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Additional Supporting Tables and Figures 

This supplementary information file describes the details of the analysis configuration. A key 

objective of including these details is to promote transparency and reproducibility. In this work, 

world countries and regions follow those used in the Global Burden of Disease (GBD) Project, as 

shown in Supplementary Table 1.  

 

Supplementary Table 1. Member countries and territories of the 21 GBD world regions. 
GBD Region Member Countries    

Asia Pacific, High Income Brunei Darussalam Japan South Korea Singapore 

Asia, Central Armenia Azerbaijan Georgia Kazakhstan 

 Kyrgyzstan Mongolia Tajikistan Turkmenistan 

 Uzbekistan    

Asia, East China Taiwan (Province of China)    

North Korea (Democratic People’s Republic of Korea)    

Asia, South Bangladesh Bhutan India Nepal 

 Pakistan    

Asia, Southeast Cambodia Indonesia Malaysia Maldives 

 Mauritius Myanmar Philippines Sri Lanka 

 Seychelles Thailand Timor-Leste Vietnam 

 Laos (Loa People’s Democratic Republic)    

Oceania American Samoa Cook Islands Fiji Guam 

 Kiribati Marshall Islands Nauru Niue 

 Palau Papua New Guinea Samoa Solomon Islands 

 Tokelau Tonga Tuvalu Vanuatu 

 Federated States of Micronesia  Northern Mariana Islands  

Australasia Australia New Zealand   

Caribbean The Bahamas Barbados Belize Bermuda 

 Cuba Dominica Dominican Republic Grenada 

 Guyana Haiti Jamaica Puerto Rico 

 Saint Lucia Suriname Antigua and Barbuda Saint Kitts and Nevis 

 Trinidad and Tobago US Virgin Islands Saint Vincent and the Grenadines  

Europe, Central Albania Bulgaria Croatia Czech Republic (Czechia) 

 Hungary North Macedonia Montenegro Poland 

 Romania Serbia Slovakia Slovenia 

 Bosnia and Herzegovina    

Europe, Eastern Belarus Estonia Latvia Lithuania 

 Republic of Moldova Russian Federation Ukraine  

Europe, Western Andorra Austria Belgium Cyprus 

 Denmark Finland France Germany 

 Greece Iceland Ireland Israel 

 Italy Luxembourg Malta Monaco 

 Netherlands Norway Portugal San Marino 

 Spain Sweden Switzerland United Kingdom 

North America, High Income Canada Greenland United States  

Latin America, Andean Bolivia (Plurinational State of)  Ecuador Peru 

Latin America, Central Colombia Costa Rica El Salvador Guatemala 

 Honduras Mexico Nicaragua Panama 

Venezuela (Bolivarian Republic of)    

Latin America, Southern Argentina Chile Uruguay  

Latin America, Tropical Brazil Paraguay   

North Africa / Middle East Afghanistan Algeria Bahrain Egypt 

Iraq Jordan Kuwait Lebanon 

Libya Morocco Palestine Oman 

Qatar Saudi Arabia Sudan Syrian Arab Republic 

Tunisia Turkey Yemen United Arab Emirates 

Iran (Islamic Republic of)  
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Sub-Saharan Africa, Central Angola Congo Equatorial Guinea Gabon 

Central African Republic Democratic Republic of the Congo   

Sub-Saharan Africa, Eastern Burundi Comoros Djibouti Eritrea 

Ethiopia Kenya Madagascar Malawi 

Mozambique Rwanda Somalia South Sudan 

Uganda Zambia United Republic of Tanzania  

Sub-Saharan Africa, South 

 

Botswana Lesotho Namibia South Africa 

Eswatini Zimbabwe   

Sub-Saharan Africa, 

Western 

 

Benin Burkina Faso Cameroon Cape Verde 

Chad Cote d’Ivoire The Gambia Ghana 

Guinea Guinea-Bissau Liberia Mali 

Mauritania Niger Nigeria Senegal 

Sierra Leone Togo Sao Tome and Principe  

 

 

 
Supplementary Figure 1. PM2.5 Disease Burden Comparison for India and China. (A) 

GBD2019 background baseline mortality data as a function of population age and disease. (B) 

GBD2019 concentration response functions (same as Supplementary Figure 2), with dashed lines 

showing population weighted mean PM2.5 concentrations for China and India. (C) Total PM2.5 

attributable deaths in China and India as a function of disease. 
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Supplementary Text 1. 2019 Exposure Estimates – Additional Details 

Following the downscaling procedure described in the Methods (and Supplementary Text 9), we 

apply high-resolution (gridded at ~1 km  ~1 km) exposure estimates for the year 2019 

(weighted by 2019 gridded population1) to the GBD2019 CRFs with 2019 baseline mortality 

data to assess changes in the estimated disease burden between 2017 and 2019. Disease burden 

estimates are independent from model emission sensitivity simulations and do not require 

changes or projections in emissions. In both years, the same nine countries were estimated to 

have largest number of PM2.5 attributable deaths, though the annual number of deaths in each 

country was larger in 2019 than 2017, except for in Russia. Similarly, annual population-

weighted mean (PWM) PM2.5 concentrations also increased in each of these top nine countries, 

except for in China and the United States. The complex relationship between annual national 

PM2.5 concentrations and resulting attributable deaths highlights the importance of multiple 

factors in disease burden estimations. For neonatal disorders, the incidence associated with 

outdoor PM2.5 exposure totaled to 2.07 (95% CI: 0.02-5.02) million worldwide, which increased 

marginally to 2.09 (95% CI: 0.02-5.06) million in 2019. At the sub-national level, the top four of 

the 200 select areas with the highest PM2.5 concentrations (Singrauli, Kanpur, Sitapur, and 

Ahmedabad, India) all experienced increases in PWM PM2.5 mass, persisting at levels between 

14 and 16 times greater than the WHO annual average guidelines. Of the 200 sub-national areas, 

45% experienced no change or an increase in PWM PM2.5 concentration between 2017 and 2019. 

The area surrounding Pune, India had the largest absolute increase from 57 to 63.2 g m-3, while 

the area surrounding Xingping, China had the largest absolute decrease from 68.4 to 60.1 g m-3. 

These changes serve to identify potential locations with effective mitigation strategies or those 

locations with the most to gain from pollution reductions. Supplementary Data 3 provides the 

PWM values for the global area, each of the 21 world regions, 204 countries, and 200 sub-

national areas. 

 

Supplementary Text 2. GEMM Sensitivity Study – Additional Details 

As an alternative to the GBD estimates, previous global studies have used the GEMM. The 

GEMM exclusively incorporates risk information from cohort studies of outdoor air pollution 

(41 cohorts from 16 countries)2 on non-accidental mortality and was highly sensitive to one 

particular cohort of Chinese men3 in the original version. Another feature of the GEMM is that 
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its non-accidental mortality estimate suggests a larger impact of PM2.5 exposure on mortality 

than the sum of cause-specific attributable mortality estimates. As new evidence on links 

between PM2.5 and other (e.g., chronic kidney disease, dementia) causes of death emerge, this 

difference between cause-specific and all-cause (non-accidental) attributable mortality will 

decrease.  

Application of the GEMM-based disease-specific estimates to the disease burden, 

however, should also be employed with caution. As further discussed in Hystad, et al. 4 the 

GEMM is based on analyses of non-accidental mortality primarily derived from epidemiologic 

studies conducted in high-income countries. When applied to disease burden estimates, this 

assumes similar distributions of causes of death, including the relative proportion of the specific 

diseases linked to air pollution and the population age distribution in high-income countries as in 

low and middle-income countries. This leads to uncertainty since the relative frequencies of the 

various causes of deaths differ markedly between countries of the world. In particular, 

application to Africa and South Asia is likely to lead to substantial uncertainty. As the GBD2019 

CRFs are derived directly from studies of specific diseases, they can be more reliably applied to 

disease-specific mortality rates across countries. Other sources of uncertainty such as the 

assumptions of equitoxicity, variation in e.g., healthcare access and quality and population 

characteristics, and extrapolation to concentrations beyond those included in epidemiologic 

studies are common to the application of both the GBD2019 CRFs and the GEMM.  

To address some of these uncertainties, the GEMM CRFs in this work were updated as 

described in the Methods to include the same ambient PM cohort studies that are inputs to the 

GBD2019 CRFs and to add functions for diabetes and reproductive outcomes. Supplementary 

Figure 2 compares the disease-specific CRFs for the GBD2019 and updated GEMM. With these 

updates, and when restricted to the five NCDs +LRI that are included in the GBD2019 CRFs, 

2017 global GEMM attributable mortality estimates were lower than previous GEMM estimates 

for 2015 when only the four NCDs +LRI were included (6.2 million vs 6.9 million)2. Globally, 

the updated GEMM CRFs estimated a PM2.5 attributable burden of 6.2 (95% CI: 4.4 to 7.8) 

million deaths in 2017. While satellite-based estimates have shown a recent decreasing trend in 

PWM PM2.5 mass across East Asia, Europe, and the Eastern U.S.5, a detailed analysis of 

differences (temporal trends vs. methodological differences) between the original and updated 

GEMM estimates is outside the scope of this work.  
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Supplementary Figure 2. Concentration response functions for the GBD2019 and updated 

GEMM. Solid Lines: GBD2019 CRFs, Dashed Lines: updated GEMM. Line colors correspond 

to the central values of eight disease-response pairs. For illustrative purposes, response curves for 

IHD and Stroke correspond to the 60-64 age group, COPD, LC, and DM responses are for all ages 

over 25 years, and LRIs are for ages under 5 years and greater than 25 years. Preterm births are at 

a gestational age less than 37 weeks (PTB) and weights below 2.5 kg (LBW). For illustrative 

purposes, the insert highlights the relative risks at exposure levels less than 25 g m-3.  

 

Supplementary Figure 3 shows the relative disease-specific contributions from both the 

updated GEMM and GBD2019 CFRs for 21 world regions (A, C), and the top 20 countries with 

the largest number of attributable deaths (B, D). S1-Fig. 2 shows that the relative disease 

contributions predicted by the updated GEMM were similar to those from the GBD2019 CRFs. 

For example, both predict that the largest number of attributable deaths at the global scale were 

from IHD, and then in decreasing order from Stroke, COPD, LRI, LC, and DM. The absolute 

number of attributable deaths, however, were nearly always larger from the GEMM 

(Supplementary Data 1).  Two exceptions were for North America and Australasia. These 

regions had the lowest PWM PM2.5 concentrations and the difference in relative predictions 

reflect the lower relative risks for IHD, Stroke, and Diabetes in the updated GEMM at PM2.5 

concentrations below 10 g m-3 (Supplementary Figure 2).  As a result of these and other 

differences in the CRFs, the GEMM and GBD2019 CRFs also predicted different relative 
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rankings of the top 20 countries. Supplementary Figure 3b and d show that both the GBD2019 

CRFs and GEMM predicted the same top two countries (China and India), but that the relative 

rankings for the next 18 countries differ. In addition to ranking differences, the GBD2019 CRFs 

also included Thailand (16th), Poland (19th), and Germany (20th) in the top 20 countries, while the 

GEMM alternatively predicted that Myanmar (12th), North Korea (17th), and Nepal (20th) ranked 

in the top 20. This comparison closes a portion of the gap between previous GEMM and GBD 

disease burden results, however, the accuracy of both estimates are dependent on the availability 

of robust and high-resolution exposure data, particularly in high exposure areas.  
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Supplementary Figure 3: Normalized disease contributions to total attributable mortality in 2017 for 21 world regions (A, C) 

and 20 countries (B, D) with the highest outdoor PM2.5 disease burden. Panels show results estimated using the GBD2019 CRFs (A, 

B) and the updated GEMM (C, D). Bar charts show the relative contributions of six PM2.5-disease pairs to regional and national-level 

outdoor PM2.5 attributable deaths, sorted by decreasing number of deaths. The number of LBW and PTB incidences are included in 

Supplementary Data 1. PWM PM2.5 concentrations and number of attributable deaths are additionally provided for each region/country. 

Relative amounts are illustrated by relative dot sizes (except for the global total disease burden). Red dots indicate regions/countries 

with PM2.5 exposure levels equivalent or larger than the global average. 
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Supplementary Text 3. Global Model Details 

PM2.5 source sensitivity simulations for the year 2017 are shown in Supplementary Table 2 and 

are conducted with the GEOS-Chem 3D atmospheric chemical transport model6. The GEOS-

Chem model solves for the evolution of atmospheric aerosols and gases using meteorological 

data, global and regional emission inventories, and algorithms that represent the physics and 

chemistry of atmospheric processes. Global simulations are conducted from December 2016 to 

January 2018 (1-month spin-up) at 22.5 horizontal resolution and 47 vertical layers. Global 

simulations are supplemented with three additional one-way nested simulations at 0.50.625 

horizontal resolution that cover North America (10 N – 70 N, 140 W – 40 W), Europe (30 N 

– 70 N, 30 W – 50 E), and China and Southeast Asia (11 S – 55 N, 60 E – 150 E)7. Each 

simulation is driven by assimilated meteorological data from the Goddard Earth Observing 

System from the NASA Global Modeling and Assimilation Office (GMAO). We use the 

MERRA-2 historical reanalysis product, archived at a 3-hour temporal resolution for 3D fields 

and 1-hour for 2D fields. The transport and chemistry timesteps are set to 10 and 20 minutes 

respectively, to optimize simulation accuracy and computational efficiency8.  

In this work, we use the GEOS-Chem ‘tropchem’ chemical mechanism that includes 

coupled aerosol-oxidant chemistry in the troposphere and stratosphere. The gas-phase 

mechanism includes detailed HOx-NOx-VOC-ozone chemistry6, coupled to aerosol chemistry 

for inorganic sulfate-nitrate-ammonium aerosol9,10, as well as carbonaceous (black and organic 

carbon) aerosol10,11, sea salt12, and dust13,14. Relative humidity dependent aerosol size 

distributions and optical properties are based on the Global Aerosol Data Set15,16, with updates 

for organics and secondary inorganics from observations17,18, mineral dust14,19,20, and absorbing 

brown carbon21. Aerosol thermodynamic partitioning between sulfate-nitrate-ammonium is 

computed with the ISORORPIA II thermodynamic model22, while the BC mechanism is 

described by Wang, et al. 10. We use the simple, irreversible, direct yield scheme for secondary 

organic aerosol (SOA) from Kim, et al. 11, as this mechanism has been shown to better reproduce 

available observations of global organic aerosol mass relative to the more complex scheme23. For 

physical processes, GEOS-Chem uses the TPCORE advection algorithm24 and computes 

convective transport from the convective mass fluxes in the meteorological data, as described by 

Wu, et al. 25. In this work, boundary layer mixing uses the non-local mixing scheme as 

implemented by Lin and McElroy 26.  
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The core source code for this work is GEOS-Chem v12.1.027, released Nov. 2018. To 

correct a long-standing bias in nitrate aerosol concentrations28,29, the v12.1.0 source code has 

been updated here as part of the Global Burden of Disease – Major Air Pollution Sources project 

(https://sites.wustl.edu/acag/datasets/gbd-maps/). The code is available on GitHub: 

https://github.com/emcduffie/GC_v12.1.0_EEM. Major updates follow literature 

recommendations and include an updated parameterization for the heterogeneous uptake of N2O5 

from McDuffie, et al. 30, the added heterogeneous production of ClNO2 following Shah, et al. 31 

and recommended ClNO2 yield reductions from McDuffie, et al. 32, a reduction in the deposition 

of HNO3 under cold conditions following Shah, et al. 31, as well as an update to the wet 

deposition scheme following recommendations in Luo, et al. 29. In addition to the updates 

described in Luo, et al. 29, the rate of SO2 removal in clouds is also reduced, and the rainout 

efficiencies for hydrophilic OC and BC species are reduced by 50% following recent 

recommendations33. These and additional minor code updates are described in the GitHub 

README file.  

To evaluate the impact of these model updates, Supplementary Figure 5b shows a bar 

chart of the normalized mean bias (NMB) in the simulated global annual averages of aerosol 

nitrate, sulfate, ammonium, total organic carbon, black carbon, fine dust, and sea salt in the 

default v12.1.0 GEOS-Chem source code and the updated model, compared to annual average 

observations (described in Supplementary Text 4). As shown in Supplementary Figure 5b, the 

mechanistic model updates described above reduce the NMB in the updated GEOS-Chem 

simulated concentrations of aerosol nitrate from 2 µg/m3 to 0.5 µg/m3 relative to observed 

values. Model updates additionally improve the model-observation agreement of ammonium, 

black carbon, and dust compared to the default model. In contrast, the negative bias in sea salt is 

enhanced in the updated base simulation relative to the default source code. The annual PWM 

mass concentrations of each observed compound are additionally provided in Supplementary 

Figure 5b (gridded population from the Gridded Population of the World Database1). These 

indicate that the smallest model NMB’s are found for the compounds that contribute to the 

largest fraction of total PM2.5 mass. As further shown in the right panel of Supplementary Figure 

5b, there is general agreement in the fractional contributions of each chemical compound to total 

PM2.5 mass, providing confidence in the model’s ability to accurately predict changes in the 

chemical production of PM2.5 under various emission sensitivity simulations.   

https://sites.wustl.edu/acag/datasets/gbd-maps/
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Lastly, total PM2.5 mass concentrations are calculated using modeled output mass 

concentrations of aerosol nitrate (NO3
-), sulfate (SO4

2-), ammonium (NH4
+), sea salt, dust, 

organic mass, and black carbon, as described in the analysis scripts package 

(https://github.com/emcduffie/GBD-MAPS-Global).  In this work, spatially gridded annual total 

PM2.5 mass concentrations are calculated by averaging monthly PM2.5 concentrations. National-

level PM2.5 concentrations are averaged over the grid cells within each country’s geographical 

borders.  

 

Supplementary Text 4. Observational PM2.5 Dataset for Model Evaluation 

Evaluation of base model performance is a vital component of any analyses that derives results 

from modeled emission sensitivity simulations. In this work, the base 2017 GEOS-Chem PM2.5 

simulation and downscaled PM2.5 exposure estimates (Fig. 1) are evaluated against a dataset of 

annual-average surface observations of total PM2.5 mass and PM2.5 chemical composition (where 

available). This section describes methods used to develop this observational dataset.  

Supplementary Figure 4 provides a map of the individual measurement sites in this 

dataset, colored by their measurement networks. More extensive sampling and analysis details 

are reported from the North American networks than those from other regions, which have larger 

uncertainties due to a lack of consistent reporting on sampling and analysis protocols 

(particularly for EMEP and WHO datasets). Based on available reported metadata, some 

networks also provide mass concentrations derived from multiple sampling and analysis 

methods. Here we attempt to reduce sampling differences by selecting for consistent analysis 

methods between sites and networks when this information is available (described in detail 

below). Observational data also include uncertainties in the amount of aerosol water assumed in 

the gravimetric analysis of PM2.5 and degree of volatilization of PM2.5 and its chemical 

components (particularly ammonium nitrate and organics) during sampling and/or filter 

transport. Uncertainties in these observational datasets should be considered when comparing to 

modeled results.  

https://github.com/emcduffie/GBD-MAPS-Global
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Supplementary Figure 4: Map of 2017 long-term PM2.5 sampling stations. Symbol colors and 

shapes reflect individual monitoring networks. This figure includes sites that are used both for the 

total PM2.5 mass and speciated PM2.5 mass model evaluations. 

 

The following sub-sections describe the individual networks that provide long-term 

measurements of PM2.5 total mass and/or PM2.5 chemical components. Estimates of PM2.5 

chemical composition in 2017 are available for a more select number of sites than total PM2.5 

mass, as shown in Supplementary Figure 5a. These sites are primarily in populated regions 

throughout North America, Europe, select sites in China, and 5 international sites through the 

SPARTAN network34,35. Data from the SPARTAN network and the compiled speciated 

inventory for China are used for the speciated comparison in Supplementary Figure 5b and are 

not used in Fig. 1. Annual average values from each site are calculated from the calculated 

monthly averages. Dataset development details can be found in the analysis scripts package at: 

https://github.com/emcduffie/GBD-MAPS-Global. 

https://github.com/emcduffie/GBD-MAPS-Global
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Supplementary Figure 5: Evaluation of default and updated base model simulation of PM2.5 

chemical components. (A) map of available long-term surface observations of PM2.5 chemical 

components. (B) Bar plot of the normalized mean bias between the simulated and observed 

concentrations of individual PM2.5 components (nitrate, ammonium, sulfate, organic aerosol, black 

carbon, dust, and sea salt). Light bars represent the values from the default v12.1.0 GEOS-Chem 

model. Darker bars show results from the updated model source code used here. Population-

weighted average observed concentrations of each component are also provided. Pie charts 

illustrate the fractional distribution of PM2.5 components from the updated model (top) and the 

observations (bottom).  
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WHO (World Health Organization) Compilation – Global  

The World Health Organization has compiled an extensive database of annual-average 

surface-level PM2.5 concentrations from around the world. In this work, these data are 

downloaded from https://www.who.int/airpollution/data/cities/en/. Only direct PM2.5 

measurements are used here, not those calculated from PM10 measurements (as in the GBD 

exposure calibration procedure), due to uncertainties in this conversion. This dataset is filtered 

to only include annual average measurements from 2017 for sites that report at least 75% 

measurement coverage. Data sources are available in the downloaded dataset, but 

measurement methods and analysis techniques are not readily available for the reported 

observations. We assume that data are reported at 35% RH and at local temperature and 

pressure. Observations from other regional networks may also be included in this compiled 

dataset, especially over North America and Europe. To ensure that these sites are not double 

counted in the model evaluation, we remove sites from the WHO dataset that are within 0.1 

of other network sites. 

US Embassy Measurements – Global  

The U.S. Department of State collects air quality monitoring data from U.S. embassies and 

consulates around the world and has partnered with the U.S. Environmental Protection 

Agency to report data at AirNow.gov. Hourly observations from Beta-Attenuation Monitors 

(BAMs) are available for 28 sites in 2017 (55 sites by 2020). Hourly data for each site are 

downloaded from: https://www.airnow.gov/international/us-embassies-and-consulates. In 

this work, hourly raw concentrations are averaged into annual values and filtered to remove 

sites with <75% temporal data coverage. We assume that data are reported for local 

conditions (ambient pressure and temperature) and 35% RH. 

CNEMC (China National Environmental Mentoring Centre) – China  

The government of China has facilitated the deployment of nearly 2000 sites that measure 

PM2.5 mass and its chemical composition. At the time of this study, only total PM2.5 mass 

concentrations were publicly available. Data can be downloaded from: 

http://www.cnemc.cn/en/ and are available from May 2014 onward. Both Thermo Fisher 

Tapered Element Oscillating Microbalance (TEOM) 1405F analyzers and BAMs are used for 

continuous sampling of PM2.5 mass, reported at each site at hourly time resolution. As 

https://www.airnow.gov/international/us-embassies-and-consulates
http://www.cnemc.cn/en/
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described in Wu, et al. 36, both methods use heaters to reduce the humidity in sampled air. 

This heating, however, can lead to mass loss due to the volatilization of PM2.5 components. 

As a result, previous studies have reported lower total PM2.5 mass measurements from 

TEOM instruments relative to US Federal Reference Methods (FRM)37, largely as a result of 

the loss of semi-volatile compounds38 and particularly in cold ambient temperatures39. To 

minimize this potential under-reporting, the 1405F monitoring system additionally measures 

concentrations in the volatilized portion of air, while a smart heater is used with the BAMs to 

minimize heating while also controlling the RH of the sample at 35%36. In this work, we 

assume that all CNEMC mass concentrations are reported at 35% RH and at local 

temperature and pressure, consistent with other networks. Monthly averages for January-

December 2017 are then calculated for each site that reports a complete number of 24 

measurements each day, for at least 20 days each month (~75% temporal coverage each 

month). 

FRM Sites (Federal Reference Method) – United States  

FRM sites follow protocols specified in Appendix L to Part 50 of Title 40 in the United 

States Code of Federal Regulations (CFR) – Reference Method for the Detection of Fine 

Particulate Matter as PM2.5 in the Atmosphere. These sites measure total PM2.5 mass by 

gravimetric analysis of a Teflon collection filter. Samples are collected on a filter for a 24-

hour period every 3rd day, then transported to an analysis facility where filters are allowed to 

equilibrate for a minimum of 24 hours prior to weighing. The temperature and RH must be 

controlled between 20-23C and 30-40%, respectively during the analysis. All data are 

reported at local ambient conditions (pressure and temperature). For this work, FRM data 

were downloaded from: http://views.cira.colostate.edu/fed/QueryWizard/, with additional 

details in the analysis scripts package. Data are saved as monthly averages for all sites with at 

least 10 measurements during the month (8 for February). 

IMPROVE (Interagency Monitoring of Protected Visual Environments) – United States 

Details about the IMPROVE network are reported elsewhere40 and at http://vista.cira. 

colostate.edu/Improve/. IMPROVE sites are generally focused on rural areas and follow the 

same sampling procedures at each site. Briefly, each site has four measurement modules:  

1) Teflon filter for gravimetric mass and X-ray fluorescence (XRF) analysis of trace elements  

2) denuder + Nylon filter for anions by ion chromatography 

http://views.cira.colostate.edu/fed/QueryWizard/
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3) Quartz filter for organic carbon by thermal optical reflectance (TOR) and calculation of 

elemental carbon using HIPS (Hybrid Integrating Plate and Sphere system). 

4) Coarse mode sampler  

Samples are collected for 24 hours, every 3rd day, after which they are transported to 

laboratories for analysis (without controlling for temperature or pressure). Samples are 

allowed to equilibrate for a few minutes prior to sampling. Data are reported at local, ambient 

conditions (pressure and temperature). For this work, IMPROVE data were downloaded 

from: http://views.cira.colostate.edu/fed/QueryWizard/, with additional file formatting details 

listed in the analysis scripts package. Data for each compound are saved as monthly averages 

for all sites with at least 10 daily measurements during the month (8 for February). In this 

work, spatially and seasonally varying OM:OC ratios are used to convert total monthly 

organic carbon measurements to total organic mass. Ammonium is re-constructed from 

sulfate and nitrate ion measurements, assuming pure ammonium nitrate and ammonium 

sulfate in the aerosol phase. Dust is reconstructed from trace elements assuming normal 

oxides in typically occurring soil dust following Supplementary Eq. 1. Sea salt is calculated 

as 1.8*chloride following White 41. Black carbon is taken as elemental carbon. 

 Dust =2.2 × Al + 2.49 × Si + 1.63 × Ca + 2.42 × Fe + 1.94× Ti (S-Eq. 1) 

CSN (Chemical Speciation Network) – United States 

Details about the CSN network are reported elsewhere42. In contrast to IMPROVE, CSN sites 

focus primarily on urban areas and do not use the same sampling instrumentation/methods at 

each site. In general, collection and analysis methods are similar to those listed for the 

IMPROVE network, with the analysis of some species (i.e., organic and elemental carbon) 

following IMPROVE protocols. Similar to IMPROVE, samples are collected for 24 hours, 

every 3rd day. Samples are transported overnight, held at a temperature of  4C to minimize 

sample volatilization. Gravimetric analysis of PM2.5 follows the FRM protocol where the 

samples are allowed to equilibrate for 24 hours prior to analysis and measured in a controlled 

clean room between 20-23C and 30-40% RH. All data are reported at local, ambient 

conditions (pressure and temperature). For this work, CSN data were downloaded from: 

http://views.cira.colostate.edu/fed/QueryWizard/, with additional details in the analysis 

scripts package. Data for each compound are saved as monthly averages for all sites with at 

least 10 daily measurements during the month (8 for February). The final calculation of 

http://views.cira.colostate.edu/fed/QueryWizard/
http://views.cira.colostate.edu/fed/QueryWizard/
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organic mass, black carbon, sea salt, and dust follow the procedures used for IMPROVE 

data, described above. 

NAPS (National Air Pollution Surveillance Program) – Canada  

The NAPS network was designed to provide long-term air quality data across populated 

regions in Canada. The NAPS network includes sites with 24-hour integrated measurements 

of PM2.5 mass and its components every 3-6 days, as well as sites with continuous, hourly 

PM2.5 measurements. Data are available at: http://data.ec.gc.ca/data/air/monitor/national-air-

pollution-surveillance-naps-program/Data-Donnees/2017/?lang=en. In 2017, hourly 

measurements were reported from a variety of instruments including the TEOM, Scientific 

Synchronized Hybrid Ambient Real-time Particulate (SHARP) model 5030, and Met-One 

BAM. Additional integrated PM2.5 zip files contain Excel files for each monitoring site 

across Canada. Integrated daily filters are collected for 24 hours every 3-6 days and are 

allowed to equilibrate in the laboratory prior to sampling. The temperature and humidity are 

controlled during weighing between 20-26C and 37-47% RH, respectively. Some sites have 

a dual Teflon-nylon filter collection system to collect nitrate loss during sampling. Due to 

known losses of ammonium nitrate on Teflon filters, only nitrate data from sites with a dual 

filter cartridge are used in this analysis. For these sites, total nitrate is calculated as the sum 

of nitrate measured by IC from the Teflon filter and nitrate and nitrite collected from the 

Nylon filter and analyzed by IC. Data for each compound are saved as monthly averages for 

all sites with at least 5 daily measurements during the month (4 for February). For continuous 

PM2.5 data, hourly data are also averaged for months with at least 5 sampling days and 24 

hours of valid measurements each day. All data are reported at local, ambient conditions 

(pressure and temperature). In this work, concentrations of organic mass, dust, sea salt, 

nitrate, ammonium, and sulfate are calculated as for the IMPROVE and CSN data, described 

above. Black carbon is calculated from the difference between total carbon and organic 

carbon. 

EMEP (European Evaluation and Monitoring Program) – Europe  

Measurements collected by partner organizations across Europe are reported to the EMEP 

database. Despite standard metadata protocols, lack of consistent compliance has resulted in 

largely unknown sampling methods and analysis protocols for the data available from this 

network. For this work, the EMEP dataset was downloaded from http://ebas.nilu.no, with 

http://data.ec.gc.ca/data/air/monitor/national-air-pollution-surveillance-naps-program/Data-Donnees/2017/?lang=en
http://data.ec.gc.ca/data/air/monitor/national-air-pollution-surveillance-naps-program/Data-Donnees/2017/?lang=en
http://ebas.nilu.no/
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additional details in the analysis script package. Due to limited measurements of silicon, dust 

is not calculated from this dataset. Reported sampling frequencies range from 1 hour to 1-

month. Where metadata is available, measurements have been filtered for data greater than 

reported detection limits. Due to a lack of consistent reporting of meta-data, there are a large 

number of uncertainties in the data from this network including measurement methods, 

sample filter types, or whether data have been corrected to standard or local conditions. Here, 

we assume data are reported in local conditions for consistency in units with national ambient 

air quality standards and do not apply any other filters.  Data for each compound are then 

standardized to a time series of daily averages and saved as monthly averages for all sites 

with at least 4 daily measurements during the month 43. In this work, concentrations of 

organic mass, sea salt, nitrate, ammonium, and sulfate are calculated as for the IMPROVE, 

CSN, and NAPS data, described above. Black carbon is taken as elemental carbon. 

Compiled PM2.5 Mass and Chemical Components - China 

Additional total PM2.5 mass and chemical composition data for select sites in 2017 in China 

have been compiled from literature sources. The data used in this work include 

measurements from 44-48, which report data from 14 measurement locations throughout 

Beijing, Hebei, Zhejiang, Jiangsu, Shaanxi, and Inner Mongolia provinces, collected at 

various times during the period between August 2016 and February 2018. Measurement 

techniques for OC and BC include DRI- Thermal/optical carbon analyzers, while sulfate, 

nitrate, and ammonium measurement methods include IC. Additional sampling and analysis 

details for each study are provided in the above references. Available reported data were 

compiled into annual averages for each measurement site for comparison with model results.  

SPARTAN (Surface Particulate Matter Network) – Global  

An overview of the SPARTAN network is available in Snider, et al. 34, Weagle, et al. 35, and 

McNeill, et al. 49. The SPARTAN network provides publicly available data for PM2.5 total 

mass, chemical composition, and optical characteristics in populated regions of the world 

where air quality monitoring has been historically limited. SPARTAN reported complete 

yearly data from 5 sites in 2017 and has since grown to report data from 21 sites worldwide. 

SPARTAN monitors sample ambient air on a Teflon filter, intermittently for a total of 24 

hours over a 9-day period, following protocols described in Snider, et al. 34. Filters are then 

shipped in sealed containers at ambient temperature to analysis labs in North America where 
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they undergo analysis for total gravimetric PM2.5 mass and concentrations of ions, equivalent 

black carbon, and trace elements. Particle bound water is calculated and residual mass (i.e., 

total PM2.5 – inorganic mass + particle bound water) is considered to be organic mass. Total 

PM2.5 mass is measured gravimetrically following EPA protocols under laboratory conditions 

where temperature and RH are controlled to between 20-23C and 30-40%, respectively. 

Equivalent black carbon is measured by light absorbance with a smoke stain reflectometer, 

calibrated to co-located TOR measurements on a quartz filter. More recent analysis 

techniques for SPARTAN filters include XRF, HIPS, UV-Vis49,50, the measurement of 

organics through FT-IR51, and ongoing research activities to measure organic spectra through 

Aerosol Mass Spectroscopy52. For this work, SPARTAN data have been downloaded from: 

https://www.spartan- network.org/data, with additional details in the analysis scripts package. 

Due to known loss of ammonium and nitrate on Teflon filters, these compounds are not used 

from SPARTAN. Data for each compound are saved as monthly averages for all sites with at 

least two reported measurements. Dust is reconstructed as 10*([Al]+[Mg]+[Fe]) following 

Weagle, et al. 35. Sea salt is calculated as 2.54*[Na]-0.1[Al] following Weagle, et al. 35. 

Black carbon is taken as equivalent black carbon. 

 

Supplementary Text 5. Model Input Emission Details 

Global input emissions for the GEOS-Chem model are primarily for the year 2017 from the 

Community Emissions Data System53, updated for the GBD-MAPS project: CEDSGBD-MAPS
54,55. 

The CEDSGBD-MAPS emissions dataset is available on Zenodo56 and uses contemporary energy 

consumption data from the International Energy Agency, source and fuel-specific emission 

factors, as well as a mosaic scaling approach to incorporate global emission estimates (such as 

the EDGAR v4.3.257 inventory and ECLIPSEv5a inventory from the GAINS model58,59) with 

regional inventories to calculate monthly emission fluxes (kg m-2 s-1) of key atmospheric 

pollutants (NOx, SO2, CO, speciated NMVOCs, NH3, BC, and OC). Emissions are disaggregated 

into contributions from 11 anthropogenic source sectors and 4 fuel categories (solid biofuel, total 

coal, the sum of liquid fuel and natural gas, and all other non-combustion sources). CEDS 

emissions are gridded at a 0.50.5 spatial resolution and do not include vertical distribution 

information. Further details about this dataset are described in McDuffie, et al. 54 and Hoesly, et 

al. 53. CEDSGBD-MAPS emissions for 2017 are incorporated into the GEOS-Chem model using the 
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HEMCO emissions module60 and are systematically removed in sensitivity simulations by 

zeroing out individual sources. Monthly CEDSGBD-MAPS emissions are additionally distributed 

over a 24-hr period using sector-specific diel scaling factors, calculated from the U.S. NEI 

2011v1 dataset, implemented in HEMCO by Travis, et al. 61.  

Supplementary Table 2 provides details about the CEDS and non-CEDS emission 

sources used for model emission sensitivity simulations in the main text. Non-CEDS emission 

sources include dust emissions from windblown, fugitive, combustion, and industrial sources 

(AFCID), as well as emissions from aircraft, open fires, volcanoes, lightning, the ocean, and 

biogenic sources. If emissions from 2017 are not available from a given source, the latest 

available year is used. Supplementary Figure 6 shows the total global annual emissions of NOx, 

SO2, CO, NH3, OC, BC, total NMVOCs, and fine dust used in the base 2017 GEOS-Chem 

simulation. The categories shown in Supplementary Figure 6 correspond to the emission 

sensitivity simulation categories in Supplementary Table 2.  

We also note that the fuel-specific contributions in this work may be lower estimates as 

some sub-sectoral emission categories were not assigned to a particular combustion fuel-type in 

the emissions dataset, as shown in Table 2 in McDuffie, et al. 54. For example, contributions 

from fuel production, flaring, transformation, and fossil-fuel fires in the energy sector were not 

assigned to a combustion fuel-type. As a result, PM2.5 contributions from these sources were 

included in the ‘other sources’ fuel category in Figs. 2-5 rather than the O&NG category. These 

contributions, however, were included in the total energy sector fractional results in these same 

figures. In addition, the emissions dataset does not include primary emissions of PM2.5 associated 

with road, tire, and brake wear or ash from coal combustion. While the former source has been 

shown to have relatively small global PM2.5 contributions 59, both sources may be important in 

regions with large fractional contributions from transportation and coal use. 
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Supplementary Table 2. Model emission sensitivity simulation descriptions. Includes 

emissions dataset references and descriptions. Note: “calculated” emissions depend on 

meteorological variables and are computed at the time of simulation. 
# Sector Sensitivity Simulation Dataset Year Reference Notes 
1 Agriculture (AGR) 

includes manure management, soil fertilizer emissions, rice 

cultivation, enteric fermentation, and other agriculture 

CEDSGBD-MAPS 2017 54,56 - 

2 Energy Production (ENE)  

Includes electricity and heat production, fuel production and 

transformation, oil and gas fugitive/flaring, and fossil fuel fires 

CEDSGBD-MAPS 2017 54,56 - 

3 Industry (IND) 

Includes Industrial combustion (iron and steel, non-ferrous metals, 

chemicals, pulp and paper, food and tobacco, non-metallic minerals, 

construction, transportation equipment, machinery, mining and 

quarrying, wood products, textile and leather, and other industry 
combustion) and non-combustion industrial processes and product use 

(cement production, lime production, other minerals, chemical 

industry, metal production, food, beverage, wood, pulp, and paper, and 

other non-combustion industrial emissions) 

CEDSGBD-MAPS 2017 54,56 - 

4 Road Transportation (ROAD) 

includes cars, motorcycles, heavy and light duty trucks and buses 
CEDSGBD-MAPS 2017 54,56 - 

5 Non-Road/Off-Road Transportation (NRTR) 

Includes Rail, Domestic navigation, Other transportation 
CEDSGBD-MAPS 2017 54,56 - 

6 Residential Combustion (RCO-R) 

includes residential heating and cooking 
CEDSGBD-MAPS 2017 54,56 - 

7 Commercial Combustion (RCO-C) 

Includes commercial and institutional combustion 
CEDSGBD-MAPS 2017 54,56  

8 Other Combustion (RCO-O) 

Includes combustion from agriculture, forestry, and fishing 
CEDSGBD-MAPS 2017 54,56 - 

9 Solvents (SLV) 

Includes solvents production and application (degreasing and cleaning, 

paint application, chemical products manufacturing and processing, 

and other product use) 

CEDSGBD-MAPS 2017 54,56 - 

10 Waste (WST) 

Includes solid waste disposal, waste incineration, waste-water 

handling, and other waste handling 

CEDSGBD-MAPS 2017 54,56 - 

11 International Shipping (SHP) 

Includes international shipping and tanker loading 
CEDSGBD-MAPS 2017 54,56,62,63 A 

12 Agricultural Waste Burning (AGBURN)  

Includes open fires from agricultural waste burning 
GFED4.1s 2017 64,65 B 

13 Other Open Fires (OBURN) 

Includes deforestation, boreal forest, peat, savannah, and temperate 

forest fires 

GFED4.1s 2017 64,65 B 

14 Fugitive, Combustion, Industrial dust (AFCID) 

AFCID 
2012, 
2013, 

2015 

66 C 

15 Windblown Dust (WDUST) DEAD model calculated 67,68  D 

16 Remaining Emission Sources (OTHER) 

Includes all remaining emission sources:  
    

 volcanic SO2 AeroCom 2017  E 

 aircraft AEIC 2005 69  

 lightning NOx LightNOx calculated 70 F 

 biogenic Soil NO Soil NOx calculated 71 G 

 ocean 

 

SeaFlux, GEIA, SeaSalt, 

Inorg_Iodine 
calculated 12,72-77  H 

 biogenic emissions MEGANv2.1 calculated 78 I 

 very short-lived iodine and bromine species LIANG_ BROMOCARB 
ORDONEZ_ 

IODOCARB 

2000 79,80  

 decaying plants DECAYING_ PLANTS  73  

 Fuel Sensitivity Simulations Dataset Year Reference Notes 
17 Total Coal 

Includes hard coal, brown coal, coal coke 
CEDSGBD-MAPS 2017 54,56 - 

18 Solid Biofuel CEDSGBD-MAPS 2017 54,56 - 
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Includes solid biofuel 

19 Liquid Oil and Natural Gas 

Includes light and heavy oil, diesel oil, and natural gas 
CEDSGBD-MAPS 2017 54,56 - 

20 Process 

Includes non-combustion CEDS ‘process’ source emissions.  
CEDSGBD-MAPS 2017 54,56 - 

 Sector & Fuel Sensitivity Simulations Dataset Year Reference Notes 

21 Total Coal from Energy Production 

Includes hard coal, brown coal, coal coke; Includes electricity and heat 
production. 

CEDSGBD-MAPS 2017 54,56 J 

22 Total Coal from Industrial Processes 

Includes hard coal, brown coal, coal coke; Includes Industrial 

combustion (iron and steel, non-ferrous metals, chemicals, pulp and 

paper, food and tobacco, non-metallic minerals, construction, 
transportation equipment, machinery, mining and quarrying, wood 

products, textile and leather, and other industry combustion) 

CEDSGBD-MAPS 2017 54,56 K 

23 Total Coal from Residential Combustion (RCO-R) 

Includes hard coal, brown coal, coal coke; Includes residential heating 

and cooking 

CEDSGBD-MAPS 2017 54,56 - 

24 Solid Biofuel from Residential Combustion (RCO-R) 

Includes solid biofuel; Includes residential heating and cooking 
CEDSGBD-MAPS 2017 54,56 - 

ACEDS International shipping emissions run with the PARANOX ship plume module, which calculates co-emitted 

concentrations of O3 and HNO3 in aged shipping plumes.  

BOfficial GFED4 emissions have been released through 2016. 2017 and 2018 emissions are available through a beta 

release (https://www.geo.vu.nl/~gwerf/GFED/GFED4/) that provides updates to estimated monthly emissions of dry 

matter (DM) and carbon (C) based on the relationship between MODIS active fire detections and the GFED4s 

inventory for the years 2013-2016. To distribute monthly emissions, these files also include daily variability based 

on active fire distributions and diurnal cycles based on climatological data following the approach of Mu, et al. 65. 

Emission factors for individual species (kg or kg C/ kg DM) are from the original GFED4s release. 

CThe AFCID (Anthropogenic Fugitive, Combustion, and Industrial Dust) inventory is based on 2015 global monthly 

average primary particulate matter emissions from the ECLIPSEv5a inventory and regional monthly mean 

inventories for 2013 over India and 2012 over China. 

DGlobal windblown mineral dust emissions are calculated for the year 2017 using the dust entrainment and 

deposition (DEAD) model. 

EEmissions obtained from NASA/GMAO and include contributions from eruptive and degassing volcanic emissions 

in 2017, details are here: http://ftp.as.harvard.edu/gcgrid/data/ExtData/HEMCO/VOLCANO/v2019-08/README 

FLightning emissions of NO match OTD/LIS climatological observations of lightning flashes from May 1995 – 

December 2013, as described by Murray et al., 2012. 

GSoil NOx emissions are calculated as a function of surface vegetation type, temperature, precipitation history, and a 

canopy reduction factor, following the parameterization described in Hudman, et al. 71. Note that fertilizer emissions 

are not included in this calculation as fertilized soil emissions are included in the CEDSGBD-MAPS inventory.  

HOcean-air exchange fluxes for DMS, acetone, acetaldehyde, and inorganic iodine are from 74, 72, 73, and 77, 

respectively. Ocean emissions of NH3 from natural sources are set to 1990 levels from GEIA and NH3 emissions 

from artic seabirds are from 76 and 75. Sea salt emissions are calculated following 12. 

IBiogenic emissions are calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.1.  

JEnergy emissions from fuel production and transformation, oil and gas fugitive/flaring, and fossil fuel fire 

emissions are not assigned to specific fuel types 

KIndustry emissions from non-combustion industrial processes and product use (cement production, lime production, 

other minerals, chemical industry, metal production, food, beverage, wood, pulp, and paper, and other non-

combustion industrial emissions) are not assigned to specific fuel types. 

 

http://ftp.as.harvard.edu/gcgrid/data/ExtData/HEMCO/VOLCANO/v2019-08/README
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Supplementary Figure 6: Global total 2017 base simulation emissions. Emissions are colored 

by source sector category. BC, OC, and total NMVOCs are provided in units of Tg carbon yr-1. 

Emissions of CO and NMVOCs are divided by 10 for illustration purposes only. Note: OC 

emissions do not include the GEOS-Chem chemical compound SOAP (secondary organic aerosol 

precursor), which is emitted from biogenic sources and co-emitted with CO. Emissions of this 

compound, however, are included in each model simulation. 

 

Supplementary Text 6. Fractional Fuel and Sector Contributions – Additional 

Comparisons to Previous Nation-Level Studies 

To provide further context for our results, this section provides further comparisons to previous 

national-level studies that have also used 3D chemical transport models to quantify PM2.5 source 

contributions and/or the associated ambient PM2.5 disease burden. Where available, we primarily 

compare the reported fractional contributions to minimize methodological and input data 

differences. As described in the main text, differences in sectoral definitions (e.g., including fires 

in the agricultural sector or waste in the residential sector) highlight the importance of clearly 

defining emission sector definitions in source contribution studies (e.g., Supplementary Table 2). 

This text is not an exhaustive review of previous studies. 
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Fuel Types 

Previous studies using similar methodologies have typically combined all anthropogenic 

sources for global or regional scale analyses81-83 or reported contributions from single or 

aggregate fuel-types84, typically for select countries such as China and India85-87. Previous 

studies also provide estimates of years prior to 2017, which may not capture recent trends in 

PM2.5 chemical precursor emissions, such as recent reductions in China88.  

Previous national-level studies have only investigated the contribution from coal 

combustion emissions for select countries and sectors. For example, previous studies have 

discussed the importance of residential, energy, and industrial coal use on local and regional 

PM2.5 pollution in India87 and China86, particularly during winter89,90. Emission reduction 

policies in China have also recently targeted coal use in these sectors. Fractional coal 

contributions in the residential, energy, and industry sectors in this study in 2017 were 

estimated to account for 5.3%, 4.7%, and 9.1% of total PM2.5 sources in China and 1.4%, 

7.0%, and 8.2% in India. These are generally smaller than the corresponding contributions of 

4%, 9%, and 17% in 2013 for China86, but generally agree well with the 8% contributions 

from both energy and industrial coal use in India in 201587. When considering total coal use 

across all sectors, these previous studies have estimated contributions of 40% in China and 

16% in India86,87. In 2017, total coal contributions were lower in China (22.7%) and slightly 

larger in India (17.1%), which may be a result of different methodologies, but is also 

consistent with recent emission trends in these respective countries.  

For solid biofuel, Chafe, et al. 84 previously investigated the contribution of residential 

cooking with biofuel to the PM2.5 mass and associated burden at both global and regional 

scales for the year 2010. Both studies predict large relative contributions in South and 

Southeast Asia, though Chafe, et al. 84 also predict fractional contributions from biofuel 

cooking in Southern Sub-Saharan Africa and Southern Latin America that were more than 

twice as large as those in this work. Reductions in the proportion of the population using 

solid fuels in these locations between 2010 and 2017 may partially explain these differences. 

In China and India, two previous studies found that solid biofuel combustion for residential 

heating and cooking contributed to 15% in China in 201386 and 24% in India in 201587. 

These fractional contributions were similar to those of 12.7% and 22.5% for China and India 

in 2017 and suggest that these relative contributions have been relatively constant in recent 
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years. Due to such persistent contributions, however, previous studies have also shown the 

potential for significant air quality benefits by addressing the fuels and combustion 

efficiencies of sources used for residential heating and cooking in China89,90. For 2017, we 

estimate a total of nearly 250,000 (95% CI: 189,500-305,500) deaths avoidable by 

eliminating both solid biofuel and coal use in the residential sector in China. 

Sectors 

For the residential sector, previous studies for India estimated PM2.5 disease burden 

contributions between 27% and 50% in 2010 and 201587,91. Contributions in 2017 were 

comparable but slightly lower at between 23%-35% when comparable sub-sectors (e.g., 

residential + waste) were considered. In China, previous residential estimates ranged from 

25%-32% in 201091,92 and ~19%-22% in 201386,93, both consistent with 26% here in 2017 

(Supplementary Data 1). Fig. 2 and Fig. 3 in the main text show that the fractional residential 

contributions were generally smaller in Canada and the U.S. than in Asia, also consistent 

with multiple previous studies91,94-98. Emissions estimates from the residential sector, 

however, are particularly uncertain in emission inventories compared to those from other 

large anthropogenic emission sources54,99-101. 

For the energy and industry sectors, 2017 contributions were 10.2% and 11.7%, 

respectively. These sectors have been studied relatively extensively in past work compared to 

other PM2.5 sources, however, differences may arise due to differences in the detailed sub-

sectoral categories used here, or recent emission changes. The more detailed sectors such as 

commercial, AFCID, and waste examined here isolate sources that may have either been 

lumped into the industry sector in prior work or neglected altogether. Over recent years, 

industrial and energy emissions have been decreasing in China, while these emission sources 

have been simultaneously increasing throughout other parts of Asia, Latin America, and 

Africa54. Previous studies have specifically investigated these source contributions at the 

national level in China86,91-93, India87, Canada94, the U.S.98, and throughout Africa82,83. In 

Canada, combined fractional energy and industry contributions in this work were similar to 

previous results94. In China, previous energy contributions were consistent with this work, 

however industrial emissions in 2017 were close to half those previously reported for 2010 

and 201386,92,93. In Africa, two recent studies found the greatest contributions from the energy 

sector in Egypt and Southern Sub-Saharan Africa82,83, also consistent with this work (Fig. 3). 
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Two additional fuel and sector specific simulations for 2017 revealed that 91% of these 

energy contributions in South Africa were from coal, while only 46% were from coal in 

Egypt (Fig. 3, Supplementary Data 1). One additional study predicted a much smaller (3%) 

contribution from combined energy and industry sources in Egypt in 2010, predicting instead 

a 92% contribution from natural sources91. More detailed assessments of these differences 

between industry, energy, and other source contributions are largely limited by a lack of 

more detailed emission sector descriptions.  

For dust, agriculture, transportation, and fires, agreement with previous national-level 

results were variable. For example, national-level fractional dust estimates in 2017 were 

much larger for North Africa, the Middle East102, and China93, and smaller in India87 

compared to previous studies. For India specifically, updates to the model deposition29 and 

dust size distribution schemes14, as well as interannual variability in dust emission fluxes and 

removal rates, likely contribute to the smaller total contribution from fine dust (< 2.5 m 

diameter) in this work (~14.9%) relative to previous estimates (~38%), derived using an 

older version of the GEOS-Chem model. As shown in Supplementary Figure 5, the model 

updates in this work improved the agreement with surface dust observations, however, the 

measured PWM dust concentrations at surface monitors were < 1 µg/m3, indicating that 

current surface monitor locations may not provide an accurate characterization of the total 

population exposure to dust. These uncertainties highlight the need for increased monitoring 

and continued improvement to the model treatment of dust to improve the accuracy of 

contribution estimates from this source.  

For non-combustion agriculture, 2017 estimates were generally smaller than previous 

regional-level studies103,104. For example, 2017 contributions in Europe, North America, and 

South and East Asia were less than 22%, 11%, and 12%, respectively, while the same source 

was estimated to contribute to 34%, 17%, and 10% in 2010103. Global and regional NH3 

emissions have been increasing between 2010 and 201754, indicating that differences here are 

methodological (e.g., differences in emissions or chemical production), rather than real 

temporal trends. Our mechanistic updates to the ammonium nitrate simulation 

(Supplementary Text 3) both improved the agreement with observations and reduced the 

agricultural sources of PM2.5 in this work. 
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For the transportation sector, relative contributions have also been previously 

investigated at the national scales105-107. Consistent with previous studies, total transportation 

contributions in this work were generally greater than the global average in North America, 

Europe, parts of Asia, Australia, and Latin America105-107. Comparisons with additional 

national-level results86,87,91-93,98,107 show that differences in fractional contributions generally 

follow recent trends in transportation emissions, with recent decreases in China and the U.S. 

and increases in India.  

For fire emissions, comparisons to previous global and national level estimates are 

discussed in the main text.  

Waste, solvent use, and international shipping sectors have relatively small contributions 

on the global scale but can significantly contribute to national and sub-national PM2.5 

variation (e.g., up to 18% in Sri Lanka; Fig. 5). Contributions from waste combustion to the 

ambient PM2.5 disease burden have not been previously reported. The relative contribution 

from the solvent sector has only been reported in one previous national-level study86. As a 

result of non-linear PM2.5 mass production, solvent emission reductions can result in an 

increase in total PM2.5 mass. This was shown previously for a study in China86. Solvent 

emission reductions in 2017, however, resulted in a total mass decrease in this same country. 

As the solvent sector primarily emits NMVOCs (Supplementary Figure 6), this variable sign 

response demonstrates that decreases in these emissions can increase the availability of 

atmospheric oxidants, leading to increases in inorganic aerosol mass in NOx-limited/VOC-

saturated chemical regimes108. Therefore, this negative response may be important to 

consider when developing air pollution reduction strategies in regions with large VOC/NOx 

emission ratios. Solvent emissions, however, are also highly uncertain as NMVOCs may be 

underestimated in U.S. emissions inventories by a factor of 2-3109. Relative national 

contributions from international shipping are generally consistent with previous studies110,111, 

where the largest relative contributions are predicted in coastal countries such as Ireland, 

Portugal, and the Bahamas (more than 12% each in 2017). 

 

Supplementary Text 7. Uncertainty Sensitivity Study 

We conduct an additional sensitivity test to account for potential uncertainties in the PM2.5 

disease burden associated with the age- and disease-specific baseline mortality data from the 
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2019 GBD. The 95% uncertainty ranges are calculated by applying lower and upper estimates of 

the baseline mortality data to the PAF in Equation 2, derived from the mean CRF. The resulting 

95% confidence intervals for 21 world regions are shown in Supplementary Figure 7, compared 

to the 95% CIs derived from uncertainties in the mean CRFs (reported in the Main Text). As the 

upper and lower limits in the baseline and CRF datasets are both estimated from multiple draws 

of underlying distributions, propagating the uncertainties from these two input variables likely 

leads to an overestimate in the 95% CI for the total attributable disease burden. Supplementary 

Figure 7 shows that for most regions, the 95% CI associated with uncertainties in the CRFs 

encompass the 95% CIs associated with uncertainties in the baseline mortality estimates. 

Additional uncertainties in the PM2.5 exposure estimates and modeled fractional source 

contributions are not considered here to due computational limitations.  

 

 
Supplementary Figure 7. Total disease burden estimates and confidence intervals for 21 

world regions, derived from uncertainties in CRFs and baseline mortality data. Total 

disease burden estimates are from Supplementary Data 1. Uncertainty ranges illustrate the 95% 

CI derived from uncertainty estimates in the CRFs (blue) and baseline mortality data (red). The 

bounds for South and East Asia are shown on an expanded scale to the right.  
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Supplementary Text 8. Consideration of the Zero-Out (Brute Force) Method  

Similar to many other analyses of this type of work, our analysis uses a zero-out or brute force 

approach for model sensitivity simulations. This widely used approach is designed to quantify 

source contributions to the total PM2.5 disease burden under complete elimination of emissions 

from individual sources. As discussed in previous zeroing-out studies35,91,92,103, the non-linear 

chemical production of PM2.5 will result in the sum of individual PM2.5 simulations to exceed the 

total PM2.5 mass predicted in the base simulation. By implementing Eq. (5) in the Main Text, we 

ensure that fractional contributions from individual source sectors sum to 100% in this work. 

Using this approach, the final fractional PM2.5 source contributions will be sensitive to the 

number of individual source sensitivity simulations that are included in the calculation, resulting 

in further differences between the detailed simulations in this work and previous similar studies. 

Due to this non-linearity, fractional and absolute contributions predicted from this method may 

not be consistent with simulations that implement more moderate reduction strategies (i.e., < 20-

50% emission reductions), or strategies that simultaneously target multiple emission sectors 

(e.g., simultaneous reductions in both energy and industry sources). 

 

Supplementary Text 9. Methodological Schematic 

As described in the main text, results in this study are derived by integrating high-resolution 

satellite-derived PM2.5 exposure estimates, CRFs from the 2019 GBD, and fractional source 

contribution results from 24 emission sensitivity simulations with the GEOS-Chem chemical 

transport model. Supplementary Figure 8 illustrates the overall workflow of this methodology. In 

Step 1, gridded global emissions of PM2.5 precursors are developed as a function of source sector 

and fuel-type (Supplementary Table 5; anthropogenic emissions largely from the CEDSGBD-MAPS 

inventory), as described in McDuffie, et al. 54. In Step 2, emissions are used as input in an 

updated version of the GEOS-Chem 3D chemical transport model (described in Supplementary 

Text 3), with the simulated PM2.5 concentrations validated against available mass and 

composition surface observations (described in Supplementary Text 4). In Step 3, a series of 

zero-out emission sensitivity simulations are conducted (Supplementary Table 2) with the 

GEOS-Chem model and emission inputs. The resulting PM2.5 concentrations from each 

simulation are compared to the base simulation (with all emission sources) to quantify the 

modeled fractional PM2.5 contributions (reported in Date Files 1 (sectors) and 2 (fuel-types)). In 
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Step 4, high-resolution PM2.5 exposure estimates are derived by downscaling exposure estimates 

from the 2019 GBD (described in Supplementary Text 10; reported in Supplementary Data 1 and 

2) and are applied to the fractional model source contributions from Step 2 to quantify absolute 

source-specific contributions to ambient PM2.5 mass. In Step 5, CRFs from the GBD2019 

(Supplementary Figure 2) are combined with downscaled PM2.5 exposure estimates from Step 4 

to calculate the total ambient PM2.5 disease burden (reported in Supplementary Data 1 and 2). 

The total burden is combined with modeled fractional source contributions from Step 3 to 

calculate source-specific burden contributions reported throughout the manuscript. Lastly, Step 6 

highlights the data assets that are associated with this analysis and manuscript, including the 

analysis scripts, model source code, input emissions, CRFs, baseline burden and exposure 

estimate datasets (https://github.com/emcduffie/GBD-MAPS-Global), and the global, regional, 

national, and subnational source sector and fuel contribution results (Supplementary Data 1 and 

2).  

 

 
Supplementary Figure 8: Overall methodological workflow schematic. The relevant equations 

and data from Supplementary Text 9 are indicated in each step. 
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Supplementary Text 10. PM2.5 Exposure Estimates - Spatial Downscaling Procedural 

Details 

The process of spatially downscaling GBD PM2.5 exposure estimates using a newly available 

high-resolution product from Hammer, et al. 5 involves three steps, illustrated in Supplementary 

Figure 9. First, the 0.10.1 GBD product is re-gridded to a 0.010.01 global grid, by setting 

each value in the new fine-resolution grid boxes (100 boxes) to the value from the corresponding 

coarser grid box in the original GBD product. Second, the fractional contribution of each grid-

box in the 0.010.01  Hammer, et al. 5, product is calculated relative to the average PM2.5 

across the surrounding 100 grid boxes. In the event that the Hammer, et al. 5 product does not 

report data for a particular grid box, the spatial fraction in that box is set to 1. Third, these 

resulting fractional contributions are multiplied by the GBD values from the 0.010.01  PM2.5 

product from Step 1. This process is independent of the GEOS-Chem emission sensitivity 

simulations.  

 

 
Supplementary Figure 9: Simplified schematic of the spatial downscaling procedure. Values 

in each example grid box represent example PM2.5 mass concentrations in units of g m-3. In 

actuality, one of the 0.10.1 grid boxes in Step 1 above corresponds to 100 grid boxes of 
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0.010.01 resolution, not the four as shown here. In this figure ‘GWR’ refers to the high-

resolution PM2.5 estimates from Hammer, et al. 5.  
 

 

To assess the sensitivity of PM2.5 exposure estimates to the downscaling process, Supplementary 

Figure 10 shows maps of the gridded exposure estimates, as well as their correlations against 

observations for (A) the raw GEOS-Chem simulated concentrations, (B) original 0.10.1 GBD 

PM2.5 product, and (C) 0.010.01 Hammer, et al. 5 product. Fig. 1 and Supplementary Figure 10 

illustrate similarly good agreement between each of the exposure estimates and the total PM2.5 

mass observations, with correlation coefficients (r) and NMBs ranging from 0.89 to 0.979 and -

3% to +11%, respectively. The added spatial information from the downscaling procedure slightly 

increases the NMB from +7% (Supplementary Figure 10b) to +11% (Fig. 1), but maintains a 

slightly higher correlation coefficient (r) than the high-resolution Hammer, et al. 5 product (0.977 

vs 0.951). Across all four products, the 2017 global annual PWM PM2.5 mass ranges between 31.3 

g m-3 to 41.7 g m-3. Differences between the GBD and Hammer, et al. 5 products are largely due 

to different methods used to calibrate geophysical estimates to surface observations.
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Supplementary Figuere 10: Comparison of three PM2.5 exposure estimates against surface observations for the year 2017. (A) 

GEOS-Chem annual average PM2.5 mass concentrations, (B) 0.10.1 GBD annual average PM2.5 exposure estimates, (C) 0.010.01 

Hammer, et al. 5 annual average exposure estimates. Each column contains a map of the PM2.5 concentrations and a scatter plot 

comparing each product against 2017 surface observations. Colors represent world regions (Supplementary Table 1) and symbols 

represent observation networks (Supplementary Text 4). Red lines: correlation slope, solid black lines: 1:1 line, and dashed lines: 2:1 

and 1:2 lines. The fit slope, intercept, correlation coefficient, normalized mean bias (NMB), number of observation points (N), and 

PWM PM2.5 concentrations are also provided.
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