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Fig. S1. Unliganded ELIC in SMA nanodiscs: cryo-EM micrographs, 2D class averages, and Fourier Shell Correla�on (FSC)
plots. (A) Representa�ve micrograph with defocus 1.62 Å. (B) Selected 2D class averages. (C) FSC curves computed
between independently refined half maps (“gold-standard” procedure). The global resolu�on was es�mated using the
1/7 (≈ 0.143) cut-off criterion (1) upon applica�on of a �ght so�-edged mask and high-resolu�on noise subs�tu�on (2).
(D) FSC curve computed between the sum of experimental half maps and a noise-free map calculated from the ELIC–SMA
atomic model. A so�-edged mask was applied to the experimental map before computa�on of the curve. The resolu�on
at which the map–model FSC equals 0.5 (2.7 Å) is similar to the global resolu�on of the 3D reconstruc�on calculated from
the half maps (2.5 Å), as expected from the theore�cal rela�onship between full maps, half maps, noiseless maps, and
correctly built atomic models (1).
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B Slice at the level of the ECD–TMD interface

A central slice

Fig. S2. Local-resolu�on map. (A, B) Different views of the 3D reconstruc�on of unliganded ELIC–SMA colored according
to local resolu�on (display level = 0.57). Local resolu�on was es�mated with MonoRes (3) in Xmipp/Scipion 2.0 (4) using
the (unfiltered and unsharpened) sum of experimental half maps and a binary mask. The la�er was created by loosely
thresholding the former (level = 0.22) in an a�empt to exclude voxels occupied by protein, bound phospholipids, and
other nanodisc components from the noise-only volume.
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Fig. S3. Effect of local sharpening. (A–C) Different views of the sum of experimental half maps, the locally sharpened map,
and a map calculated from the atomic model. Local sharpening was performed with LocalDeblur (5)  in Xmipp/Scipion 2.0
(4) on the basis of the local-resolu�on map in SI Appendix, Fig. S2.
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M2–M3 linkerM1–M2 linker
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Fig. S4. Map–model fit. Different regions of the unliganded ELIC–SMA atomic model and corresponding densi�es. The
display level is 0.8 for the M4 α-helix, and 1.2 for all other regions. Molecular images were prepared with Chimera X (6).
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Fig. S5. Pore profiles. The color code is the same for both panels. (A) Pore-radius profiles of the indicated atomic
models es�mated using HOLE (7). The zero-value along the y-axis corresponds to the mean posi�on of the Cα
atoms of the conserved 9ʹ leucines. (B) Distances between the axis of ion permea�on and the Cα atoms for
residues in the pore-lining M2 α-helices of the indicated atomic models. M2 residues are denoted using the
prime-numbering system.
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Fig. S6. Superposi�on of pore-lining M2 α-helices (posi�on –3ʹ to posi�on 21ʹ). (A–F) Pairwise superposi�on of unliganded
ELIC–SMA and two X-ray crystal structures: unliganded ELIC (PDB ID: 2VL0; 8) and unliganded α-GluCl (PDB ID: 4TNV; 9).
The atomic models were superposed in such a way as to minimize the Cα–Cα distance between aligned residues; they are
displayed in trace representa�on, and the loca�on of Cα atoms is indicated with spheres. For clarity, in C and F, only two
non-adjacent subunits are displayed. Molecular images were prepared with VMD (10).
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Fig. S7. Unliganded ELIC in POPC-only nanodiscs. Improved 3D reconstruc�on of detergent-solubilized ELIC recons�tuted
into POPC-only nanodiscs in the absence of ligands. (A) FSC curves computed between independently refined half maps
(gold-standard procedure). The global resolu�on was es�mated using the 1/7 (≈ 0.143) cut-off criterion (1) upon applica�on
of a �ght so�-edged mask and high-resolu�on noise subs�tu�on (2). (B) FSC curve computed between the sum of experimental
half maps and a noise-free map calculated from the ELIC–POPC atomic model. A so�-edged mask was applied to the
experimental map before computa�on of the curve. The resolu�on at which the map–model FSC equals 0.5 (3.5 Å) is similar
to the global resolu�on of the 3D reconstruc�on calculated from the half maps (3.3 Å), as expected from the theore�cal
rela�onship between full maps, half maps, noiseless maps, and correctly built atomic models (1). (C–E) Superposi�on of
pore-lining M2 α-helices (posi�on –3ʹ to posi�on 21ʹ) of unliganded ELIC–SMA and unliganded ELIC–POPC. The models
were superposed in such a way as to minimize the Cα–Cα distance between aligned residues; they are displayed in trace
representa�on, and the loca�on of Cα atoms is indicated with spheres. For clarity, in E, only two non-adjacent subunits
are displayed. Molecular images were prepared with VMD (10).
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Fig. S8. The cardiolipin-binding site in ELIC overlaps with ivermec�n’s in α-GluCl. (A, B) Different views of the structural
alignment of the atomic models of unliganded ELIC–SMA and ivermec�n-bound α-GluCl (PDB ID: 3RIF; 11). Cardiolipin
(cyan-colored carbon atoms) and ivermec�n (yellow-colored carbon atoms) are displayed in s�ck representa�on. The
two proteins are displayed in ribbon representa�on, in ghost mode, using the same color (gray). “+” and “–” denote the
“principal” and “complementary” subunits, respec�vely. Molecular images were prepared with VMD (10).
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Fig. S9. Non-bilayer conforma�ons and loca�ons of firmly bound lipids in other membrane proteins. Proteins are
displayed in ribbon representa�on; lipids, in s�ck. (A) Cardiolipin in the X-ray crystal structure of bovine
cytochrome bc1 (PDB ID: 6XVF; resolu�on = 3.50 Å; ref. 12). A dashed-line circle highlights the phosphate–glycerol–
phosphate polar head group. (B) Cardiolipin in the X-ray crystal structure of bovine cytochrome c oxidase (PDB ID:
2DYR; resolu�on = 1.80 Å; ref. 13). A dashed-line oval highlights the phosphate–glycerol–phosphate polar head group.
(C) Glucosylgalactosyl diacylglycerol in the X-ray crystal structure of the photosynthe�c reac�on center from
Rhodobacter sphaeroides (PDB ID: 1M3X; resolu�on = 2.55 Å; ref. 14). A dashed-line oval highlights the disaccharide
head group. Molecular images were prepared with VMD (10).
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Fig. S10. Non-bilayer conforma�on and loca�on of a firmly bound lipid in the muscle-type AChR. Phospha�dylcholine 
bound to the β1 subunit in the cryo-EM structure of the Torpedo AChR (PDB ID: 6UWZ; resolu�on = 2.69 Å; ref. 15). 
The protein is displayed in ribbon representa�on; the lipid, in s�ck. A dashed-line oval highlights the phosphocholine 
polar head group. Molecular images were prepared with VMD (10).
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Fig. S11. Residues near the head group of cardiolipin in other membrane proteins. Two arginines and one phenylalanine
near the phosphate–glycerol–phosphate moiety of a cardiolipin in mitochondrial complex I from the yeast Yarrowia
lipolytica (PDB ID: 6YJ4; 16). Amino-acid side chains (yellow-colored carbon atoms) and cardiolipin (cyan-colored carbon
atoms) are displayed in s�ck representa�on. The molecular image was prepared with VMD (10).
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Table S1. Cryo-EM data-collection, processing, and model-refinement statistics 
 

Sample 
Unliganded ELIC in SMA 

nanodiscs 
Unliganded ELIC 

in POPC-only nanodiscs 

Data collection 

Grids Holey carbon Carbon lacey nanowire 
Vitrification method Leica EM GP2 Spotiton 

Microscope Krios Krios 
Voltage (kV) 300 300 

Magnification factor 22,500 45,454 
Detector K2 Summit K2 Summit 

Recording mode Counting Counting 
Electron-dose rate (e–Å–2s–1) 7.06 7.6 
Total electron dose (e–Å–2) 70.58 63.56 

Pixel size (Å) 1.073 1.096 
Number of frames 50 50 

Total exposure time (s) 10 10 
Set defocus range (µm) –0.3 to 3.3 1.5 to 2.2 

EM-data processing 

Number of micrographs 4,639 1,129 
Number of picked particles 1,952,324 138,410 

Number of particles used for 
refinement 

1,239,532 38,381 

Symmetry imposed C5 C5 
Resolution (Å) 

(half map–half map, 
FSC threshold = 0.143)  

2.5 3.3 

Coordinate refinement and validation 

RMSD bonds (Å) 0.008 0.009 
RMSD angles (°) 0.610 0.754 

Ramachandran favored (%) 92.23 91.26 
Ramachandran outliers (%) 0 0 

Rotamer outliers (%) 3.96 0.36 
Map–model cross correlation 

(CC, main chain) 
0.84 0.83 

Clashscore 4.46 6.02 
MolProbity score 2.16 1.84 
EMRinger score 4.92 3.3 

Map–model FSC (Å) 
(threshold = 0.5) 

2.7 3.5 
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