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Analysis of accuracy data 

In the ASRT task, participants were provided with feedback about their performance, i.e., about 

their average RTs and accuracy, after each block. They were encouraged to keep accuracy 

above 92%, and the mean accuracy in the study was 92.29 % (SD = 3.38 %). High accuracy 

scores and relatively low variability in samples of neurotypical participants can hinder the 

detection of learning1; therefore, RTs could be considered a more appropriate measure of 

statistical and sequence learning. Based on this argument, we reported only the RT data in the 

Manuscript. Here, we report the analyses on accuracy values, which revealed similar results as 

the results on RT data. 

 

Statistical analysis 

Similarly to RT values (see Statistical analyses section of the Manuscript), prior 

developmental studies showed that age has a large effect on average accuracy2-4. To test this, 

we first calculated average accuracy over the 10 epochs (i.e., accuracy data was calculated on 

all trials, irrespective of trial types). We then correlated the average accuracy with age, which 

revealed a significant positive correlation (r(68) = .32, p = .007), showing that younger children 

were less accurate on the task. To control for the effect of average accuracy differences related 

to age on learning and consolidation of knowledge, we transformed the data in the following 

way. We divided each participants’ raw accuracy values of each trial type and each epoch by 
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their own average performance (i.e., average accuracy) in the first epoch of the task (for a 

similar approach, see5,6). Participants’ performance was around 1 at the beginning of the task 

and changed as the task progressed. Values above 1 indicated that responses were more accurate 

on a given trial type than the responses combined to all trial types (i.e., average accuracy) in 

the very first epoch of the task; and values below 1 meant that responses were less accurate on 

a given trial type compared to average accuracy in the first epoch. We conducted all analyses 

in the Supplementary Material on standardized accuracy. 

Statistical learning score in the Learning Phase and memory scores in the Testing and 

Retesting Phases were quantified as the difference between random high and random low trial 

types in accuracy (accuracy for random high minus accuracy for random low trials). The 

learning and memory scores of sequence learning were calculated as the difference between 

pattern and random high trial types in accuracy (accuracy for pattern minus accuracy for random 

high trials). Higher scores indicate larger statistical or sequence learning/memory. To assess 

learning and the retention of knowledge, repeated measures ANOVAs and paired-samples t-

tests were conducted on standardized accuracy data, separately for statistical and sequence 

learning. The Greenhouse-Geisser epsilon (ε) correction was used when necessary. Original df 

values and corrected p values (if applicable) are reported with partial eta-squared (η2
p) as a 

measure of effect size. In conjunction with the frequentist analyses, we performed Bayesian 

paired-samples t-tests and calculated the Bayes Factor (BF) for the relevant comparisons as 

well. 

  

Results 

Prerequisite of memory consolidation 

To assess memory consolidation, significant learning has to occur preceding the offline 

period. Therefore, as a first step, we conducted repeated-measures ANOVAs on the Learning 
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Phase to confirm that significant learning has occurred concerning both statistical and sequence 

learning. ANOVAs were conducted on standardized accuracy separately for statistical and 

sequence learning. 

Statistical learning during the Learning Phase wase tested with a two-way repeated-

measures ANOVA with PROBABILITY (random high vs random low) and EPOCH (1-4) as 

within-subject factors. The ANOVA revealed significant statistical learning (main effect of 

PROBABILITY, F(1, 69) = 33.65, p < .001, η2
p = .33). Post-hoc pairwise comparisons revealed 

higher accuracy on random high trials (M = 1.003) compared to random low trials (M = 0.97). 

Average accuracy (i.e., irrespective of trial types) did not change throughout the task (main 

effect of EPOCH, F(3, 207) = 1.54, p = .22). Statistical learning also did not change as the task 

progressed (PROBABILITY × EPOCH interaction, F(3, 207) = 0.93, p = .43, Fig. S1A). 

To test sequence learning during the Learning Phase, similar two-way repeated-

measures ANOVAs with ORDER (pattern vs random high) and EPOCH (1-4) as within-subject 

factors were conducted. The ANOVA revealed marginally significant learning (main effect of 

ORDER, F(1, 69) = 3.39, p = .07, η2
p = .05), participants showed marginally higher accuracy 

on pattern (M = 1.01) compared to random high trials (M = 1.003). Neither the average 

accuracy, nor the extent of sequence learning changed throughout the task (main effect of 

EPOCH, F(3, 207) = 1.46, p = .24 and ORDER × EPOCH interaction, F(3, 207) = 2.39, p = 

.07, respectively, Fig. S1B). 

Furthermore, to investigate whether individual differences influence the learning on the 

task, we correlated statistical and sequence learning scores with working memory capacity, with 

percentage of perseverative errors on the WCST task, with socioeconomic status, and with total 

problem score on the SDQ. To control for multiple comparisons, we employed False Discovery 

Rate correction. None of the correlations reached significance (all ps > .128). We also rerun the 
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ANOVAs on the sample without left-handed participants to control for handedness. The results 

were identical to the ones on the whole sample. 

 

 

Figure S1. Temporal dynamics of (A) statistical and (B) sequence learning across epochs and sessions. 

Standardized accuracy values as a function of the epoch (1-10) and trial types (random high vs random low for 

statistical learning and pattern vs random high for sequence learning) are presented. Blue lines with triangle 

symbols indicate standardized accuracy values on the random high trials, green lines with square symbols indicate 

standardized accuracy values on the random low trials and orange lines with circle symbols indicate standardized 

accuracy values on the pattern trials. (A) Statistical learning is quantified by the gap between blue and green lines 

and (B) sequence learning is quantified by the gap between orange and blue lines. In both cases, greater gap 

between the lines represents better learning. Error bars denote standard error of mean. 

 

Do children retain regularities after a one-year offline period? 

To test one-year retention of statistical knowledge, we conducted a two-way repeated-

measures ANOVA with PROBABILITY (random high vs random low) and EPOCH (6 vs. 7) 

as within-subject factors. Overall, irrespective of epochs, participants showed higher accuracy 

on random high (M = 1.02) compared to random low trials (M = 0.99) (main effect of 

PROBABILITY, F(1, 69) = 49.53, p < .001, η2
p = .42). Average accuracy (i.e., irrespective of 

trial types) differed in the two epochs (main effect of EPOCH, F(1, 69) = 30.10, p < .001, η2
p 
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= .30), participants showed higher accuracy in the 7th epoch (M = 1.03) than in the 6th epoch (M 

= 0.99). The ANOVA showed a difference in memory scores between the Testing and Retesting 

Phases (significant PROBABILITY × EPOCH interaction, F(1, 69) = 4.34, p = .04, η2
p = .06) 

Follow-up paired sample t-tests on the memory scores revealed that statistical memory 

underwent decrease over the one-year delay (6th epoch: M = 0.0474, 7th epoch: M = 0.0288; Fig. 

S2A), however, Bayesian analysis did not confirm this result (BF01 = 1.003). Furthermore, as 

the long-term delay had some variability in terms of weeks (Mdelay = 53.08 weeks, SDdelay = 2.39 

weeks, between 47.95 and 60.24 weeks), we examined whether it has any relation to the long-

term memory performance. First, we calculated an offline change score for statistical 

knowledge by subtracting the standardized memory score in Epoch 6 from the standardized 

memory score in Epoch 7. This way, negative scores indicate forgetting, and positive scores 

indicate offline learning. Offline change score did not show correlation with the length of the 

long-term delay (rs(68) = .129, p = .287; BF01 = 4.023). 

To investigate one-year retention of serial-order knowledge, we also ran a two-way 

repeated-measures ANOVA with ORDER (pattern vs random high) and EPOCH (6 vs. 7) as 

within-subject factors. Overall, irrespective of epoch, participants showed comparable accuracy 

on pattern and random high trials (main effect of PROBABILITY, F(1, 69) = 1.71, p = .20). 

Average accuracy (i.e., irrespective of trial types) differed in the two epochs (main effect of 

EPOCH, F(1, 69) = 29.48, p < .001, η2
p = .30), participants showed higher accuracy in the 7th 

epoch (M = 1.04) than in the 6th epoch (M = 1.01). The ANOVA revealed evidence for persistent 

memory representations of serial-order knowledge (non-significant ORDER × EPOCH 

interaction, F(1, 69) = 0.06, p = .81, BF01 = 7.404). Follow-up paired sample t-tests on the 

memory scores showed comparable serial-order knowledge in the Testing and Retesting Phases 

(6th epoch: M = 0.0035, 7th epoch: M = 0.0054; Fig. S2B). Similarly to statistical knowledge, 

we also correlated the offline change score of serial-order knowledge and the length of the long-



6 
 

term delay. Offline change scores of serial-order knowledge did not correlate with the length 

of the delay (rs(68) = -.190, p = .114; BF01 = 2.049). 

Moreover, similarly for the learning scores, to investigate whether individual 

differences influence the consolidation of statistical or serial-order knowledge, we correlated 

the offline change scores with working memory capacity, with percentage of perseverative 

errors on the WCST task, with socioeconomic status and with total problem score on the SDQ. 

To control for multiple comparisons, we employed False Discovery Rate correction. None of 

the correlations reached significance (all ps > .766). We also rerun the ANOVAs on the sample 

without left-handed participants to control for handedness. The results were identical to the 

ones on the whole sample. 

 

 

Figure S2. Retention of (A) statistical and (B) serial-order knowledge. Memory scores measured by 

standardized accuracy values for the last epoch of the Testing Phase (Epoch 6) and the first epoch of the Retesting 

Phase (Epoch 7). Error bars denote the standard error of mean.  

 

Does age affect the one-year retention of statistical and serial-order regularities? 
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To check the possible association between age and retention, we conducted Pearson’s 

correlation between the offline change scores and age. Regarding statistical knowledge, offline 

change scores did not show correlation with age (r(68) = .01, p = .92, BF01 = 6.67). Concerning 

serial-order knowledge, offline change scores in accuracy also did not correlate with age (r(68) 

= .15, p = .21, BF01 = 3.08). 
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