

Supplementary Information for

Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance

Joshua M. Borin, Sarit Avrani, Jeffrey E. Barrick, Katherine L. Petrie, and Justin R. Meyer

*Justin R. Meyer Email: jrmeyer@ucsd.edu

This PDF file includes:

Supplementary text Figures S1 to S9 Tables S1 to S2 SI References

Supplementary Information Text

Atrn Resistance. The mechanisms by which some mutations affected λtrn resistance were unclear. All bacterial isolates from the coevolution experiment possessed a 12,090 bp deletion comprising 14 unannotated genes. Moreover, all populations (but not all isolates) were also found to have a 4 bp CCAG duplication in the coding sequence of another unannotated gene. And thirdly, the λtrn-sensitive isolate P1-T30-1 had a 777 bp IS element excision of loci *insB-22*, *insA-22* and *ECB_02825* that have previously been found to confer λtrn resistance through epistasis with mutations in *maIT* (2). However, no *maIT* mutations were found in any of the 12 strains isolated from day 30. These results beg the question: How did these bacteria reach high densities in flasks with λtrn if they were sensitive? The mechanism by which the 777 bp deletion interacts with mutations in *maIT* is unknown and it is possible that this deletion also interacts with mutations at other loci. Although we were unable to detect growth of day-30 isolates when cocultured with λtrn, it is likely that these isolates are more resistant than their ancestor REL606—but that our assay was not sensitive enough to discriminate these differences.

Lastly, we point out two instances where λ trn recombined into the host genome. In λ trn Population 2, the completely resistant isolate P2-T25-9 had 18 mutations in *ybcD*, a predicted prophage replication protein fragment gene, from positions 539,643 to 539,915. Additionally, the completely resistant isolate P3-T15-2 from Population 3 had 4 mutations in *ybcT*, a phage lysis gene, from positions 549,746 to 549,772. BLASTX of mutant sequences to REL606 and λ reference genomes revealed a 100% match with λ , whereas they showed 89% and 96.88% identity with REL606, respectively, confirming that these sequences originated from the phage. Although both recombinations from phage were found in bacteria that evolved complete resistance, we have no evidence that these recombinations carry any selective benefit. More likely, recombination occurred due to the endogenous lambda red system which recombines homologous sequences at a high rate.

Phage Adaptation and Suppression of Resistance. For λtrn Population 1, comparisons were drawn from cultures where phage inoculums were not significantly different (p=0.09, two-sample t-test) and the mean density of λtrn (\bar{x} =1.17×10⁸ pfu/mL) was higher than λtrn-P1-T25 (\bar{x} =6.25×10⁷ pfu/mL). For Population 2, λtrn-P2-T15 led to greater suppression (p=0.02, two sample t-test) and the mean density of λtrn -P2-T15 led to greater suppression (p=0.22, two-sample t-test) and the mean density of λtrn-P2-T15 (\bar{x} =8.13×10⁷ pfu/mL) was higher than λtrn (\bar{x} =5.39×10⁷ pfu/mL). We note that when mean density of λtrn was higher than λtrn-P2-T15 (albeit not significantly, p=0.24) we found no difference in suppression. Lastly, for Population 3, λtrn+phage led to greater suppression (p=0.034, two sample t-test, Fig. 5G, 5H) when the mean density of λtrn (\bar{x} =3.19×10⁸ pfu/mL) was higher than for λtrn-P3-T5 (\bar{x} =9.69×10⁷ pfu/mL). Notably, when significantly more λtrn was used (\bar{x} =6.38×10⁸ pfu/mL compared to \bar{x} =3.88×10⁸ pfu/mL, p=0.02, two-sample t-test), λtrn-P3-T5 still showed significantly more suppression of host P3-T5-1-P (p=0.02, two-sample t-test).

Figure S1. Diversity of resistance profiles determined from OD growth trajectories of bacterial isolates growing without (black, dotted) and with phage (solid, teal for λ unt, red for λ trn) for 20 h. Plot titles indicate the bacterial isolate and resistance status. Apart from the ancestor REL606, isolates are labeled as [Population]-[Day Isolated]-[Isolate #]-[Resistance Status], where S = Sensitive, P = Partial Resistance, and R = Complete Resistance. Isolates were deemed sensitive if no growth was observed in the presence of phage, partially resistant if there was growth and inhibition, and completely resistant if there appeared to be no inhibition of growth by phage. Panels A-D correspond with phage λ unt and panels E-L with λ trn.

		Resistant Bacterial Host					
		P2-T25-9-R	P3-T15-2-R				
	λtrn						
	λtrn-P2-T27-1						
	λtrn-P2-T27-2						
	λtrn-P2-T27-3						
	λtrn-P2-T27-4						
ate	λtrn-P2-T27-5						
lsol	λtrn-P2-T27-6						
ge	λtrn-P3-T20-1						
Pha	λtrn-P3-T20-2						
	λtrn-P3-T20-3						
	λtrn-P3-T20-4						
	λtrn-P3-T20-5						
	λtrn-P3-T20-6						

Figure S2. Infectivity of λ trn and descendant phages on bacterial hosts isolated from the coevolution experiment. Hosts (columns, labeled as in Fig. S1) were completely resistant to λ trn due to *malT* and *OmpF* mutations (see Fig. S3). Lysates of λ trn and descendant phage isolates were spotted onto host infused LB agar. Fill indicates resistance/infectivity (grey = resistant, red = sensitive).

	1-2-R	6-1-R	-1-R	-2-P	5-1-P	0-1-S	5-1-P	0-1-P	25-10-P	5-9-R	-1-P	5-2-R	4	4	¥			
Genome	13	E.	-13	-12	-13	-13	E.	-13	- T 2	12	- T5	EL-	42-	43-	47-			
position	P1	P2	P3	P1	PI	P1	P2	P2	P2	P2	P3	P3	E,	f	n n	Mutation	Annotation	Gene
12,965																15 bp duplication*	coding	dnaK
37,281																C→A	A798A (GC <u>C</u> →GC <u>A</u>)	carB
112,876																$(T)_{5 \rightarrow 6}$	coding	secA
242,025																Δ21,535 bp	between IS <i>I</i>	ECB_00212- phoE
248,651																C→A	H180N	lpcA
539,643																G→T	pseudogene	vbcD
539,649																C→T	pseudogene	vhcD
539.661																G→C	pseudogene	vhcD
539 664																$C \rightarrow T$	nseudogene	vhcD
539,670																$T \rightarrow C$	pseudogene	vbcD
539,673																	pseudogene	ybeD
539,075																$C \rightarrow A$	pseudogene	ybcD
539,079																A→G	pseudogene	ybcD
539,681										_						+1	pseudogene	ybcD
539,686																2 bp→A	pseudogene	ybcD
539,694	_															C→T	pseudogene	ybcD
539,698																C→A	pseudogene	ybcD
539,721																A→C	pseudogene	ybcD
539,827																T→G	pseudogene	ybcD
539,879																$G \rightarrow T$	intergenic	ybcD / renD
539,891																A→G	intergenic	ybcD / renD
539,893																A→C	intergenic	ybcD / renD
539,907																$G \rightarrow C$	intergenic	ybcD / renD
539,915																T→C	intergenic	ybcD / renD
549,746																$C \rightarrow T$	R57R (CG <u>C</u> \rightarrow CG <u>T</u>)	vbcT
549,764																A→G	A63A ($GCA \rightarrow GCG$)	vbcT
549,767																G→C	L64L $(CTG \rightarrow CTC)$	vbcT
549,772																A→C	E66A (GAA \rightarrow GCA)	vhcT
																		ECB 00726-
787,879	_															Δ12,090 bp		ECB_00739
1,003,024																C→A	D351Y (<u>G</u> AC \rightarrow <u>1</u> AC)	ompF
1,003,277																A→C	F266L (TT <u>T</u> →TT <u>G</u>)	ompF
1,117,882																G→A	intergenic	csgD / csgB
1,230,063																$(T)_{8 \rightarrow 9}$	pseudogene	hlyE
1,893,290																A→C	L35* (T <u>T</u> A \rightarrow T <u>G</u> A)	prc
2,103,918																$(CCAG)_{7 \rightarrow 8}$	coding	ECB 01992
2,183,354																A→G	E91E (GAA \rightarrow GAG)	cdd
3,023,945																∆777 bp		insB-22– ECR 02825
3 481 793																A→T	137F (ATC \rightarrow TTC)	malT
3 482 405																Λ^{20} bp	coding	malT
5,402,495																25 hn	coung	mail
3,482,706																duplication [†]	coding	malT
3 734 067																A1 bp	coding	aumD
3,734,007																A 1 80.4 hm	IS I modiated	gumD
<u>3,730,304</u>																G \T		waac-waar
4.141.100																U→1	$\mathbf{NJOL}(\mathbf{UU}) \rightarrow \mathbf{UII}$	VIIC

Figure S3. Mutations of representative bacterial isolates. Teal and red labels correspond to isolates from λ unt and λ trn coevolution treatments, respectively. Orange corresponds with isolates from fluctuation tests. Coevolution isolates are labeled as in Fig. S1. S, P, and R within the labels indicate resistance level (Sensitive, Partial Resistance, and Complete Resistance) relative to the phage ancestor with which they evolved. Mutations were classified as putatively resistant if they occurred in genes 1) known to be involved in λ infection or 2) evolved in multiple populations, fluctuation tests, or previous coevolution experiments (yellow rows). *(AAGCGGCAGAAAAAG) †(AGTGGGAACTGGCGGCGGAGCTGCC).

Figure S4. Principal Component Analysis (PCA) of the differences in OD trajectories of representative bacterial isolates growing without and with phages in plate reader experiments. PC1 distinguishes between sensitive, partial, and complete resistance against ancestral phages from respective coevolution treatments (λ unt or λ trn). See Fig. S7 to assess the correlation between PC1 and a commonly calculated measure of resistance, Efficiency of Plating (EOP). Apart from the ancestor REL606, isolates are labeled adjacent to points as in Fig. S1 with their names additionally preceded with the phage treatment.

Figure S5. Coevolved λ unt+ phages do not show improved suppression of resistant bacteria isolated on the very first day resistance was detected. Panels A-C: Growth trajectories of replicate wells were inoculated with ~1000 cells of the resistant host and either λ unt (teal, n=6) or a contemporary λ unt+ phage (purple, n=3) from the same population and time-point as the host. Panel A pertains to host P1-T3-2-R. Panel B pertains to host P2-T3-1-R. Panel C pertains to host P3-T3-1-R. Panel D: Efficiency of plating (EOP) of λ unt and λ unt+ phages on respective, resistant hosts compared to on REL606. One explanation for why λ unt+ stains do not possess enhanced ability to suppress resistant bacteria is that they may not have had an opportunity to evolve yet. We can reject this explanation because each isolate gained multiple mutations in the reactive region of host recognition gene *J*. These mutations were identified in previous coevolution experiments and were shown to be adaptive; λ unt-P1-T3: C2999T, G3319A. λ unt-P2-T3 and λ unt-P3-T3: C2999T, C3147A, T3380C (1,2). The conclusion is that despite gaining adaptive mutations, λ unt+ strains were still unable to significantly suppress resistant bacteria.

Figure S6. Emergence and density of OmpF⁺ phages evolved *de novo* during the initial experiment (Fig. 1) in the λ unt treatment. OmpF⁺ phages in Population 1 (solid, red), Population 2 (dotted, green), and Population 3 (dashed, blue) were first detected on days 17, 22, and 19, respectively. OmpF⁺ phages were detected and enumerated by spotting phage lysate on soft agar plates infused with cells of a LamB⁻ REL606 mutant.

Figure S7. Correlation between Principal Component 1 (PC1, see Fig. S4) and Efficiency of Plating (EOP) of different representative resistant bacterial isolates (Spearman's rank correlation, n=11, p=0.0003, rho=-0.879). Higher values of PC1 and lower values of EOP correspond with greater resistance. Bacteria are labeled are as in Fig. S1 with their names additionally preceded with the phage treatment.

λunt_J_1545-2796 λtrn_J_1545-2796 REL606_ECB_00512	500	1000	1500	2000	2500
Consensus					
Conservation					

Figure S8. Alignment of recombination region (*J* positions 1545-2796) of λ unt (no recombination) and λ trn (with recombination) with REL606 *ECB_00512* (genome positions 551811-554657). Sequence alignment was conducted in CLC Sequence Viewer 8.0.

Figure S9. Mutations in the reactive region of host recognition gene *J* of new trained phage genotypes. λ newOmpF+ phages at top (mutations indicated by green) and λ newOmpF- phages at bottom (mutations indicated by blue). Symbols at right indicate how different genotypes correspond with lines in Fig. 7.

Table S1. Genomic differences between untrained phage λ unt (λ cl26) and trained phage λ trn. For genomic differences between λ unt and the λ reference genome (GenBank: NC_001416) see Meyer et al. 2012 (1). Synonymous mutations are in green and nonsynonymous mutations in blue. Mutations from position 17,049 to 17,868 evolved via recombination with a relict prophage in the genome of REL606 (1).

Genome			Amino acid		
position	Mutation	Туре	change	Gene	Product
11,451	$C \rightarrow T$	Substitution	A304V	Н	Tail component
17,049	$C \rightarrow T$	Recombination	S515S	J	Tail: host specificity protein
17,055	$T \rightarrow C$	Recombination	G517G	J	Tail: host specificity protein
17,059	$G \rightarrow A$	Recombination	A519T	J	Tail: host specificity protein
17,081	+G	Recombination	_	J	Tail: host specificity protein
17.082	$A \rightarrow C$	Recombination	G526G	J	Tail: host specificity protein
17.085	$\Delta 1$ bp	Recombination	_	J	Tail: host specificity protein
17.088	$C \rightarrow G$	Recombination	G528G	J	Tail: host specificity protein
17.090	$A \rightarrow G$	Recombination	N529S	J	Tail: host specificity protein
17.136	$A \rightarrow G$	Recombination	V544V	J	Tail: host specificity protein
17,160	$T \rightarrow C$	Recombination	G552G	J	Tail: host specificity protein
17.183	$A \rightarrow G$	Recombination	E560G	J	Tail: host specificity protein
17,200	$C \rightarrow T$	Recombination	L566L	J	Tail: host specificity protein
17.211	$A \rightarrow C$	Recombination	R569R	J	Tail: host specificity protein
17.280	$G \rightarrow A$	Recombination	V592V	J	Tail: host specificity protein
17.328	$A \rightarrow C$	Recombination	E608D	J	Tail: host specificity protein
17.334	$T \rightarrow C$	Recombination	S610S	J	Tail: host specificity protein
17.343	$G \rightarrow A$	Recombination	V613V	J	Tail: host specificity protein
17.391	$T \rightarrow C$	Recombination	Т629Т	J	Tail: host specificity protein
17.409	$T \rightarrow C$	Recombination	Y635Y	J	Tail: host specificity protein
17.421	$G \rightarrow C$	Recombination	A639A	J	Tail: host specificity protein
17.424	$A \rightarrow C$	Recombination	R640R	J	Tail: host specificity protein
17.430	$C \rightarrow T$	Recombination	D642D	J	Tail: host specificity protein
17.433	$A \rightarrow G$	Recombination	T643T	J	Tail: host specificity protein
17.457	$T \rightarrow C$	Recombination	S651S	J	Tail: host specificity protein
17.466	$C \rightarrow T$	Recombination	L654L	J	Tail: host specificity protein
17.469	$T \rightarrow C$	Recombination	R655R	J	Tail: host specificity protein
17,478	+GG	Recombination	_	J	Tail: host specificity protein
17.487	$C \rightarrow T$	Recombination	D661D	J	Tail: host specificity protein
17,494	$A \rightarrow C$	Recombination	S664R	J	Tail: host specificity protein
17,502	$G \rightarrow A$	Recombination	R666R	J	Tail: host specificity protein
17.535	$A \rightarrow T$	Recombination	Т677Т	J	Tail: host specificity protein
17,547	$G \rightarrow A$	Recombination	T681T	J	Tail: host specificity protein
17,556	$G \rightarrow T$	Recombination	A684A	J	Tail: host specificity protein
17,586	$G \rightarrow A$	Recombination	A694A	J	Tail: host specificity protein
17,613	$T \rightarrow G$	Recombination	D703E	Ĵ	Tail: host specificity protein
17,652	$A \rightarrow G$	Recombination	A716A	J	Tail: host specificity protein
17,659	$2hn \rightarrow CA$	Recombination		J	Tail: host specificity protein
17,673	$G \rightarrow A$	Recombination	Т723Т	J	Tail: host specificity protein
17,679	$C \rightarrow G$	Recombination	G725G	J	Tail: host specificity protein
17 721	$C \rightarrow T$	Recombination	D739D	J	Tail: host specificity protein
17,759	$A \rightarrow G$	Recombination	0752R	J	Tail: host specificity protein
17,775	$A \rightarrow G$	Recombination	R757R	J	Tail: host specificity protein
17,788	+CA	Recombination		J	Tail: host specificity protein
17 795	Λ^2 hp	Recombination	_	J	Tail: host specificity protein
17.805	$T \rightarrow C$	Recombination	G767G	J	Tail: host specificity protein
17,862	$C \rightarrow T$	Recombination	Y786Y	J	Tail: host specificity protein
17,868	$T \rightarrow C$	Recombination	Y788Y	J	Tail: host specificity protein
18.285	$C \rightarrow A$	Recombination	D927E	J	Tail: host specificity protein
	~			•	hose specificity protein

18,297	4bp → ATAT	Recombination	_	J	Tail: host specificity protein
18,503	$C \rightarrow T$	Substitution	A1000V	J	Tail: host specificity protein
18,538	$A \rightarrow G$	Substitution	S1012G	J	Tail: host specificity protein
18,814	$C \rightarrow T$	Substitution	H1104Y	J	Tail: host specificity protein
18,823	$G \rightarrow A$	Substitution	D1107K	J	Tail: host specificity protein
18,825	$T \rightarrow A$	Substitution	D1107K	J	Tail: host specificity protein
18,868	$A \rightarrow T$	Substitution	I1122F	J	Tail: host specificity protein
19,260	$T \rightarrow C$	Substitution	L99P	lom	Outer host membrane
20,661	$A \rightarrow G$	Substitution	K338E	0rf- 401	Tail fiber protein
45,176	$(G)_{5 \rightarrow 6}$	Insertion	—	0rf- 64	Hypothetical prot./anti-holin

Table S2. Primers used to amplify segments of λ gene *J* for engineering alleles with the recombination.

Primer ID	Primer Position	Sequence $(5' \rightarrow 3')$
J Forward	15 bp upstream	CTGCGGGCGGTTTTGTCATT
2906 J Forward	Intergenic (2906)	CTCCGGGACGCTCAGTA
J Reverse	318 bp downstream	ACGTATCCTCCCCGGTCATCACT

SI References

- 1. J. R. Meyer et al., Repeatability and contingency in the evolution of a key innovation in
- a. K. Weyer et al., Repeatability and contingency in the evolution of a key innovation phage lambda. *Science* 335, 428-432 (2012).
 A. Gupta *et al.*, Leapfrog dynamics in phage-bacteria coevolution revealed by joint analysis of cross-infection phenotypes and whole genome sequencing. *bioRxiv* doi: 10.1101/2020.10.31.337758