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I. APPROXIMATE FORMS FOR χ0
e

When the temperature T is zero, the Fermi function is the unit step function. Then, the integral in Eq. (6) in the
main text has an analytic evaluation. For T finite, analytic evaluations are not possible. From the Lindhard expression
for the susceptibility χ0

e, Eq. (6), we obtain approximate forms as expansions in terms of Q and R = Q2/Ω2. We
will show that up to forth order these expansions lead to identical expressions, and will show that we can obtain the
coefficients to all orders for the series in terms of powers of R. We introduce the auxiliary functions

g(Q,Ω) = 1
Q2 + 2QKµ− Ω2 (S1)

h(Q,Ω) = 1
Q2 − 2QKµ+ Ω2 , (S2)

and note that the integrad in Eq. (6) equals K2f(R∞K
2/mC)(g(Q,Ω) + h(Q,Ω)).

1. Expansion for small Q We write the functions g and h as Taylor expansions near Q = 0, that is

g(Q,Ω) =
∞∑

n=0

Qn

n! g
(n)(0,Ω) (S3)

h(Q,Ω) =
∞∑

n=0

Qn

n! h
(n)(0,Ω). (S4)

Explicitly and up to 4th order

g(Q,Ω) ≈ − 1
Ω2 −Q

2Kµ
Ω4 −Q

2 (2Kµ)2 + Ω2

Ω6 −Q3
(
4KµΩ2 + 8K3µ3)

Ω8 −Q4 Ω4 + 3(2Kµ)2Ω2 + (2Kµ)4

Ω10 (S5)

h(Q,Ω) ≈ 1
Ω2 +Q

2Kµ
Ω4 +Q2 (2Kµ)2 − Ω2

Ω6 −Q3
(
4KµΩ2 + 8K3µ3)

Ω8 +Q4 Ω4 − 3(2Kµ)2Ω2 + (2Kµ)4

Ω10 . (S6)

Substituting Eqs. (S5) and (S6) into Eq. (6) in the main text, and integrating with respect to µ we find that terms
containing odd powers in µ vanish. The resulting form for the susceptibility χ0

e, up to forth order in Q, is

4πχ0
e(q, ω + iγ) = 4mC

Q2π

∫ ∞

0
dK K2f(R∞K

2/mC)
(
−Q2 4

Ω4 −Q
4 16K2

Ω8

)
. (S7)

Next, we observe that K =
√

(2momCa2
B/~2)E =

√
(mC/R∞)E, such that dK = mC

2KR∞
dE, and where the zero in

energy coincides with the maximum of the valence band at the Γ point. Thus, the first term in Eq. (S7) is proportional
to ∫ ∞

0
dK K2f(R∞K

2/mC) = mC

2R∞

∫ ∞

0
dE
√

(mC/R∞)Ef(E) = mCNe

2R∞
. (S8)

In the same fashion, the second term in Eq. (S7) is∫ ∞

0
dK K4f(R∞K

2/mC) = mC

2R∞

∫ ∞

0
dE((mC/R∞)E)3/2f(E), (S9)
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2. Expansions for small R Here we approximate the functions g and h as a series in powers of R, for |R| < 1.
First we rewrite g and h as follows

g(Q,Ω) =− 1
Ω2

1
1−Q2/Ω2 − 2QKµ/Ω2 = − 1

Ω2
1

1−R(1 + 2Kµ/Q) (S10)

=− 1
Ω2

∞∑
n=0

Rn

(
1 + 2Kµ

Q

)n

(S11)

h(Q,Ω) = 1
Ω2

1
1 +Q2/Ω2 − 2QKµ/Ω2 = 1

Ω2
1

1 +R(1− 2Kµ/Q) (S12)

= 1
Ω2

∞∑
n=0

(−1)nRn

(
1− 2Kµ

Q

)n

(S13)

In the first step we factor either Ω2 or −Ω2 from the denominator, and in the second step we use the geometric series:

1
1 + x

=
∞∑

n=0
(−1)nxn. (S14)

Note that this approach provides the coefficients for all orders explicitly, in contrast with the situation in Sec. 1,
where one needs to compute the derivatives for g and h and evaluate them at Q = 0, which might be cumbersome for
higher orders. In this sense, the expansion in terms of R provides a technical advantage. Up to 3th order in R

g(Q,Ω) ≈ − 1
Ω2

(
1 +R

(
1 + 2Kµ

Q

)
+R2

(
1 + 2Kµ

Q

)2
+R3

(
1 + 2Kµ

Q

)3
)

(S15)

h(Q,Ω) ≈ 1
Ω2

(
1−R

(
1− 2Kµ

Q

)
+R2

(
1− 2Kµ

Q

)2
−R3

(
1− 2Kµ

Q

)3
)
, (S16)

from which it follows that

g(Q,Ω) + h(Q,Ω) ≈ − 1
Ω2

[
2R+R2

(
8Kµ
Q

)
+R3

(
2 + 6

(
2Kµ
Q

)2
)]

. (S17)

Substituting Eq. (S17) into Eq. (6) and integrating with respect to µ, we obtain

4πχ0
e(q, ω + iγ) = 4mC

πQ2

∫ ∞

0
dK K2 f(R∞K

2/mC)
(
−Q2 4

Ω4 −Q
4 16K2

Ω8 − 4Q6

Ω8

)
. (S18)

If we keep terms up to 4th order in Q in the integrand, we obtain the approximate form for the susceptibility in Eq.
(6). This observation supports our statement that a large number of approximate models for χ0

e can be obtained as
power series of R.

In Fig. S1 we compare the exact line shape, as obtained from Eq. (7) utilizing Eq. (6), with the approximate form
obtain by approximating χe to zero and second order in Q to recover a Drude-like models.
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FIG. S1. A comparison between the exact (solid, blue) and zero (black, dashed) and second (red,solid) order approximate
line shapes. In a) we show how |R| varies with the Raman frequency and b) and c) show the line shapes for two different
values in the Fermi energy. The second order approximation in Q is needed to interpret Raman spectra. Other parameters are
CFH = −0.28, ωLO = 284.7 cm−1 , ωTO = 267.8 cm−1 , meff = 0.067mo, ε∞ = 10.9, qo = 1.03× 108 m−1.
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II. PARAMETERS

The following tables present the parameters used in the calculation of Raman line shape for GaAs as well as the four
models for the band structure. The energies of the extrema of the conduction and valence sub-bands are referenced
to the the bottom of the conduction sub-band at the Γ symmetry point in the Brillouin zone of the reciprocal lattice
space.

Parameter Symbol Value
lattice constant (nm) aL 0.565
static dielectric constant ε0 13.1
high frequency dielectric constant ε∞ 10.9
longitudinal optical (LO) phonon energy (eV) ωL0 0.0353
transverse optical (TO) phonon energy (eV) ωTO 0.0332
Faust-Henry coefficient CFH -0.28
Effective mass for the single equivalente conduction band m0 mC 0.067

TABLE S1. Dielectric response function input parameters for the intrinsic zinc blende GaAs at 300 K. The mass of the free
electron is m0. These GaAs data are from Ref. 25.

Parameter Symbol Value
bandgap (eV) EG = | − EνΓ| 1.424
effective mass for conduction band DOS (m0) mC 0.067
effective mass for valence band DOS (m0) mV 0.572
number of equivalent conduction bands NC 1
number of equivalent valence bands NV 1

TABLE S2. BGN model input parameters for intrinsic zinc blence GaAs at 300 K. Data taken from Ref. 25.

Parameters Symbol Value
bandgap (eV) EG = | − EνΓ| 1.424
bottom of the conduction L sub-band (eV) EcL 0.29
bottom of the conduction X sub-band (eV) EνX 0.48
top of the degenerate valence Γ sub-band (eV) −EνΓ 1.424
spin-orbit splitting (eV) −Eso 0.34
top of split-off valence Γ sub-band (eV) −EsoΓ = −EνΓ − Eso 1.764
effective mass of conduction Γ sub-band (m0) mcΓ 0.063
non-parabolicity factor for conduction band Γ sub-band ζ 0.824
transverse L sub-band mass (m0) mtL 0.075
longitudinal L sub-band mass (m0) mlL 1.9
effective mass of conduction L sub-band (mo) mcL = (mlLm

2
tL)1/3 0.222

transverse X sub-band mass (m0) mtX 0.19
longitudinal X sub-band mass (m0) mlX 1.9
effective mass of conduction X sub-band mass (m0) mcX(mlX m

2
tX)1/3 0.409

light hole mass of valence Γ sub-band (m0) mlh 0.082
heavy hole mass of valence Γ sub-band (m0) mhh 0.51
effective mass of valence Γ sub-band (m0) mνΓ 0.53
split-off band mass of the valence sub-band at Γ (m0) mso 0.15
number of equivalent conduction L sub-bands NcL 4
number of equivalent conduction X sub-bands NcX 3

TABLE S3. PDOS model input parameters for intrinsic zinc blence GaAs at 300 K. Data from Ref. 25
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Parameter Symbol Value
EΓ0 1.519 eV

Γ sub-band coefficients AΓ 0.540 meV/K
BΓ 204 K
EL0 1.815 eV

L sub-band coefficients AL 0.605 meV/K
BL 204 K
EX0 1.981 eV

X sub-band coefficients AX 0.460 meV/K
BX 204 K

TABLE S4. Coeffcients for the temperature dependence of the conduction band extrema. Data taken from Ref. 25

Band model Coeffcient Value
a0 17.3292
a1 13.1545 (eV−1)

BGN a2 -37.4789 (eV−2)
a3 26.5678 (eV−3)
a4 53.7760 (eV−4)
a0 17.5156
a1 12.8520 (eV−1)

PDOS2 a2 -34.5783 (eV−2)
a3 -27.3728 (eV−3)
a4 223.720 (eV−4)
a0 17.5198
a1 12.3461 (eV−1)

PDOS4 a2 -35.5542 (eV−2)
a3 40.1630 (eV−3)
a4 0
a0 17.6913
a1 13.8441 (eV−1)

PDOSNPG a2 -31.5108 (eV−2)
a3 -57.3738 (eV−3)
a4 544.398 (eV−4)

TABLE S5. Coefficients used in Eq. (18) and Fig. 4 in the main text for the four band models for GaAs.


