## **1** Supplementary Materials for

## 2 Neural basis of opioid-induced respiratory depression and its rescue

Shijia Liu<sup>1,2</sup>, Dongil Kim<sup>1</sup>, Tae Gyu Oh<sup>3</sup>, Gerald Pao<sup>4</sup>, Jonghyun Kim<sup>1</sup>, Richard D. Palmiter<sup>5</sup>,
 Matthew R. Banghart<sup>2</sup>, Kuo-Fen Lee<sup>1,2</sup>, Ronald M. Evans<sup>3</sup>, Sung Han<sup>1,2,\*</sup>

- <sup>5</sup> <sup>1</sup>Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
- <sup>2</sup> Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La
   Jolla, CA 92093, USA.
- <sup>3</sup>Howard Hughes Medical Institute, Gene Expression Laboratories, The Salk Institute for Biological
  Studies, La Jolla, CA 92037, USA.
- <sup>4</sup>Molecular and Cellular Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA
   92037, USA.
- <sup>5</sup>Howard Hughes Medical Institute, Department of Biochemistry, School of Medicine, University of
- 13 Washington, Seattle, WA 98195, USA.
- 14 \*Corresponding author. Email: sunghan@salk.edu.



Figure S1. Characterization of the Oprm1<sup>Cre</sup> mouse line and PBL<sup>Oprm1</sup> neurons. (A) RNA in situ 17 18 hybridization and quantification of the colocalization for Oprm1 and Cre mRNAs in the PBL of 19  $Oprm1^{Cre/+}$  mice (n = 902 cells from 3 animals). Arrowheads, double-labeled cells. Scale bar, 10 20 μm. (B) RNA in situ hybridization and quantification of the colocalization for Oprm1, Slc17a6 21 (encoding VGLUT2), and SIc32a1 (encoding VGAT) mRNAs in the PBL of wild type mice (n = 1552) 22 and 1431 cells from 3 animals). Arrowheads, Oprm1+/Slc17a6+ cells; asterisks, Oprm1-/Slc32a1+ 23 cells. Scale bar, 50 µm. (C) Example histology from Oprm1<sup>Cre</sup>::Ai14 double transgenic mice 24 showing tdTomato expression in the PBL and KF under the same microscope settings. Anatomical 25 landmarks for PBL: stcv, ventral spinocerebellar tract; scp, superior cerebellar peduncle; mcp, 26 middle cerebellar peduncle. Scale bar, 200 µm. (D) Oprm1<sup>Cre</sup> mice do not exhibit baseline breathing 27 differences compared to the wild type mice. Breathing rate before and after saline injection did not 28 display considerable differences across genotypes and within each genotype. Two-way ANOVA 29 with Bonferroni's multiple comparison post-hoc test. ns, not significant.



31 Figure S2. MOR signaling in the PBL is indispensable for OIRD. (A) Whole-body plethysmography 32 measured respiratory parameters before and after systemic injection of saline and morphine, after 33 conditional ablation (B) and rescue (D) of the MOR signaling in the PBL. (B) Example 34 plethysmograph after saline and morphine injections into the Oprm1<sup>#/#</sup> mice expressing AAV-GFP 35 and AAV-Cre-GFP in the PBL. (C) Confirmation of MOR deletion by MOR immunohistochemistry 36 after stereotaxic injection of AAV-Cre-GFP and control AAV-GFP into the PBL of the Oprm1<sup>fl/fl</sup> mice. 37 Scale bar, 100 µm. (D) Example plethysmograph after saline and morphine injections into the 38 Oprm1<sup>Cre/Cre</sup> mice expressing AAV-DIO-eYFP and AAV-DIO-hMOR in the PBL.





**Figure S3.** Morphine effect on locomotor activity. (A) Locomotor activity of *Oprm1<sup>Cre/+</sup>* mice after

42 morphine (40 mg/kg, i.p.) or saline injection was measured in the open field. (B) Systemic

- 43 morphine injection increased locomotor activity in  $Oprm1^{Cre/+}$  mice. Paired t-test, \*\*, p < 0.01.



51 Figure S4. Morphine eliminated the breathing predictor. Convergent cross-mapping (CCM) 52 prediction of breathing rate using calcium activity as inputs before and after saline (0.9%, i.p., A 53 and B) and morphine (40 mg/kg, i.p., C and D) injection. (A) After saline injection, the predicted 54 and observed breathing rate traces followed closely with each other during the 10-min example. 55 (B) Model predictability increased with the sample size before and after saline injection (n = 4). (C) 56 After morphine injection, the predicted and observed breathing rate traces no longer matched with 57 each other. (D) Model predictability increased with the sample size before morphine injection, but 58 the relationship was completely abolished after morphine injection (n = 4).



61 Figure S5. (A) Whole-body plethysmography was used to measure respiratory parameters before and after systemic injection of DMSO and SALB in the Oprm1<sup>Cre/Cre</sup> mice expressing AAV-DIO-62 63 eYFP and AAV-DIO-KORD in PBL<sup>oprm1</sup> neurons. (B) Example plethysmograph after DMSO and 7.5 mg/kg SALB injections in eYFP and KORD groups. KORD-expressing animals displayed a 64 65 slower respiratory rate after SALB injection compared to other groups. (C) Respiratory amplitude was not significantly changed before and after SALB injection, in both eYFP (n = 8) and KORD (n 66 67 = 11)-expressing animals. Two-way ANOVA with Bonferroni's multiple comparison post-hoc test, 68 ns, not significant. (D) Thermistor-based plethysmography was used for measuring respiration 69 before and after systemic injection of 40 mg/kg morphine and CNO in the Oprm1<sup>Cre/+</sup> mice 70 expressing AAV-DIO-eYFP and AAV-DIO-hM3Dg in PBL<sup>Oprm1</sup> neurons. (E) Respiratory amplitude 71 was not significantly changed before and after CNO injection, in both eYFP (n = 5) and hM3Dg-72 expressing animals (n = 6). Although there was a trend of increase in the hM3Dq group, it failed to 73 reach statistical significance. Two-way ANOVA with Bonferroni's multiple comparison post-hoc 74 tests, ns, not significant. (F) Activation of PBL<sup>oprm1</sup> neurons by injecting CNO (5 mg/kg, i.p.) in the 75 hM3Dq-expressing group (n = 6) completely rescued the minute volume to baseline level after 76 morphine-induced respiratory depression, but not in eYFP-expressing group (n = 4). (G) 77 Quantitative analysis of F showing CNO injection significantly increased the minute volume in the 78 hM3Dq-expressing group (n = 6), whereas failed to rescue in the eYFP-expressing group (n = 4). 79 Two-way ANOVA with Bonferroni's multiple comparison post-hoc test. \*\*, p < 0.01.



82 Figure S6. Rescuing of OIRD by activating endogenous GPCRs expressed on PBL<sup>Oprm1</sup> neurons. 83 (A) RNA in situ hybridization confirms the co-expression of mRNA of Oprm1 and five selected 84 GPCRs, Htr2a, Cckar, Tacr1, Tacr3, and Drd5, in the wild type mice. Arrowheads, double-labeled 85 cells. Scale bar, 50 µm. (B) Quantification of RNA in situ hybridization showing the colocalization 86 of Oprm1 and selective GPCR genes in the PBL of wild type mice (770, 539, 836, 657, 431 cells 87 for Htr2a, Cckar, Tacr1, Tacr3, and Drd5, respectively). (C-D) Normalized breathing rate (C) and 88 amplitude (D) before morphine injection (Baseline), 30 minutes after morphine injection (80 mg/kg, 89 s.c., M), and 30 minutes after drug injection into the PBL (M + Drug), for all six drugs tested. Large 90 variations in amplitude are due to the technical limitations of the piezoelectric sensor since its 91 location is subjective to the slight movements of the animal's body. Paired t-test, \*, p < 0.05; \*\*, p92 < 0.01. e Example plethysmograph showing the breathing rhythm changes at each stage of the 93 experiment. Note the decreased breathing rate after morphine injection and increased breathing 94 rate after TCB-2, CCK8S, and SP injections. The exact shape of the plethysmograph varies due to 95 the placement of the piezoelectric sensor.



**Figure S7.** Summary of the current study. PBL<sup>*Oprm1*</sup> neurons are critical players in OIRD pathogenesis and promising therapeutic targets for treating OIRD. In intact mice, inhibition of PBL<sup>*Oprm1*</sup> neurons through Gi-coupled GPCRs via endogenous MOR (mMOR), human MOR (hMOR), and KOR-derived DREADD (KORD) leads to respiratory depression. In contrast, activation of these neurons via artificial (hM3Dq) or endogenous G<sub>q/s</sub>-coupled GPCRs (Htr2a, Cckar, Tac1r) rescues OIRD. Artificial GPCRs are marked with asterisks. Created with BioRender.com.

## 118 Supplementary Table 1. List of pharmacological agents used in the current study.

| Drug Name                                  | Receptor<br>(Gene)                     | Receptor<br>Family | Concentration                                                                                                                                                                   | Solvent                                     | Company                  |
|--------------------------------------------|----------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------|
| Naloxone                                   | MOR<br>( <i>Oprm1</i> )                | Gi                 | 0.4 mg/mL (i.c.,<br>intracranial)                                                                                                                                               | 0.9%<br>saline                              | Somerset<br>Therapeutics |
| Morphine                                   | MOR<br>(Oprm1)                         | Gi                 | <ul> <li>80 mg/kg (s.c., for anesthesia experiments);</li> <li>10 mg/kg (i.p., for PBL-specific Oprm1 knockout);</li> <li>40 mg/kg (i.p., for all other experiments)</li> </ul> | 0.9%<br>saline                              | Spectrum<br>Chemical     |
| Salvinorin B<br>(SALB)                     | KORD                                   | Gi                 | 7.5 mg/kg (i.p.)                                                                                                                                                                | 0.9%<br>saline<br>containing<br>10%<br>DMSO | Cayman<br>Chemical       |
| Clozapine-<br>N-oxide<br>(CNO)             | hM3Dq                                  | Gq                 | 5 mg/kg (i.p.)                                                                                                                                                                  | 0.9%<br>saline                              | Cayman<br>Chemical       |
| TCB-2                                      | 5-HT <sub>2A</sub><br>( <i>Htr2a</i> ) | Gq                 | 1 mg/mL (i.c.)                                                                                                                                                                  | 0.9%<br>saline                              | Tocris<br>Bioscience     |
| CCK<br>Octapeptide,<br>sulfated<br>(CCK8S) | CCK₁R<br>( <i>Cckar</i> )              | Gq                 | 1 mg/mL (i.c.)                                                                                                                                                                  | 0.9%<br>saline                              | Abcam                    |
| Substance P                                | NK₁R<br>( <i>Tacr1</i> )               | Gq, Gs             | 1 mg/mL (i.c.)                                                                                                                                                                  | 0.9%<br>saline                              | Cayman<br>Chemical       |
| Senktide                                   | NK₃R<br>( <i>Tacr3</i> )               | Gq                 | 1 mg/mL (i.c.)                                                                                                                                                                  | 0.9%<br>saline                              | Cayman<br>Chemical       |
| SKF-83959                                  | D₅R ( <i>Drd5</i> )                    | Gs                 | 1 mg/mL (i.c.)                                                                                                                                                                  | 0.9%<br>saline<br>containing<br>5% DMSO     | Tocris<br>Bioscience     |

## 120 Supplementary Table 2. Key Resources Table

| Туре          | Designation                                          | Source or reference                   | Identifiers            |
|---------------|------------------------------------------------------|---------------------------------------|------------------------|
| Mouse strains | Oprm1-Cre:GFP                                        | Laboratory of Dr. Richard<br>Palmiter | N/A                    |
|               | Wild type C57BL/6J                                   | Jackson Laboratory                    | Stock No.<br>000664    |
|               | RiboTag <i>Rpl22<sup>HA/HA</sup></i>                 | Jackson Laboratory                    | Stock No.<br>011029    |
|               | Ai14 Gt(ROSA)26Sor <sup>tm14(CAG-</sup> tdTomato)Hze | Jackson Laboratory                    | Stock No.<br>007914    |
| Virus         | AAVDJ-CAG-Cre-GFP                                    | Salk Institute Viral Vector<br>Core   | N/A                    |
|               | AAVDJ-CAG-GFP                                        | Salk Institute Viral Vector<br>Core   | N/A                    |
|               | AAV-hSyn-DIO-mCherry-T2A-<br>FLAG-hOprm1             | Laboratory of Dr. Matthew<br>Banghart | N/A                    |
|               | AAV1-syn-FLEX-jGCaMP7s-<br>WPRE                      | Addgene                               | Addgene#<br>104491     |
|               | AAVDJ-EF1a-DIO-hM3D(Gq)-<br>mCherry                  | Salk Institute Viral Vector<br>Core   | Addgene#<br>50460      |
|               | AAV-DIO-KORD-mCitrine                                | Laboratory of Dr. Richard<br>Palmiter | N/A                    |
|               | AAV1-DIO-eYFP                                        | Laboratory of Dr. Richard<br>Palmiter | N/A                    |
| Antibodies    | Anti-hemagglutinin1.1, mouse (1:1000)                | BioLegend                             | RRID<br>AB_256533<br>5 |

|                    | Anti-GFP, chicken (1:1000)                                         | Aves Labs                              | RRID<br>AB_230731<br>3 |
|--------------------|--------------------------------------------------------------------|----------------------------------------|------------------------|
|                    | Anti-MOR, rabbit (1:1000)                                          | ImmunoStar                             | RRID<br>AB_572251      |
|                    | Alexa Fluor® 647-conjugated<br>Donkey Anti-Mouse IgG<br>(1:1000)   | Jackson ImmunoResearch<br>Laboratories | RRID<br>AB_234086<br>3 |
|                    | Alexa Fluor® 488-conjugated<br>Donkey Anti-Chicken IgY<br>(1:1000) | Jackson ImmunoResearch<br>Laboratories | RRID<br>AB_234037<br>5 |
|                    | Alexa Fluor® 647-conjugated<br>Donkey Anti-Rabbit IgG<br>(1:1000)  | Jackson ImmunoResearch<br>Laboratories | RRID<br>AB_249228<br>8 |
| RNAscope<br>probes | Oprm1                                                              | Advanced Cell Diagnostics              | 315841                 |
|                    | Htr2a                                                              | Advanced Cell Diagnostics              | 401291                 |
|                    | Cckar                                                              | Advanced Cell Diagnostics              | 313751                 |
|                    | Drd5                                                               | Advanced Cell Diagnostics              | 494411                 |
|                    | Tacr3                                                              | Advanced Cell Diagnostics              | 481671                 |
|                    | Tacr1                                                              | Advanced Cell Diagnostics              | 428781                 |
|                    | Cre                                                                | Advanced Cell Diagnostics              | 402551                 |
|                    | Slc17a6                                                            | Advanced Cell Diagnostics              | 319171                 |
|                    | Slc32a1                                                            | Advanced Cell Diagnostics              | 319191                 |
| Chemicals          | FluoSpheres 540/560 (10%<br>v/v)                                   | Thermo Fisher                          | Cat# F8809             |

|          | Cholera Toxin Subunit B-555 | Invitrogen                                            | Cat#<br>C34776          |
|----------|-----------------------------|-------------------------------------------------------|-------------------------|
|          | Naloxone                    | Somerset Therapeutics                                 | Cat#<br>7006900711<br>0 |
|          | Morphine                    | Spectrum Chemical                                     | Cat# M1167              |
|          | TCB-2                       | Tocris Bioscience                                     | Cat# 2592               |
|          | CCK Octapeptide, sulfated   | Abcam                                                 | Cat#<br>ab120209        |
|          | Substance P                 | Cayman Chemical                                       | Cat# 24035              |
|          | Senktide                    | Cayman Chemical                                       | Cat# 16721              |
|          | SKF-83959                   | Tocris Bioscience                                     | Cat# 2074               |
|          | Clozapine N-oxide           | Cayman Chemical                                       | Cat# 16882              |
|          | Salvinorin B                | Cayman Chemical                                       | Cat# 11488              |
|          | 2-methylbutane              | Fisher Chemical                                       | Cat#<br>O35514          |
| Software | Doric Neuroscience Studio   | Doric Lenses                                          | N/A                     |
|          | RStudio                     | RStudio                                               | Version<br>1.2.5001     |
|          | rEDM                        | https://cran.r-<br>project.org/web/packages/rE<br>DM/ | Version<br>0.7.2        |
|          | rEDM                        | https://ha0ye.github.io/rEDM/                         | Version<br>0.7.4        |
|          | LabChart                    | ADInstruments                                         | Version 8               |
|          | BZ-X viewer                 | Keyence                                               | N/A                     |
|          | OlyVIA                      | Olympus Life Science                                  | N/A                     |
|          | PRISM                       | GraphPad Software                                     | Version 6               |

|     | Illustrator | Adobe | Version CS6 |
|-----|-------------|-------|-------------|
|     |             |       | and CC2018  |
|     |             |       |             |
| 121 |             |       |             |