 

enable a clearer understanding of the advantages and disadvantages of applying different 

nanoformulation approaches. 
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Supplementary Methods 

Identification of candidate drugs A random forest machine learning model was trained on publicly 

available aggregation data provided by the Brian Shoichet laboratory (bkslab.org). Briefly, data was 

downloaded in Excel format (bkslab.org/static/files/aggregators/aggregator_hts.xls) and all SMILES 

structures were encoded through Morgan fingerprints (radius 3, 2048 bits) and physicochemical 

descriptors (rdkit.Chem.Descriptors._descList) as surrogates for the original ECFP6 and MOE descriptors 

used in the original publication. “Ambiguous” annotations were discarded. This resulted in a binary 

classification dataset of 263 self-aggregating drugs (28.7%) and 653 non-self-aggregating drugs (71.3%) 

described through 2248-dimensional descriptors of chemical substructures and physicochemical 

properties. To generalize this dataset, a random forest classifier (scikit-learn, 1000 trees, no maximum 

features) was trained and evaluated using 10x ten-fold cross validation. To predict the self-aggregation 

behaviour of approved drugs with this model, all 1857 small molecular structures in the “approved” 

category were extracted in SMILES format from DrugBank 5.0. To enable aggregation prediction, these 

structures were also encoded through the same Morgan fingerprints (radius 3, 2048 bits) and 

physicochemical descriptors (RDKit). Missing values in the physicochemical descriptions were estimated 

through mean values using a scikit-learn imputation module. Aggregation likelihood was estimated 

through the number of trees in the random forest model that consider a DrugBank compound to be an 

aggregator (maximum predictive confidence) and a permissive threshold of 0.2 that reflects the class 

imbalance in the training set. 788 drugs were identified as potential candidate compounds for our 

workflow. This number is likely to be an overestimation of the number of self-aggregating drugs at low 

testing concentrations, which has been previously estimated at 13%-20%, but thereby provides a larger 

set of reasonable candidate structures for further study at elevated concentrations with higher 

aggregation propensity.  From these 788 candidates, we identified 20 drugs for testing manually 

according to commercial availability, covering different indications, spanning the space of FDA-approved 

drugs according to chemical diversity (cf Supplementary Figure 1). Code and data for diversity 

assessment can be found at https://git.io/JJySb. We also added compounds we had previously 

investigated in our model drug libraries of compounds relevant for drug delivery research.  

Transmission electron microscopy Nanoparticles were created at 50 μM drug concentration in 1% DMSO 

PBS. Samples were observed using TEM with or without negative staining. In either case, 7 μl of 

nanoparticle solution was transferred onto a 200 mesh copper grid coated with a continuous carbon 

film, and excess solution was wicked away after 60 seconds. In case of negative staining, 10 μl of staining 

solution (phosphotungstic acid 1% in water) was added and excess solution was wicked away 

immediately. Subsequently another round of staining was performed using the same volume of staining 

solution and excess solution was wicked away after 40 seconds from the edges of the samples. Finally, all 

samples were then dried at room temperature before imaging. Afterwards, the grid was mounted on a 

JEOL single tilt holder. Imaging was done on a JEOL 2100 FEG microscope. The microscope was operated 

at 200 kV and with a magnification in the range of 3,000 to 60,000 for assessing particle shape and size 

and atomic arrangement. All images were recorded on a Gatan 2kx2k UltraScan CCD camera. STEM 

imaging was done using a HAADF (high-angle annular dark field) detector with 0.5 nm probe size and 12 

cm camera length. A X-Max 80mm2 EDX (Oxford Instrument, UK) was used to determine the chemical 

information of the samples. 

Analytics Sorafenib (250μM), nelfinavir (50 μM), and celecoxib (500 μM) formulations were analysed 

using an Agilent 4.6 x 50 mm EC C-18 Poroshell column with 2.7 µm particles, maintained at 50 °C. The 
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optimized mobile phase consisted of 0.1 % formic acid in water (A) and acetonitrile (B) using a flow rate 

of 1 mL/min. Gradient separation was achieved over a 13 minute run time at the following parameters: 0 

min 95% A and 5% B; 4.4 min 50% A and 50% B; 6.4 min 50% A and 50% B; 9 min 20% A and 80% B; 9.5 

min 20% A and 80% B; and 10 min 95% A and 5% B. The injection volume was 10 µl, and the selected 

ultraviolet (UV) detection wavelength was 248 nm with no reference parameters at an acquisition rate of 

40 Hz. Atovaquone formulations (250 μM) were analysed using a Phenomenex Sphereclone 4.6 x 250 

mm ODS (I) column with 5 µm particles, maintained at 50 °C. The optimized mobile phase consisted of 

5% water, 15% methanol, and 80% acetonitrile using a flow rate of 1 mL/min over a 15 minute run time. 

The injection volume was 10 µl, and the selected ultraviolet (UV) detection wavelength was 295 nm with 

no reference parameters at an acquisition rate of 40 Hz. Danazol (250 μM) formulations were analysed 

using an Agilent Zorbax Eclipse XDB C-18 4.6 x 150 mm column with 5 µm particles, maintained at 35 °C. 

The optimized mobile phase consisted of 15%, 0.1% formic acid in water and 85% methanol using a flow 

rate of 1 mL/min over a 6 minute run time. The injection volume was 5 µl, and the selected ultraviolet 

(UV) detection wavelength was 285 nm with no reference parameters at an acquisition rate of 10 Hz. 

Terbinafine (250 μM) formulations were analysed using an Agilent Zorbax Eclipse XDB C-18 4.6 x 150 mm 

column with 5 µm particles, maintained at 40 °C. The optimized mobile phase consisted of 0.1 % formic 

acid in water (A) and methanol (B) using a flow rate of 1 mL/min. Gradient separation was achieved over 

a 10 minute run time (3 min post run) at the following parameters: 0 min 70% A and 30% B; 5 min 30% A 

and 70% B. The injection volume was 10 µl, and the selected ultraviolet (UV) detection wavelength was 

242 nm with no reference parameters at an acquisition rate of 10 Hz. For all experiments, signals were 

converted to drug concentration through standard curves that were measured together with the 

samples. Measured concentrations were subsequently normalized against concentrations observed in 

control samples prepared in acetonitrile or methanol rather than aqueous solutions to ensure complete 

solubility of all tested drugs and account for inaccuracies in the stock solutions. All experiments were 

repeated at least three times.  

For homogenized terbinafine skin samples, analysis was performed on a Waters ACQUITY UPLC®-I-Class 

System aligned with a Waters Xevo® TQ-S mass spectrometer (Waters Corporation, Milford MA). Liquid 

chromatographic separation was performed on an Acquity UPLC® BEH C18 (50mm × 2.1mm, 1.7 μm 

particle size) column at 50 °C. The mobile phase consisted of aqueous 0.1% formic acid, 10mM 

ammonium formate solution (Mobile Phase A) and acetonitrile: 10 mM ammonium formate, 0.1% formic 

acid solution (95:5 v/v) (Mobile Phase B). The mobile phase had a continuous flow rate of 0.6 mL/min 

using a time and solvent gradient composition. The initial composition, 95% Mobile Phase A, was held for 

0.25 minutes. Afterwards, the composition was changed linearly to 5% Mobile Phase A and 95% Mobile 

Phase B until 1.00 minutes. The composition was held constant at 95% Mobile Phase B until 2.75 

minutes. At 3.00 minutes the composition returned to 95% Mobile Phase A, where it remained for 

column equilibration for the duration of the run, ending at 4.00 minutes. The mass to charge transitions 

(m/z) used to quantitate terbinafine were 292.294>141.167 and 292.294>93.181 for quantitation and 

confirmation respectively. For internal standard, naftitine, 288.26>117.17 and 288.26>141.17 m/z 

transitions were used for quantitation and confirmation respectively. Sample introduction and ionization 

was by electrospray ionization (ESI) in the positive ionization mode. Waters MassLynx 4.1 software was 

used for data acquisition and analysis. Stock solutions were prepared in methanol at a concentration of 

500 μg/mL. A twelve-point calibration curve was prepared in analyte-free, blank skin homogenate 

ranging from 1.25-5000 ng/mL. 100 µl of each sample was spiked with 200 µl of 250 ng/mL internal 

standard in acetonitrile to elicit protein precipitation. Samples were vortexed, sonicated for 10 minutes, 
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and centrifuged for 10 minutes at 13,000 rpm. 200 µl of supernatant was pipetted into a 96-well plate 

containing 200 µl of water. 

Concentration escalation experiments Nanoparticles were created by mixing 5 μl of drug stock solution 

in DMSO with 5 μl of excipient stock solution in DMSO; unformulated drug solutions were created by 

mixing 5 μl drug stock solution with 5 μl DMSO. Solvent exchange was performed by adding 990 μl sterile 

filtered and degassed PBS. All samples were generated in 4ml glass vials and stored sealed at room 

temperature. These experiments were repeated at increasing stock solution concentrations until either 5 

mM final drug concentrations were reached or the unformulated drug visibly precipitated immediately 

after solvent exchange. Images were taken at 1 mM for atovaquone, 500 μM for celecoxib, 5 mM for 

terbinafine, 1 mM for sorafenib, 500 μM for danazol and 500 μM for nelfinavir. 

MEK phosphorylation analysis Infrared secondary antibodies, IRdye 680RD goat anti-mouse IgG and 

IRdye 800CW anti-rabbit (both 1:1000) were purchased from LiCor. Phospho-MEK1/2 (Ser217/221) 

Antibody (9121) and MEK1/2 Antibody (9122) were purchased from Cell Signaling Technology (both 

1:100). For In-Cell Western, cellular proteins were quantitated in situ based on infrared intensity. 

Samples were immunolabelled with an infrared conjugated IgG secondary antibody using standard 

immunofluorescence protocol. Briefly, cells were fixed with 4 % (v/v) formalin in dH2O (Sigma) for 15 

minutes at room temperature, washed with PBS, permeabilized with 0.25 % (v/v) TritonX-100/PBS for 2 

minutes, washed with PBS and then blocked with 4 % (w/v) bovine serum albumin in PBS. Primary and 

secondary antibodies were incubated in blocking buffer for 1 h at room temperature. Samples were 

subsequently imaged using an Odyssey Fc Infrared Imaging System (LiCor). The resulting signal intensity 

was subsequently quantified by using the Odyssey CLx Image Studio Analysis Software. 

Sorafenib-glycyrrhizin toxicity assessment Two healthy, 6 week old, female FVB/N mice were treated 
with elevated dosages of 60 mg/kg sorafenib-glycyrrhizin nanoparticles for one week (three 
administrations). Blood was sampled after the final administration for serum chemistry assessment. We 
screened seven markers associated with liver damage (alanine aminotransferase ALT, aspartate 
aminotransferase AST, alkaline phosphatase ALP, albumin, gamma-glutamyl transferase GGT, total 
protein, direct bilirubin) by the Massachusetts Institute of Technology Division of Comparative Medicine. 
 
AFP analysis Mouse blood was collected into BD Vacutainer® EDTA tubes, incubated on ice for 10 min 

and then centrifuged at 2000g for 20 min at 4°C. 3 µl of serum (the supernatant) was mixed with 47 µl 

PBS (Gibco) and 10 µl 6X reducing SDS buffer (Boston Bio Products), the mixture was heated at 68°C for 

30 min, and 10 µl of the mixture were subjected to SDS/PAGE. Proteins were transferred to 

Nitrocellulose membranes (BioRad) and blocked with Li-COR Odyssey® Blocking Buffer (TBS) for 1h at RT. 

Biotinylated anti-mouse AFP antibody (R&D Systems, BAF5369) was reconstituted at 0.2 mg/mL in sterile 

PBS and used at 1:2000 dilution. The binding was done for either 2 h at RT or overnight at 4°C. Protein 

bands were visualized by incubation with secondary antibodies labelled with infrared fluorophores (Li-

COR IRDye® 680LT Streptavidin, 926-68031, dilution 1:10,000) for 30 min at RT. Membranes were 

scanned on a Li-COR Odyssey Scanner and fluorescence intensity was subsequently quantified using the 

ImageJ software. Band density was normalized to background per gel. The normalized band density for 

each sample was divided by the average normalized band density for the “no treatment” controls to 

assess relative band density, reflecting the difference in AFP expression levels in the treated mice vs 

control mice. The relative change of band density level before (week 5), during (week 7), and after 

treatment (week 10) was used to assess tumour progression. 
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Supplementary Tables 

Supplementary Table 1: Retrospective ten times 10-fold cross validation of self-aggregation model for 

candidate drug selection. Mean performance and one standard deviation are reported. 

Metric Mean ± standard deviation 

MCC 0.56 ± 0.02 

Accuracy 0.83 ± 0.01 

Precision 0.77 ± 0.02 

F1 0.66 ± 0.02 

ROC AUC 0.88 ± 0.002 

AUPR 0.76 ± 0.004 

 

Supplementary Table 2: Drugs that failed to show aggregation at fixed testing concentration and were 

therefore not amenable to our high-throughput formulation approach. 

Drug DLS radius [nm] 

dyphylline 65 

simvastatin 80 

budesonide 60 

minoxidil 70 

 

 

Supplementary Table 3: Retrospective machine learning performance using 10x “leave one drug out” 

evaluation of various tested descriptors for classification. The full model, which relied on chemical 

descriptors (FP) and molecular dynamics (MD), performed significantly better than any sub-model, 

although the “only FP” model (using radial chemical substructure descriptors and physicochemical 

descriptors but no MD simulations) was competitive with a similar retrospective performance. p 

corresponds to two-sample, two-sided student T-test of the ten repeats comparing the full model with 

the respective model in the row. 

 10-fold cross validation 

 MCC F1 Precision Accuracy AUROC AUPRC 

 mean p mean p mean p mean p mean p mean p 

FP & 
MD 

0.32 -- 0.28 -- 0.62 -- 0.94 -- 0.86 -- 0.37 -- 

only 
FP   

0.30 1e-3 0.27 2e-3 0.60 3e-2 0.94  4e-1 0.85 3e-2 0.36 2e-3 

only 
MD 

0.07 4e-14 0.14 6e-11 0.13 3e-17 0.88 1e-21 0.66 6e-20 0.11 4e-20 

 Leave one drug out validation 

 MCC F1 Precision Accuracy AUROC AUPRC 

 mean p mean p mean p mean p mean p mean p 
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FP & 
MD 

0.28 -- 0.26 -- 0.55 -- 0.94 -- 0.71 -- 0.23 -- 

only 
FP   

0.26 1e-3 0.26 7e-1 0.55 8e-1 0.89  4e-5 0.70 6e-2 0.22 4e-1 

only 
MD 

0.09 8e-20 0.15 2e-15 0.14 6e-25 0.88 5e-25 0.63 9e-16 0.1 3e-23 

 

Supplementary Table 4: The 50 most important features of the random forest model. Feature name 

includes the source of the feature (“drug”, “excipient”, “simulation”) followed by the feature definition. 

Names of features are derived from rdkit.Chem.Descriptors._desclist, numbered Morgan fingerprints 

(“fp_X”) or manually labelled for the simulation descriptors. For the latter, “contact_av” is the average 

number of contacts between drugs and excipients during the simulation, “AvDistance “is the average 

distance between one of the four possible pairings of two drugs and two excipients, “Variance” is the 

variance of their distance. “d(distance)” is the first derivative of the distance (i.e. the speed at which 

excipients and drugs move away or towards each other, where “max” indicates the maximum and “avg” 

indicates the average. “kineticE” and “potentialE” are the kinetic and potential energy derived from the 

last frame of the simulation through the force field.  

Rank Feature name Feature importance 

1 simulation_d(distance)_avg_4 0.0053 

2 simulation_d(distance)_max_2 0.0052 

3 excipient_MolMR 0.0051 

4 excipient_EState_VSA2 0.0048 

5 simulation_contact_av 0.0048 

6 simulation_d(distance)_max_3 0.0047 

7 excipient_Chi0 0.0047 

8 simulation_AvDist_3 0.0046 

9 excipient_qed 0.0046 

10 simulation_kineticE 0.0045 

11 simulation_d(distance)_avg_3 0.0045 

12 excipient_Chi0n 0.0045 

13 simulation_d(distance)_max_4 0.0044 

14 excipient_Chi2n 0.0044 

15 excipient_Chi1v 0.0044 

16 simulation_AvDist_1 0.0044 

17 excipient_Ipc 0.0043 

18 simulation_Variance_2 0.0043 

19 simulation_potentialE 0.0043 

20 simulation_d(distance)_avg_2 0.0042 

21 simulation_d(distance)_avg_1 0.0042 

22 simulation_d(distance)_max_1 0.0041 

23 excipient_NumAromaticCarbocycles 0.0041 

24 excipient_RingCount 0.004 

25 excipient_BertzCT 0.004 

26 excipient_Chi0v 0.0039 

27 simulation_AvDist_4 0.0039 
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28 simulation_Variance_3 0.0038 

29 simulation_Variance_1 0.0037 

30 excipient_Chi1 0.0037 

31 excipient_Chi2v 0.0036 

32 excipient_SlogP_VSA5 0.0036 

33 excipient_NumValenceElectrons 0.0036 

34 excipient_Chi1n 0.0036 

35 excipient_HeavyAtomCount 0.0036 

36 excipient_MinAbsPartialCharge 0.0035 

37 excipient_Chi3n 0.0035 

38 excipient_SMR_VSA10 0.0035 

39 excipient_Kappa1 0.0034 

40 simulation_AvDist_2 0.0034 

41 excipient_Chi4n 0.0034 

42 excipient_NumHeteroatoms 0.0033 

43 excipient_LabuteASA 0.0033 

44 drug_PEOE_VSA9 0.0033 

45 excipient_PEOE_VSA7 0.0032 

46 excipient_ExactMolWt 0.0031 

47 excipient_SlogP_VSA6 0.0031 

48 excipient_HeavyAtomMolWt 0.0031 

49 excipient_fp_1160 0.0031 

50 excipient_VSA_EState8 0.0031 

 

Supplementary Table 5: Retrospective machine learning model comparison. Retrospective performance 

was evaluated using 10x ten-fold cross validation (top) or 10x “leave one drug out” evaluation (bottom). 

Random forest (RF), Naïve Bayes (NB), nearest neighbor (kNN), decision trees (DT), Neural Networks 

(NN) and Support-Vector machines (SVM) were implemented from scikit-learn with default parameters. 

p corresponds to two-sample, two-sided student T-test of the ten repeats comparing the RF model with 

the respective model in the row. Highest performance value is indicated by underscore. 

 10-fold cross validation 

 MCC F1 Precision Accuracy AUROC AUPRC 

 mean p mean p mean p mean p mean p mean p 

RF 0.32 -- 0.28 -- 0.62 -- 0.94 -- 0.86 -- 0.37 -- 

NB 0.05 1e-16 0.05 8e-16 0.19 4e-18 0.93 2e-14 0.48 2e-18 0.08 8e-22 

kNN 0.2 1e-08 0.23 4e-05 0.34 6e-13 0.92 7e-13 0.66 9e-22 0.18 1e-16 

DT 0.27 1e-03 0.32 4e-03 0.32 5e-14 0.91 2e-13 0.64 2e-22 0.34 9e-04 

NN 0.05 2e-14 0.12 1e-11 0.1 2e-18 0.85 4e-08 0.52 2e-23 0.15 3e-17 

SVM 0.1 1e-12 0.17 3e-09 0.1 5e-19 0.69 2e-11 0.57 2e-15 0.09 2e-21 

 Leave one drug out validation 

 MCC F1 Precision Accuracy AUROC AUPRC 

 mean p mean p mean p mean p mean p mean p 

RF 0.28 -- 0.26 -- 0.55 -- 0.94 -- 0.71 -- 0.23 -- 

NB 0.05 1e-16 0.05 2e-14 0.19 4e-18 0.93 8e-16 0.36 2e-34 0.06 1e-23 

kNN 0.14 1e-13 0.17 4e-19 0.25 6e-17 0.92 1e-10 0.61 5e-29 0.13 8e-22 



9 
 

DT 0.19 3e-08 0.25 6e-11 0.23 2e-15 0.89 1e-02 0.6 5e-21 0.28 3e-09 

NN 0.05 2e-12 0.12 2e-08 0.11 9e-17 0.87 3e-10 0.52 2e-20 0.14 6e-15 

SVM 0.09 3e-10 0.16 6e-16 0.1 8e-19 0.68 2e-08 0.56 8e-11 0.09 2e-19 

 

Supplementary Table 6: Adversarial control model’s using y shuffling (“y”) or x randomization (“x”), both 

applied in 10x ten-fold cross validation or 10x leave one drug out validation. p corresponds to two-

sample, two-sided student T-test of the ten repeats comparing the model with the respective adversarial 

control model. 

 10-fold cross validation 

 MCC F1 Precision Accuracy AUROC AUPRC 

 mean p mean p mean p mean p mean p mean p 

RF 0.32 -- 0.28 -- 0.62 -- 0.94 -- 0.86 -- 0.37 -- 

y 0.01 8e-16 0.00 2e-24 0.10 3e-04 0.93 3e-11 0.46 1e-13 0.06 4e-21 

x 0.00 5e-28 0.00 1e-26 0.00 7e-33 0.93 9e-14 0.49 1e-15 0.07 1e-22 

 Leave one drug out validation 

 MCC F1 Precision Accuracy AUROC AUPRC 

 mean p mean p mean p mean p mean p mean p 

RF 0.28 -- 0.26 -- 0.55 -- 0.94 -- 0.71 -- 0.23 -- 

y 0.00 2e-15 0.00 5e-16 0.03 1e-11 0.93 9e-06 0.50 4e-17 0.07 1e-20 

x 0.00 3e-16 0.00 3e-16 0.00 3e-18 0.93 1e-05 0.56 6e-15 0.08 2e-19 

 

Supplementary Table 7: DLS results of predicted self-assembling nanoparticles. Reported are the mean 

particle radius, the reduction factor of aggregate sizes between drugs and co-aggregates, the 

polydispersity, and the normalized signal intensity. Furthermore, we report the mean size and weight 

percentage of particles detected at the different acquisition ranges (R1-R4) as well as the percentage of 

autonomously flagged DLS acquisitions by the Wyatt Dynamics software. 

Drug Sample Radius 
[nm] 

X PDI [%] Inten
-sity 

R1 
1-10 

R2 
10-100 

R3 
100-1000 

R4 
>1000 

% 
flag 

Sorafenib drug 
alone 

846.0 
19 

Multi-
modal 

2e8 -- -- 
478 
[31] 

3344 
[69] 

90 

+ glycyrrhizin 45.3 17.0 6e7 -- 
44.2 
[100] 

-- -- 0 

Atovaquone drug 
alone 

1079.3 
11 

Multi-
modal 

6e10 
6.9 
[3] 

-- -- 
1163 
[97] 

90 

+ a tocopherol 95.7 26.1 1e11 -- 
92.1 
[100] 

-- -- 0 

Nelfinavir drug 
alone 

1102.0 
9.4 

Multi-
modal 

2e10 -- 
30.3 
[0] 

-- 
1398 
[100] 

60 

+ riboflavin 117.5 22.1 8e10 -- -- 
115.4 
[100] 

-- 0 

Danazol drug 
alone 

558.2 
9.4 

Multi-
modal 

3e8 --- 
13.1 
[1] 

778 
[99] 

-- 90 

+ tannic acid 59.4 18.1 2e8 -- 58 -- -- 0 
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[100] 

Celecoxib drug 
alone 

646.1 
11 

Multi-
modal 

4e8 -- -- 
377.92 

[31] 
2661 
[69] 

60 

+ indomethacin 58.1 16.2 3e8 -- 
54.95 
[100] 

-- -- 0 

Terbinafine drug 
alone 

596.3 
4.4 

Multi-
modal 

1e10 -- -- 
179 
[39] 

2832 
[61] 

80 

+ taurocholic acid 134.2 23.1 3e10 -- -- 
110 

[100] 
-- 0 

 

Supplementary Table 8: Interactions found in nanoparticles according to last frame of MD simulation. 

“HBonds” were quantified as Baker-Hubbard Hydrogen Bonds using MDTraj. All other interactions were 

identified using the MolBridge webserver. The largest number per row is highlighted in bold. 
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HBonds 84 44 72 9 57 28 

C-Cl..Cl 0 0 2 2 0 0 

C-Cl..F 0 0 5 0 0 0 

C-Cl..N 0 0 1 0 0 0 

C-Cl..O 11 0 2 2 0 0 

C-F..Cl 3 0 4 0 0 0 

C-F..F 5 0 8 0 0 0 

C-F..N 8 0 2 0 0 0 

C-F..O 7 0 3 0 0 0 

C-H..N 33 40 37 0 5 147 

C-H..O 477 257 114 192 836 317 

C-H..S 0 1 1 0 0 0 

N-H..S 0 1 23 0 0 16 

N-H..N 22 1 36 0 0 8 

N-H..O 16 3 46 0 0 19 

O-H..N 3 0 2 0 0 30 

O-H..O 174 49 3 21 530 45 

O-H..S 0 16 1 0 0 1 

O-H..π 0 1 3 1 33 6 

S..π 0 8 8 0 0 0 

π..π 8 1 14 3 32 11 

C-H..π 100 97 121 120 164 180 

N-H..π 7 6 2 0 0 8 

C-Cl..π 2 0 3 0 0 0 
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C-F..π 7 0 6 0 0 0 

 

Supplementary Table 9: Drug loading and encapsulation efficiency data for terbinafine-taurocholic acid 

particles. Concentrations are in ug/ml and were determined through high-performance liquid 

chromatography on two independent samples.  

Sample Conc 1 Conc 2 Average  

Total 
terbinafine 

369.2 364.5 366.9 
Encapsulation 1 
280 / 369.2 
= 75.8 % 

Encapsulation 2 
274.3 / 364.5 
= 75.3 % 

Encapsulation 
75.6 ± 0.4 % 

Particle 
terbinafine 

280.0 274.3 277.2 
Loading 1 
280 / 302.3  
= 92.6 % 

Loading 2 
274.3 / 293.8 
= 93.3 % 

Loading 
93.0 ± 0.5 % Particle 

taur. acid 
22.3 19.5 20.9 

 

Supplementary Table 10: DLS results of further characterized sorafenib nanoparticles. Reported are the 

mean particle radius, the reduction factor of aggregate sizes between drugs and co-aggregates, the 

polydispersity, and the normalized signal intensity. Furthermore, we report the mean size and weight 

percentage of particles detected at the different acquisition ranges (R1-R4) as well as the percentage of 

autonomously flagged DLS acquisitions by the Wyatt Dynamics software. 

Drug Sample Radius 
[nm] 

X PDI 
[%] 

Inten-
sity 

R1 
1-10 

R2 
10-100 

R3 
100-1000 

R4 
>1000 

% 
flag 

Sorafenib 
drug alone 920.0 ----- M 1e8 -- -- 

129 
[34] 

3718 
[66] 

90 

+ glycyrrhizin 42.1 21.8 17.0 7e7 -- 
39.3 
[100] 

-- -- 0 

+ candesartan 
cilexitel 

38.1 24.1 19.4 1e7 -- 
38.8 
[100] 

-- -- 0 

+ tannic acid 56.2 16.3 14.5 3e8 -- 
52.3 
[100] 

-- -- 0 

+ 
indomethacin 

65.2 14.11 16.2 1e9 -- 
63.9 
[100] 

-- -- 0 

+ meloxicam 99.1 9.28 20.6 9e7 -- 
79.7 
[100] 

-- -- 0 

 

Supplementary Table 11: 24h stability of a selected set of nanoparticles, measured after storage at room 

temperature.  

Sample Radius [nm], 0h PDI [%], 0h Radius [nm], 24h PDI [%], 24h 

Sorafenib – Congo Red 54.5 15.1 61.5 16.5 

Sorafenib – Indomethacin 65.2 16.2 78.1 3.0 

Sorafenib – Glycyrrhizin 42.1 17.0 57.2 23.9 

Terbinafine – Taurocholic acid 134.2 23.1 317.2 23.7 
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Supplementary Table 12: Drug loading and encapsulation efficiency data for sorafenib-glycyrrhizin 

particles. Concentrations are in ug/ml and were determined through high-performance liquid 

chromatography.  

Sample Conc 1 Conc 2 Average  

Total 
sorafenib 

64.5 62.9 63.7 
Encapsulation 1 
60.0 / 64.5 
= 93.0 

Encapsulation 2 
58.0 / 62.9 
= 92.2 

Encapsulation 
92.6 ± 0.6 

Particle 
sorafenib 

60.0 58.0 59.0 
Loading 1 
60 / 62.7  
= 95.7 

Loading 2 
58 / 61.7 
= 94.0 

Loading 
94.9 ± 1.2 Particle 

glycyrrhizin 
2.7 3.7 3.2 

 

Supplementary Table 13: Serum chemistry assessment of liver toxicity associated markers in two healthy 

female 6 week old FVB/N mice. Mice received three injections of elevated dosages of 60 mg/kg 

sorafenib-glycyrrhizin particles within one week and showed no adverse symptoms. 

Maker Mouse 1 Mouse 2 Reference 

ALT [IU/L] 42.0 45.0 17.0-77.0 

AST [IU/L] 46.0 54.0 54.0-298.0 

ALP [IU/L] 96.0 84.0 35.0-96.0 

Albumin [g/dL] 3.0 2.7 2.5-4.8 

GGT [IU/L] 0.0 0.0 -- 

Total protein [g/dL] 5.2 5.0 3.5-7.2 

Direct bilirubin [mg/dL] 0.0 0.0 -- 

 

Supplementary Figures 

 

Supplementary Figure 1: Multi-dimensional scaling of all FDA-approved small molecular drugs (A) and all 

FDA approved inactive ingredients and “generally recognized as safe” compounds (B) in blue. The red 

dots indicate the position of the selected drugs (A) or excipients (B) that we subsequently used for high-

throughput screening and machine learning training data generation. 
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Supplementary Figure 2: Relative size distribution of observed co-aggregates in high-throughput 

experiment. Red line indicates the 50% threshold that was applied for further analysis of co-aggregates. 

 

  

Supplementary Figure 3: Random forest feature importance of the final model for the 2460 numerical 

descriptors of the novel formulations. As can be seen here, the model considers both chemical and 

physicochemical properties of both the drug and the excipient as well as the MD-derived interaction 

potentials. 
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Supplementary Figure 4: Feature ablation experiment. Deletion of the most important features (red) 

results in a rapid increase in out-of-bag error as measured by loss of Matthews Correlation Coefficient 

(MCC) compared to randomly deleting features iteratively (grey). Shown are average performances (bold 

line) of ten independent runs and their standard deviation (shading).  

 

 

Supplementary Figure 5: Schematic explaining the experimental workflow to determine dispersion 

stability. Nanoparticles were generated through solvent exchange. The nanoparticle dispersions were 

stored at room temperature in a sealed vial. At pre-determined timepoints, we extracted samples and 

diluted these in an organic solvent to ensure full solubility of the nanoparticles prior to injection onto the 

HPLC to determine drug concentrations. Relative concentration was determined through standard curves 

and by comparing determined concentration by analysing the control sample consisting of equivalently 

diluted stock solution. 
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Supplementary Figure 6: High-performance liquid chromatography data for excipient concentrations 

during the precipitation kinetics experiments. n = 2 independent samples. 

 

 

Supplementary Figure 7: Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy 

(STEM-EDS) shows that terbinafine-taurocholic acid nanoparticles are rich in sulphur from taurocholic 

acid, both in cases of early aggregates (A) as well as for late-stage aggregates (B). Scale bar corresponds 

to 1000nm and 600nm in A and B respectively. Representative images are shown from ten acquisitions 

generated through two independent experiments, all images reproduced the here depicted behaviour. 
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Supplementary Figure 8: Inhibition of MEK phosphorylation of the sorafenib nanoparticles. Inhibition of 

phosphorylation is equivalent to inhibition by free sorafenib and reduces the relative amount of pMEK by 

50% after 5h of treatment in HUH7 HCC cells. n = 4 independent samples. Treatment concentration 500 

μM. p = 0.001 one-way ANOVA, p < 0.006 Tukey's multiple comparisons test for sorafenib NP or 

sorafenib vs. PBS (p < 0.006 Tukey's multiple comparisons test), difference between sorafenib NP and 

sorafenib is not significant (p = 0.45 Tukey's multiple comparisons test). Lines corresponds to mean 

values; error bars represent one standard deviation. 

 

 

 

Supplementary Figure 9: HUH7 viability after 48 h of treatment with nanoparticle-forming excipients 

alone at different concentrations.  p < 0.0001 two-way ANOVA. Dunnett's multiple comparisons test for 

comparison between excipient and PBS with 1% DMSO vehicle control. PBS treatment is not 
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concentration dependent and was duplicated across the plot for readability. n = 4 independent samples. 

Lines corresponds to mean values; error bars represent one standard deviation. 

 

 

Supplementary Figure 10: Bright field microscopy images of HUH7 cells with 100 μM sorafenib (A) vs. 

sorafenib-glycyrrhizin (B). Scale bar corresponds to 100 μm. Representative images are shown from ten 

acquisitions generated through two independent experiments, all images reproduced the here depicted 

behaviour. 

 

 

Supplementary Figure 11: STEM-EDS shows that sorafenib-glycyrrhizin nanoparticles are rich in fluorine 

from sorafenib. Representative images are shown from ten acquisitions generated through two 

independent experiments, all images reproduced the here depicted behaviour. A F mapping analysis to 

visualize 2D distribution of fluorine in particles. Scale bar corresponds to 600nm. B Line scan highlights 

specific enrichment of drug in the particles and lack of drug in the surrounding sample. Scale bar 

corresponds to 400nm.  
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Supplementary Figure 12: Stability of sorafenib nanoparticles after different perturbations or in different 

environments. Shown are DLS autocorrelation functions of sorafenib-glycyrrhizin nanoparticles in serum 

(blue) or cell media (light blue) or after centrifugation and subsequent sonication for re-dispersion 

(green) or after pushing the nanoparticles through a 29 Gauge needle (red). 

 

 

Supplementary Figure 13: Consistency of formulation strategy. HPLC analytics were performed in 

duplicates on eight independent nanoparticle formulations created to assess consistency of formulation 

protocol. n = 2 independent samples, Lines corresponds to mean values. 
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Supplementary Figure 14: AFP levels of mice treated with sorafenib-glycyrrhizin and glycyrrhizin-only 

compared to mice receiving injections of 1% DMSO in PBS. Sorafenib-glycyrrhizin and glycyrrhizin alone 

show similar reduction in AFP (p = 0.5) compared to 1% DMSO in PBS (p  = 0.03 and p = 0.001, Tukey's 

multiple comparisons test). p = 0.016 two-way ANOVA. n = 12 independent animals for sorafenib-

glycyrrhizin, n = 7 independent animals for DMSO, n = 5 independent animals for glycyrrhizin. Lines 

corresponds to mean values; error bars represent one standard deviation. 

 

 

 

Supplementary Figure 15: AFP levels of sorafenib-cremophor control treatment and cremophor only 

control. No significant difference was observed between 1% DMSO in PBS and sorafenib-cremophor (p = 

0.99) or cremophor only (p = 0.35, Tukey's multiple comparisons test). The sorafenib-glycyrrhizin 

nanoparticles performed superior compared to the sorafenib-cremophor control treatment (p = 0.0052). 

Two-way ANOVA p=0.038. n = 12 independent animals for sorafenib-glycyrrhizin, n = 7 independent 

animals for DMSO, n = 5 independent animals for sorafenib-cremophor and cremophor. Lines 

corresponds to mean values; error bars represent one standard deviation. 
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Supplementary Figure 16: Mice treated with sorafenib-glycyrrhizin particles had no significant tumour 

growth as indicated by no increase in bodyweight after four weeks of treatment (p = 0.79, one-sample, 

two tailed T test) while mice treated with oral sorafenib or 1% DMSO in PBS control showed significantly 

increased tumour burden (p = 0.001 and p = 0.007, one-sample, two-tailed T-test), p = 0.0063 one-way 

ANOVA, p = 0.0032 Dunnett's multiple comparisons test, n = 7 independent animals. Lines corresponds to 

mean values; error bars represent one standard deviation. 

 

 

Supplementary Figure 17: Percentage weight increase due to tumour burden in control treatments. No 

significant difference was observed. One-way ANOVA p=0.27, p = 0.38, 0.59, 0.99, 0.29 for glycyrrhizin, 

oral, sorafenib in cremophor, cremophor according to Dunnett's multiple comparisons test against 1% 

DMSO in PBS. n = 7 independent animals for control and oral, n = 5 independent animals for glycyrrhizin, 

sorafenib in cremophor, and cremophor. Lines corresponds to mean values; error bars represent one standard 

deviation. 
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Supplementary Figure 18: Survival curves for control treatments compared to sorafenib-glycyrrhizin. 

Sorafenib-glycyrrhizin significantly extended morbidity-free survival (Logrank test p < 0.05) compared to 

all controls except for 30 mg / kg sorafenib dissolved in cremophor-ethanol IV injected. Last panel shows 

all controls in one figure for comparison. n = 12 independent animals for sorafenib-glycyrrhizin and 

1%DMSO in PBS, n = 7 independent animals for oral sorafenib, n=5 independent animals for cremophor 

and sorafenib in cremophor. 

 

Supplementary Figure 19: Sorafenib tissue accumulation in healthy mice after a single injection of 30 mg 

/ kg sorafenib-glycyrrhizin (green), sorafenib dissolved in cremophor-ethanol (grey) or oral sorafenib 

(black). n=3 independent animals per treatment and timepoint. Lines corresponds to mean values. 
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Supplementary Figure 20: Temperature-dependent growth of sorafenib-indomethacin particles. Line 

indicates mean of n=3 independent samples. Shaded area corresponds to one standard deviation. 


