Supporting Information for:

Differential immune imprinting by influenza virus vaccination and infection in nonhuman primates

Kevin R. McCarthy, Tarra A. Von Holle, Laura L. Sutherland, Thomas H. Oguin III, Gregory D. Sempowski, Stephen C. Harrison, M. Anthony Moody

Macaque	Sex	Age		
6145	Male	Adult		
T651	Female	Adult		
T771	Male	Adult		
7071	Female	Adult		
7072	Female	Adult		
7073	Female	Adult		

Table S1 Macaque information

Table S2	Mutations disrupt binding by antibodies
	with known epitope

	Epitope	Antibody	Fold reduction		
X31-mRBS	RBS	C05	367		
X31-mRBS	RBS	HC19	12		
X31-mInterface	Interface	H2214	65		
X31-mHC45	Head	HC45	21		
X31-mK1747	Mid HA	K1747	145		
X31-Delta Stem	Stem	FI6	>500		
X31-mCR8020	Stem	CR8020	63		

Loss of affinity, expressed as an n-fold ratio, was determined using KD values from ELISA with mutant and wild type HA with the specified monoclonal antibodies, in order to verify that the mutations introduced into HA for epitope mapping disrupted binding.

Isolate	Abbrev.	# Diff.	% Div.
A/Aichi/02/1968(H3N2)	H3-HK-1968	0	0
A/Port Chalmers/1/1973(H3N2)	H3-PC-1973	20	4
A/Victoria/3/1975(H3N2)	H3-VI-1975	28	5
A/Texas/1/1977(H3N2)	H3-TX-1977	35	7
A/Bangkok/01/1979(H3N2)	H3-BK-1979	41	8
A/Philippines/2/1982(H3N2)	H3-PH-1982	46	9
A/Shanghai/11/1987(H3N2)	H3-SH-1987	53	10
A/Beijing/353/1989(H3N2)	H3-BJ-1989	55	11
A/Johannesburg/33/1994(H3N2)	H3-JB-1994	63	12
A/Moscow/10/1099(H3N2)	H3-MO-1999	60	12
A/Wisconsin/67/2005(H3N2)	H3-WI-2005	73	14
A/California/04/2009(H1N1)	H1-CA-2009	291	56
A/dfeb/BO/PBV780-781/2011(H18N11)	H18-BO-2011	331	62
B/Phuket/3073/2013	B-PK-2013	400	74

Fig. S1 Influenza isolates used in this study

Fig. S2. Reactivities of macaque sera.

Graphs show reciprocal serum titers for the indicated HA proteins, as measured by ELISA. For each panel the time points on the x-axis correspond to Fig. 1 and are: Time 0 (T0), peak 1 (p1), baseline 1 (b1), peak 2 (p2), baseline 2 (b2), peak 3 (p3).

Macaque sera were tested by microneutralization assay; the reciprocal neutralizing titers are graphed. For each panel the time points on the x-axis correspond to Fig. 1 and are: Time 0 (T0), peak 1 (p1), baseline 1 (b1), peak 2 (p2), baseline 2 (b2), peak 3 (p3).

Fig. S4. Cross reactivity of macaque sera

Using the averaged ELISA titers for each cohort, we calculated the percentage of the HA-directed serum response that reacts with heterologous HAs ((Heterologous titer ÷ H3-HK-1968 titer)*100). For each panel the time points on the x-axis correspond to Fig. 1 and are: Time 0 (T0), peak 1 (p1), baseline 1 (b1), peak 2 (p2), baseline 2 (b2), peak 3 (p3).

Fig. S5. Sequence alignment of wild-type and mutant HA variants Differences from the reference strain, wild type A/Aichi/02/1968(H3N2)(X31), are shown as letters; identities are shown as dots.

	1 10	20		30	40	50		60	70	80
X31-WT	QDL P GNDNSTA	TLCLGHHAVP	NGTLVKT	ITDDQIEV	TNATELV	QSSSTGK I	CNNPHRII	LDGIDCTLI	DALLGDPH	L CDVFQNETWD
X31-mRBS X31-mInterface X31-mHC45 X31-m1747 X31-delta stem X31-m8020 X31-3xhead X31-3xhead mInterface	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · N · T ·						R
X31-WT	90 LFVERSKAFSN	100 ICYPYDVPDYA	110 SLRSLVA	120 SSGTLEFI	TEGFTWT	130 GVTQNGGS	140 NACKRGPO	150 GSGFFSRLN	16 WLTKSGST	0 170 YPVLNVTMPN
X31-mRBS X31-mInterface X31-mHC45 X31-m1747 X31-delta stem X31-m8020 X31-3xhead X31-3xhead mInterface	· · · · · N · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · I · R SN	NN S · · · · · · · · · · · · · · · · · ·	· · · · KN · · ·	· · · · · · · · · · · · · · · · · · ·
X31-WT	180 NDNFDKLYIWG	190 I HHP STDQEQ	TSLYVQA	200 SGRVTVST	210 RRSQQTI	220 IPNIGSRP	WVRGLSSF	230 RISIYWTIV	240 KpgdvlvII	250 NSNGNLIAPR
X31-mRBS X31-mInterface X31-mHC45 X31-m1747 X31-delta stem X31-m8020 X31-3xhead X31-3xhead mInterface	· · · · · · · · · · · · · · · · · · ·	R · · · · · · · · · · · · · · · · · · ·	· K · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	R · · DQ · · · · · · · · · · · · · · · ·	G · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
V24 MF	260	270	280	290		300	310	320	33	0 340
X31-WT X31-mRBS X31-mInterface X31-mHC45 X31-m1747 X31-delta stem X31-m8020 X31-3xhead X31-3xhead mInterface	GYFKMRTGKSS		· · · · · · · · · · · · · · · · · · ·	PNGSTPNL	K P F QN VN	KTTYGACP		L K L A I GMRN	••••••••••••••••••••••••••••••••••••••	
	350	360		370	380	390		400	410	420
X31-WI X31-mRBS X31-mInterface X31-mHC45 X31-m1747 X31-delta stem X31-m8020 X31-3xhead X31-3xhead mInterface	NGWE GM I DGWY	GFRHQNSEGT	GQAADLK	STQAA I DQ	• I NGK L NR	VIEKTNEK	HQIEKER	+ S E V E G R I Q	UL EKYVED	I K I DLWSYNA
V04.44	430	440	450	460		470	480	490	50	0 510
X31-WI X31-mRBS X31-mInterface X31-mHC45 X31-m1747 X31-delta stem X31-m8020 X31-3xhead	ELLVALENQHT	I D L T D S EMNK	L F E K T R R	QLRENAED	MGNGCFK	I YHKCDNA	C I E S I RNO	G I'YDHDVYR	DEALNNRF	Q I K G VE L K S G

X31-3xhead mInterface

Fig. S6. Mode of exposure influences the distribution of epitopes bound by serum antibodies.

ELISA ED50 data used for Fig 3. For each panel the time points on the x-axis correspond to Fig. 1 and are: Time 0 (T0), peak 1 (p1), baseline 1 (b1), peak 2 (p2), baseline 2 (b2), peak 3 (p3).