Supplementary DataFile 2: Bioinformatics analyses
The code which generated the results in this Supplementary Data File is available at:

https://qithub.com/UofABioinformaticsHub/20190129 Lardelli FMR1 RNASeq

Introduction:

Previously, a differential gene expression analysis was performed using limma (Ritchie et al., 2015;Law et
al., 2016). However, in our experience, the generalised linear model (GLM) capabilities of edgeR
(Robinson etal., 2010;Law et al., 2016) detect more differentially expressed genes.

Prior to count-level analysis, the initial dataset was pre-processed using the following steps:

e Adapters were removed from any reads derived from RNA fragments < 300bp
e Baseswere removed from the end of reads when the quality score dipped below 20
e Reads < 35bp after trimming were discarded

After trimming alignment was performed using STAR v2.5.3a to the Danio rerio genome included in
Ensembl Release 94 (GRCz11). Aligned reads were counted using featureCounts (Liao et al., 2014) for
each gene if alignments were unique and overlapped strictly within exonic regions. Undetectable genes
(genes which contained less than one counted alignment in atleast 4 of the 8 samples) were excluded
from the analysis.

Initial differential gene expression analysis:

We first performed aninitial differential gene expression analysis using the generalised linear model
functionality of edgeR. EdgeR usesanegative binomial variance function and estimates dispersions
using the Cox-Reid profile-adjusted likelihood (CR) method (Robinson et al., 2010). We specified a
design matrix with the wild type genotype as the intercept (or baseline) and the effect of
homozygosity forthe hu2787 allele of fmr1as a coefficient (Table S1).

Table S1: Design matrix used in differential expression analysis
(Intercept) fmr1hu2787/hu2787

S2 1 1

sS4 1 1

S5 1 1
S8 1 1

A 1 0

D 1 0

G 1 0

L 1 0

Afterdispersions were estimated and the negative binomial model was fitted, likelihood ratio tests
were performed to determine which genes weresignificantlydifferentially expressed (FDR -adjusted
p-value <0.05) inthe fmri1hv2787/hu2787 samples. We identified 14 differentially expressed genesin this
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differential expression test and these genes mostly had low/average expression levels ( Figure S2).
This bias may impact gene setenrichment analysis and should be corrected for, as gene sets with
low-medium expressed genes will appear as enriched for being upregulated.
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Figure S2: Mean-difference (MD) plot displaying the average expression level (logCPM) against the
log, fold change (logFC) of each gene. Differentially expressed genes are colouredinred. The blue
fitted line from a generalised additive model (gam) identified a small bias for lowly expressed genes
to be upregulated.

In response to the observed bias, cgn (Hansen etal., 2012) was used to rectify thisissue asit may be
derived from eitheralength or GC artefact. GC and length information foreach gene was obtained
fromthe Ensembl database (GRCz11, release 98). Forinputto cqn, GC contentand length were
takenas weighted averages and simple averages respectively.
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Figure S3: Model fits for GC content and gene length underthe cqn model. Variability between
samplesisclearly visible.

We then performed an additional differential gene expression analysis, including the offsetterm
generated by cqn when fitting the negative binomial model. The likelihood ratio tests from this
model identified 21 differentially expressed genes. Comparison of the MD plots before and aftercqn
show that the observed bias was mostly removed, suggestingthe gene GC contentand length were
contributing factors.
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Figure S4: Comparison of mean difference plots before and after conditional quantile
normalisation (cqn). The bias evidentin a) the pre-cqgn plotsis nolonger presentin b) the post-cqn
plot, suggesting GCand length bias were contributing factors. Blue fit lines are derived from
generalised additive models.

We nexttested forover-representation of genes based on which chromosome they are located on
using goseq (Youngetal., 2010). Goseq tests whetherthereis over-representation of pre-defined
gene setsamongstthe set of DE genes. It does not take into account the magnitude ordirection of



the fold change. However, it can take into accounta bias of a gene being classified DE due to its GC
content. We found that genes on chromosome 14 were highly over-represented in the DE genes

(Table S2).

Table S2: Enrichment testing within the differentially expressed genes based
on chromosomal location

Chromosome | Expected | Observed Ge;\iezeSet p-value Pbonferroni
14 0.76 12 664 ~0 ~0
6 0.94 2 820 0.26 1
7 1.08 2 942 0.33 1
10 0.75 1 653 0.51 1
17 0.81 1 703 0.55 1
22 0.72 1 629 0.56 1
19 0.83 1 721 0.57 1
4 0.80 1 695 0.57 1

We nexttested forover-representation of the KEGGand HALLMARK gene sets withinthe DEgene
list. We downloaded the KEGGand HALLMARK gene sets from the Molecular Signatures database
(MSigDB) as a .gmt file with human gene Entrezidentifiers. The human gene Entrezidentifiers were
converted to zebrafish Ensembl identifiers using a mapping file downloaded from the Ensembl
Biomartweb server (https://m.ensembl.org/biomart). Some genesinthe KEGGgene setsdid not
contain a zebrafish orthologue. Therefore, the gene sets occasionally contained only asmall number
of genesand this would not be particularly informative. Forthisreason, only KEGG gene sets which
contained > 10 zebrafish genes were retained foranalysis.

We identified that the KEGG gene sets for lysosome and glycosphingolipid biosynthesis globo series
were significantly over-represented in the set of DE genes. The HALLMARK gene setforearly
estrogen response approached significance for over-representation. The results from enrichment
testing for HALLMARK gene sets within the set of DE genesisfoundin Table S3 and the resultsfor
the KEGG gene sets are found in Table S4.

Table S3: Enrichment testing for HALLMARK gene sets within the set of differentially expressed

genes

HALLMARK Gene Set Expected Observed Ge:iez:eSet p-value | Peonferroni
ESTROGEN RESPONSE EARLY 0.19 2 168 0.01 0.08
PROTEIN SECRETION 0.11 1 94 0.10 0.72
INFLAMMATORY RESPONSE 0.13 1 116 0.13 0.90
HALLMARK COMPLEMENT 0.18 1 155 0.16 1.00
ESTROGEN RESPONSE LATE 0.19 1 162 0.18 1.00
P53 PATHWAY 0.21 1 183 0.19 1.00
MTORC1 SIGNALING 0.23 1 198 0.21 1.00
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Table S4: Enrichment testing for KEGG gene sets within the set of differentially expressed genes

KEGG gene set Expected Observed GS Size p-value | Puonferroni
LYSOSOME 0.13 2 114 0.00 0.02
GLYCOSPHINGOLIPID
BIOSYNTHESIS GLOBO SERIES bR 1 € LLeE Ligs
GALACTOSE METABOLISM 0.02 1 20 0.01 0.11
SPHINGOLIPID METABOLISM 0.04 1 34 0.03 0.21
GLYCEROLIPID METABOLISM 0.04 1 37 0.03 0.23
DRUG METABOLISM
CYTOCHROME PA450 0.04 1 32 0.03 0.24
METABOLISM OF XENOBIOTICS
BY CYTOCHROME P450 0.04 1 33 0.03 0.24
GLUTATHIONE METABOLISM 0.05 1 41 0.04 0.32

Next, we performed geneset enrichmentanalysis (GSEA) on all detectable genesinthe RNA-seq
experimentto obtain amore complete view on the changesto gene expression due to fmri
genotype. We performed GSEA using the fry (Wu et al., 2010;Ritchie etal., 2015) algorithm from
the limma package. Fry approximates the ROAST method, which uses residual space rotation rather
than permutations to determine the significance of agene set showingchangesto gene expression
(Wu etal., 2010). Using this method, we did not find any significantly altered gene sets (KEGG,
HALLMARK or chromosome position) after FDR adjustment of the mixed p-value. The top 10 results
are shownin the Table S5.

Table S5: Top 10 most highly ranked gene sets across chromosome position, HALLMARK and
KEGG testing using fry. Tests were non-directional (Mixed).

Geneset Number of genes p-value Pror
chromosome 14 664 6.1E-04 0.16

KEGG HISTIDINE METABOLISM 23 0.005 0.35
HALLMARK MYC TARGETS V2 57 0.006 0.35

KEGG VALINE LEUCINEAND

ISOLEUCINE DEGRADATION “ 0.006 0.35

KEGG RNA POLYMERASE 26 0.007 0.35

KEGG GLYCOSPHINGOLIPID

BIOSYNTHESIS GLOBO SERIES 8 0.008 0-35

KEGG GALACTOSE METABOLISM 20 0.009 0.35

KEGS E?_;YBC(;E E(SJII\'/IIP D 37 0.02 0.39

KEGG RNA DEGRADATION 54 0.02 0.39
KEGG

GLYCOSYLPHOSPHATIDYLINOSITO 22 0.02 0.39

L GPI ANCHORBIOSYNTHESIS




Analysis of genes on chromosome 14:

The set of geneslocated on chromosome 14 was found to be over-represented in the DE list by
goseq, and was the gene setidentified by fry to contain the most DE genes (Table S5), although it did
not attain the threshold forsignificance (p<0.05). We hypothesised that the most differentially
expressed genes from chromosome 14 might be enriched ina particular biological pathway which
could explainthe over-representation detected by goseq (see Table S2 above).

To investigate this, we performed the fastimplementation of the GSEA (Subramanian etal., 2005)
algorithm, fgsea (Korotkevich et al., 2021), on the gene sets for chromosome position to obtainalist
of the “leading edge” genes for chromosome 14. The first step forfgseais to generate a ranked list
of all genesinthe experiment. We ranked genes based on the statistical significance of their
differential expression (without direction). A visual representation of the ranked listis shownin
Figure S5.
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Figure S5: Visual representation of the ranked list.

All detectable genes wereranked on the statistical significance of their differential expression,
resultinginthe most differentially expressed genes at the start of the ranked list (i.e.smallestp-
value), and the least differentially expressed genes at the end of the ranked list (largest p-value).

We usedthisranked listasinputfor fgsea, which tests whetherthere is an enrichment of pre-
defined genesetsateitherend of the ranked list. We considered agene setto be enriched if the
Bonferroni adjusted p-value was <0.05. Table S6 gives the significantly enriched chromosome
position gene setsidentified by fgsea.



Table S6: Chromosomal position gene sets found to be significantly enriched by fgsea.

Gene set p-value Bonferroni Enrichment Normalised | Geneset
adjusted score enrichment | size
p-value score

Chromosome 14 | le-5 0.00026 0.53 1.398 664

Chromosome 22 2e-5 0.00052 0.46 1.2 629

The leading edge genesforeach gene set fromthe fgseaalgorithm are the most highly ranked genes
of agenesetintherankedlistand contribute mosttoits enrichment. Figure S6 shows the
enrichment plots of genes found on chromosomes 14 and 22 relative to the ranked list. The leading
edge genesare the genes which are positioned in the ranked list before the peak of the enrichment
score.
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Figure S6: Enrichment plot of genes from chromosome 14 and 22.

The x-axis shows the ranked list of genes, with black bars indicatingagene from A) chromosome 14
and B) chromosome 22, and missing barsindicatingagene notfrom either chromosome. The y-axis
givesthe enrichmentscore, with the green line indicating the running enrichment score along the
ranked list. The geneslocated before the peak are the leading edge subset.

To determine whetherthe leading edge subset of genesfrom chromosome 14 are enriched inany
biological pathways, we performed over-representation analysis on the chromosome 14 leading
edge against all detectable genesinthe RNA-seq experiment. We found thatthe KEGG gene sets for
RNA polymerase and neuroactive ligand receptor interactions were found to be significantly enriched
aftercorrection for multipletesting by FDR, but not by the more stringent Bonferroni method ( Table
S7).



Table S7: Top 7 KEGG gene sets found to be over-represented in the chromosome 14 leading
edge relative to all genes detectedinthe RNA-seq experiment.

Gene set p-value | pror Pbonf No.genesin | No.genesin
leadingedge | geneset

RNA POLYMERASE 0.00303 | 0.043 | 0.061 3 26

NEUROACTIVE LIGAND RECEPTOR 0.0043 0.043 | 0.086 6 135

INTERACTION

AMYOTROPHICLATERAL SCLEROSIS | 0.0188 0.0942 | 0.375 3 50

ALS

GLYCOSAMINOGLYCAN 0.0274 0.0942 | 0.547 2 23

BIOSYNTHESIS HEPARAN SULFATE

LONG TERM POTENTIATION 0.038 0.0942 | 0.769 3 66

LYSOSOME 0.0401 0.0942 | 0.802 4 114

APOPTOSIS 0.041 0.0942 | 0.829 3 68
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Figure S7: Pathview visualisation of changes to gene expression in neuroactive ligand receptor
interactions and the RNA polymerase complex.

The Kyoto Encyclopedia of Genes and Genomes, KEGG, pathways for A, neuroactive ligand receptor
interactions and B, RNA polymerase, with the intensity of the colour representing the log,FC of each
gene. Geneswhichare presentinthe leading edge of chromosome 14 are indicated with the orange
boxes. Plots are adapted from Pathview (Luo and Brouwer, 2013) and displayed with permission of
KEGG, (Kanehisaand Goto, 2000).

As an alternative viewpoint, we performed over-representation analysis on the chromosome 14
leading edge subset against all genes on chromosome 14. No significant over-representation was
found (Table S8). However, all three genes from the ALS and long term potentiation gene sets which
are found on chromosome 14 are presentinthe leading edge subset, suggesting a possible co-
regulatory mechanism.

Table S8: Top 7 KEGG gene sets found to be over-represented in the chromosome 14 leading

edge relative to all genes on chromosome 14.

Gene set p-value Pror Poonf No.genes | No.genes
inleading | ingene set
edge on chr 14.

AMYOTROPHIC LATERAL SCLEROSIS | 0.0296 0.16 0591 |3 3

ALS

LONG TERM POTENTIATION 0.0296 0.16 0591 |3 3

ALZHEIMERS DISEASE 0.0343 0.16 0.69 |4 5

FOCALADHESION 0.0274 0.16 1 4 6

NEUROACTIVE LIGAND RECPTOR 0.038 0.16 1 6 11

INTERACTION

APOPTOSIS 0.0401 0.16 1 3 4

RNA POLYMERASE 0.041 0.16 1 3 4

Testing the influence of w2 (nacre) mutation contamination

Some of the parents used to generate the clutches of larvae in this experiment were heterozygous
for the w2 allele of melanocyte inducing transcription factor a (mitfa), aC to T point mutation which
resultsina premature stop codonin exon 3 of mifta (Listeretal., 1999). (Apparently thisallelewas
presentin the original stock of fmr1"#?787 fish we imported into Australia.)

We firstassessed the proportion of reads which aligned to the w2allele of mifta relative to the wild
type allele to estimate the proportion of parents who carried the w2allele. Sample “D” and “S5” had
relatively high proportions of w2-aligned reads. Samples S2, S4and S8 had relatively low proportions
of w2-aligned reads. Samples A, G and L had noreads aligned tothe w2 allele. Exploratory analysis
between the proportion of reads aligning to the w2allele and the first four principal components of
the dataset (which capture approximately 85% of the total variability) did notidentify any strong
correlations.

To determine whether the proportion of w2reads affects the results of a differentialgene
expression test, we used the proportion of w2reads as a blockingvariable (as a categorical factor,
with no, low and high w2 contamination as the levels)inalimmavoom analysis with the
duplicateCorrelation function. A comparison between a ranking statistic(sign(logFC) x -log10(p-



value)) showed marginal changes to the results of the DE analysis. Therefore, the presence of the w2
allele in mifta likely has minimal effects on DE analysis and can be ignored (Figure S8).
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Figure S8: Presence of the w2 allele of mifta does not greatly affect the transcriptomes of pooled
fmr1/ larvae.

A) Alignment of reads to the w2 site of melanocyte inducing transcription factora (mitfa, on
chromosome 6, position 43429185 accordingto the GRCz11 build of the zebrafish genome). B)
Percentage of reads aligning to the w2 site foreach sample. C) Pearson correlations between the
firstfour principal components of the conditional-quantile normalised expression values for each
gene, and the proportion of reads aligning to the w2 site (prop_nacre), fmrlgenotype, and RNA-seq



library size (lib.size). D) Proportion of w2 (nacre) reads shown against the first four principal
componentvalues. Minimal correlation is observed. However, the standard errors (grey) for the
regression linesinblue are large, suggesting that the effectis not highly significant. E) Scatterplot
showingarankingstatistic(sign(logFC) * -log10(p-value)) for each gene with and without using the
proportion of w2 reads as a blockingvariablein alimmavoom analysis. The most highly ranked
genes (i.e.the mostdifferentially expressed)do not change whenincluding the proportion of w2
readsin the model.
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