
Supplementary Data File 2: Bioinformatics analyses 

The code which generated the results in this Supplementary Data File is available at: 

https://github.com/UofABioinformaticsHub/20190129_Lardelli_FMR1_RNASeq  

Introduction: 

Previously, a differential gene expression analysis was performed using limma (Ritchie et al., 2015;Law et 

al., 2016). However, in our experience, the generalised linear model (GLM) capabilities of edgeR 

(Robinson et al., 2010;Law et al., 2016) detect more differentially expressed genes.  

Prior to count-level analysis, the initial dataset was pre-processed using the following steps: 

• Adapters were removed from any reads derived from RNA fragments < 300bp 
• Bases were removed from the end of reads when the quality score dipped below 20 
• Reads < 35bp after trimming were discarded 

After trimming alignment was performed using STAR v2.5.3a to the Danio rerio genome included in 

Ensembl Release 94 (GRCz11). Aligned reads were counted using featureCounts (Liao et al., 2014) for 

each gene if alignments were unique and overlapped strictly within exonic regions. Undetectable genes 

(genes which contained less than one counted alignment in at least 4 of the 8 samples) were excluded 

from the analysis.  

Initial differential gene expression analysis: 

We first performed an initial differential gene expression analysis using the generalised linear model 

functionality of edgeR. EdgeR uses a negative binomial variance function and estimates dispersions 

using the Cox-Reid profile-adjusted likelihood (CR) method (Robinson et al., 2010).  We specified a 

design matrix with the wild type genotype as the intercept (or baseline) and the effect of 

homozygosity for the hu2787 allele of fmr1 as a coefficient (Table S1).  

 

Table S1: Design matrix used in differential expression analysis 

 (Intercept) fmr1hu2787/hu2787 

S2 1 1 

S4 1 1 

S5 1 1 

S8 1 1 

A 1 0 

D 1 0 

G 1 0 

L 1 0 

 

After dispersions were estimated and the negative binomial model was fitted, likelihood ratio tests 

were performed to determine which genes were significantly differentially expressed (FDR-adjusted 

p-value < 0.05) in the fmr1hu2787/hu2787 samples. We identified 14 differentially expressed genes in this 

https://github.com/UofABioinformaticsHub/20190129_Lardelli_FMR1_RNASeq


differential expression test and these genes mostly had low/average expression levels ( Figure S2). 

This bias may impact gene set enrichment analysis and should be corrected for, as gene sets with 

low-medium expressed genes will appear as enriched for being upregulated. 

 

 

Figure S2: Mean-difference (MD) plot displaying the average expression level (logCPM) against the 

log2 fold change (logFC) of each gene. Differentially expressed genes are coloured in red. The blue 

fitted line from a generalised additive model (gam) identified a small bias for lowly expressed genes 

to be upregulated.  

In response to the observed bias, cqn (Hansen et al., 2012) was used to rectify this issue as it may be 

derived from either a length or GC artefact. GC and length information for each gene was obtained 

from the Ensembl database (GRCz11, release 98). For input to cqn, GC content and length were 

taken as weighted averages and simple averages respectively. 



 

Figure S3: Model fits for GC content and gene length under the cqn model. Variability between 

samples is clearly visible. 

We then performed an additional differential gene expression analysis, including the offset term 

generated by cqn when fitting the negative binomial model. The likelihood ratio tests from this 

model identified 21 differentially expressed genes. Comparison of the MD plots before and after cqn 

show that the observed bias was mostly removed, suggesting the gene GC content and length were 

contributing factors.  

 

Figure S4: Comparison of mean difference plots before and after conditional quantile 

normalisation (cqn). The bias evident in a) the pre-cqn plots is no longer present in b) the post-cqn 

plot, suggesting GC and length bias were contributing factors. Blue fit lines are derived from 

generalised additive models.  

We next tested for over-representation of genes based on which chromosome they are located on 

using goseq (Young et al., 2010). Goseq tests whether there is over-representation of pre-defined 

gene sets amongst the set of DE genes. It does not take into account the magnitude or direction of 



the fold change. However, it can take into account a bias of a gene being classified DE due to its GC 

content. We found that genes on chromosome 14 were highly over-represented in the DE genes 

(Table S2).  

Table S2: Enrichment testing within the differentially expressed genes based 
on chromosomal location 

 

Chromosome Expected Observed 
Gene Set 

Size 
p-value pbonferroni 

14 0.76 12 664 ~0 ~0 

6 0.94 2 820 0.26 1 

7 1.08 2 942 0.33 1 

10 0.75 1 653 0.51 1 

17 0.81 1 703 0.55 1 

22 0.72 1 629 0.56 1 

19 0.83 1 721 0.57 1 

4 0.80 1 695 0.57 1 
 

We next tested for over-representation of the KEGG and HALLMARK gene sets within the DE gene 

list. We downloaded the KEGG and HALLMARK gene sets from the Molecular Signatures database 

(MSigDB) as a .gmt file with human gene Entrez identifiers. The human gene Entrez identifiers were 

converted to zebrafish Ensembl identifiers using a mapping file downloaded from the Ensembl 

Biomart web server (https://m.ensembl.org/biomart). Some genes in the KEGG gene sets did not 

contain a zebrafish orthologue. Therefore, the gene sets occasionally contained only a small number 

of genes and this would not be particularly informative. For this reason, only KEGG gene sets which 

contained > 10 zebrafish genes were retained for analysis.  

We identified that the KEGG gene sets for lysosome and glycosphingolipid biosynthesis globo series 

were significantly over-represented in the set of DE genes. The HALLMARK gene set for early 

estrogen response approached significance for over-representation. The results from enrichment 

testing for HALLMARK gene sets within the set of DE genes is found in Table S3 and the results for 

the KEGG gene sets are found in Table S4. 

Table S3: Enrichment testing for HALLMARK gene sets within the set of differentially expressed 
genes 

 

HALLMARK Gene Set Expected Observed 
Gene Set 

Size 
p-value pBonferroni 

ESTROGEN RESPONSE EARLY 0.19 2 168 0.01 0.08 

PROTEIN SECRETION 0.11 1 94 0.10 0.72 

INFLAMMATORY RESPONSE 0.13 1 116 0.13 0.90 

HALLMARK COMPLEMENT 0.18 1 155 0.16 1.00 

ESTROGEN RESPONSE LATE 0.19 1 162 0.18 1.00 

P53 PATHWAY 0.21 1 183 0.19 1.00 

MTORC1 SIGNALING 0.23 1 198 0.21 1.00 

 

https://m.ensembl.org/biomart


Table S4: Enrichment testing for KEGG gene sets within the set of differentially expressed genes  

 

KEGG gene set Expected Observed GS Size p-value pbonferroni 

LYSOSOME 0.13 2 114 0.00 0.02 

GLYCOSPHINGOLIPID 
BIOSYNTHESIS GLOBO SERIES 

0.01 1 8 0.01 0.05 

GALACTOSE METABOLISM 0.02 1 20 0.01 0.11 

SPHINGOLIPID METABOLISM 0.04 1 34 0.03 0.21 

GLYCEROLIPID METABOLISM 0.04 1 37 0.03 0.23 

DRUG METABOLISM 
CYTOCHROME P450 

0.04 1 32 0.03 0.24 

METABOLISM OF XENOBIOTICS 
BY CYTOCHROME P450 

0.04 1 33 0.03 0.24 

GLUTATHIONE METABOLISM 0.05 1 41 0.04 0.32 

 

Next, we performed gene set enrichment analysis (GSEA) on all detectable genes in the RNA -seq 

experiment to obtain a more complete view on the changes to gene expression due to fmr1 

genotype. We performed GSEA using the fry (Wu et al., 2010;Ritchie et al., 2015) algorithm from 

the limma package. Fry approximates the ROAST method, which uses residual space rotation rather 

than permutations to determine the significance of a gene set showing changes to gene expression 

(Wu et al., 2010). Using this method, we did not find any significantly altered gene sets (KEGG, 

HALLMARK or chromosome position) after FDR adjustment of the mixed p-value. The top 10 results 

are shown in the Table S5. 

Table S5: Top 10 most highly ranked gene sets across chromosome position, HALLMARK and 
KEGG testing using fry. Tests were non-directional (Mixed). 

 

Gene set Number of genes p-value pFDR 

chromosome 14 664 6.1E-04 0.16 

KEGG HISTIDINE METABOLISM 23 0.005 0.35 

HALLMARK MYC TARGETS V2 57 0.006 0.35 

KEGG VALINE LEUCINE AND 
ISOLEUCINE DEGRADATION 

44 0.006 0.35 

KEGG RNA POLYMERASE 26 0.007 0.35 

KEGG GLYCOSPHINGOLIPID 
BIOSYNTHESIS GLOBO SERIES 

8 0.008 0.35 

KEGG GALACTOSE METABOLISM 20 0.009 0.35 

KEGG GLYCEROLIPID 
METABOLISM 

37 0.02 0.39 

KEGG RNA DEGRADATION 54 0.02 0.39 

KEGG 
GLYCOSYLPHOSPHATIDYLINOSITO

L GPI ANCHOR BIOSYNTHESIS 
22 0.02 0.39 



  

Analysis of genes on chromosome 14: 

The set of genes located on chromosome 14 was found to be over-represented in the DE list by 

goseq, and was the gene set identified by fry to contain the most DE genes (Table S5), although it did 

not attain the threshold for significance (p<0.05). We hypothesised that the most differentially 

expressed genes from chromosome 14 might be enriched in a particular biological pathway which 

could explain the over-representation detected by goseq (see Table S2 above).  

To investigate this, we performed the fast implementation of the GSEA (Subramanian et al., 2005) 

algorithm, fgsea (Korotkevich et al., 2021), on the gene sets for chromosome position to obtain a list 

of the “leading edge” genes for chromosome 14. The first step for fgsea is to generate a ranked list 

of all genes in the experiment. We ranked genes based on the statistical significance of their 

differential expression (without direction). A visual representation of the ranked list is shown in 

Figure S5. 

 

Figure S5: Visual representation of the ranked list. 

All detectable genes were ranked on the statistical significance of their differential expression, 

resulting in the most differentially expressed genes at the start of the ranked list (i.e. smallest p -

value), and the least differentially expressed genes at the end of the ranked list (largest p-value).  

We used this ranked list as input for fgsea, which tests whether there is an enrichment of pre-

defined gene sets at either end of the ranked list. We considered a gene set to be enriched if the 

Bonferroni adjusted p-value was < 0.05. Table S6 gives the significantly enriched chromosome 

position gene sets identified by fgsea.  

  



Table S6: Chromosomal position gene sets found to be significantly enriched by fgsea. 
Gene set p-value Bonferroni 

adjusted 
p-value 

Enrichment 
score 

Normalised 
enrichment 
score 

Gene set 
size 

Chromosome 14 1e-5 0.00026 0.53 1.398 664 
Chromosome 22 2e-5 0.00052 0.46 1.2 629 

 

The leading edge genes for each gene set from the fgsea algorithm are the most highly ranked genes 

of a gene set in the ranked list and contribute most to its enrichment. Figure S6 shows the 

enrichment plots of genes found on chromosomes 14 and 22 relative to the ranked list. The leading 

edge genes are the genes which are positioned in the ranked list before the peak of the enrichment 

score.  

 

Figure S6: Enrichment plot of genes from chromosome 14 and 22.  

The x-axis shows the ranked list of genes, with black bars indicating a gene from A) chromosome 14 

and B) chromosome 22, and missing bars indicating a gene not from either chromosome. The y -axis 

gives the enrichment score, with the green line indicating the running enrichment score along the 

ranked list. The genes located before the peak are the leading edge subset.  

To determine whether the leading edge subset of genes from chromosome 14 are enriched in any 

biological pathways, we performed over-representation analysis on the chromosome 14 leading 

edge against all detectable genes in the RNA-seq experiment. We found that the KEGG gene sets for 

RNA polymerase and neuroactive ligand receptor interactions were found to be significantly enriched 

after correction for multiple testing by FDR, but not by the more stringent Bonferroni method ( Table 

S7). 

  



 

Table S7: Top 7 KEGG gene sets found to be over-represented in the chromosome 14 leading 
edge relative to all genes detected in the RNA-seq experiment.  

Gene set p-value pFDR pbonf No. genes in 
leading edge 

No. genes in 
gene set 

RNA POLYMERASE 0.00303 0.043 0.061 3 26 
NEUROACTIVE LIGAND RECEPTOR 
INTERACTION 

0.0043 0.043 0.086 6 135 

AMYOTROPHIC LATERAL SCLEROSIS 
ALS 

0.0188  0.0942 0.375 3 50 

GLYCOSAMINOGLYCAN 
BIOSYNTHESIS HEPARAN SULFATE 

0.0274 0.0942 0.547 2 23 

LONG TERM POTENTIATION 0.038 0.0942 0.769 3 66 

LYSOSOME 0.0401 0.0942 0.802 4 114 

APOPTOSIS 0.041 0.0942 0.829 3 68 
 



 

 



Figure S7: Pathview visualisation of changes to gene expression in neuroactive ligand receptor 

interactions and the RNA polymerase complex.  

The Kyoto Encyclopedia of Genes and Genomes, KEGG, pathways for A, neuroactive ligand receptor 

interactions and B, RNA polymerase, with the intensity of the colour representing the log2FC of each 

gene. Genes which are present in the leading edge of chromosome 14 are indicated with the orange 

boxes. Plots are adapted from Pathview (Luo and Brouwer, 2013) and displayed with permission of 

KEGG, (Kanehisa and Goto, 2000).  

As an alternative viewpoint, we performed over-representation analysis on the chromosome 14 

leading edge subset against all genes on chromosome 14. No significant over-representation was 

found (Table S8). However, all three genes from the ALS and long term potentiation gene sets which 

are found on chromosome 14 are present in the leading edge subset, suggesting a possible co-

regulatory mechanism.  

 

Table S8: Top 7 KEGG gene sets found to be over-represented in the chromosome 14 leading 
edge relative to all genes on chromosome 14.  

Gene set p-value pFDR pbonf No. genes 
in leading 
edge 

No. genes 
in gene set 
on chr 14.  

AMYOTROPHIC LATERAL SCLEROSIS 
ALS 

0.0296 0.16 0.591       3 3 

LONG TERM POTENTIATION 0.0296 0.16 0.591 3 3 
ALZHEIMERS DISEASE 0.0343 0.16 0.696 4 5 

FOCAL ADHESION 0.0274 0.16 1 4 6 
NEUROACTIVE LIGAND RECPTOR 
INTERACTION 

0.038 0.16 1 6 11 

APOPTOSIS 0.0401 0.16 1 3 4 
RNA POLYMERASE 0.041 0.16 1 3 4 

 

Testing the influence of w2 (nacre) mutation contamination 

Some of the parents used to generate the clutches of larvae in this experiment were heterozygous 

for the w2 allele of melanocyte inducing transcription factor a (mitfa), a C to T point mutation which 

results in a premature stop codon in exon 3 of mifta (Lister et al., 1999). (Apparently this allele was 

present in the original stock of fmr1hu2787 fish we imported into Australia.) 

We first assessed the proportion of reads which aligned to the w2 allele of mifta relative to the wild 

type allele to estimate the proportion of parents who carried the w2 allele. Sample “D” and “S5” had 

relatively high proportions of w2-aligned reads. Samples S2, S4 and S8 had relatively low proportions 

of w2-aligned reads. Samples A, G and L had no reads aligned to the w2 allele. Exploratory analysis 

between the proportion of reads aligning to the w2 allele and the first four principal components of 

the dataset (which capture approximately 85% of the total variability) did not identif y any strong 

correlations.  

To determine whether the proportion of w2 reads affects the results of a differential gene 

expression test, we used the proportion of w2 reads as a blocking variable (as a categorical factor, 

with no, low and high w2 contamination as the levels) in a limma voom analysis with the 

duplicateCorrelation function. A comparison between a ranking statistic (sign(logFC) x -log10(p-



value)) showed marginal changes to the results of the DE analysis. Therefore, the presence of the w2 

allele in mifta likely has minimal effects on DE analysis and can be ignored (Figure S8).  

 

Figure S8: Presence of the w2 allele of mifta does not greatly affect the transcriptomes of pooled 

fmr1-/- larvae.  

A) Alignment of reads to the w2 site of melanocyte inducing transcription factor a (mitfa, on 

chromosome 6, position 43429185 according to the GRCz11 build of the zebrafish genome). B) 

Percentage of reads aligning to the w2 site for each sample. C) Pearson correlations between the 

first four principal components of the conditional-quantile normalised expression values for each 

gene, and the proportion of reads aligning to the w2 site (prop_nacre), fmr1 genotype, and RNA-seq 



library size (lib.size). D) Proportion of w2 (nacre) reads shown against the first four principal 

component values. Minimal correlation is observed. However, the standard errors (grey) for the 

regression lines in blue are large, suggesting that the effect is not highly significant. E) Scatterplot 

showing a ranking statistic (sign(logFC) * -log10(p-value)) for each gene with and without using the 

proportion of w2 reads as a blocking variable in a limma voom analysis. The most highly ranked 

genes (i.e. the most differentially expressed) do not change when including the proportion of w2 

reads in the model.  
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