1	Supplementary Information for
2	Insights into the genomic evolution of insect from Cricket
3	genomes
4 5 6	Guillem Ylla, Taro Nakamura, Takehiko Itoh, Rei Kajitani, Atsushi Toyoda, Sayuri Tomonari, Tetsuya Bando, Yoshiyasu Ishimaru, Takahito Watanabe, Masao Fuketa, Yuji Matsuoka, Austen A. Barnett, Sumihare Noji, Taro Mito, Cassandra G. Extavour
7 8 9	This Supplementary Information file consists of the following:
10	• Supplementary Figures 1 - 4
11	• Supplementary Tables 1 - 5
12	• Supplementary Note 1
13	Supplementary References

16 Supplementary Figure 1: Schematic of *G. bimaculatus* genome annotation pipeline.

- 17 Rectangles represent data inputs: yellow rectangles represent *G. bimaculatus* data; purple
- 18 rectangles represent data from other species or databases. Diamonds represent computational
- 19 processes: gray diamonds indicate processes executed a single time; non-gray diamonds of the
- 20 same color indicate the same process. Circles indicate outputs: blue circles indicate quality
- 21 controls; green circles indicate annotations. Scripts available at GitHub
- 22 https://github.com/guillemylla/Crickets Genome Annotation.

Supplementary Figure 2: Scheme of *L. kohalensis* genome annotation pipeline. All symbols as
 per Supplementary Figure 1.

Supplementary Figure 3: Enriched GO-terms among genes with high or low CpGo/e levels. This plot shows the enriched GO terms with pvalue<0.05 in at least one of the eight categories which are the high CpGo/e and low CpGo/e genes of *G. bimaculatus* (Gbi), *L. kohalensis* (Lko), *F. occidentalis* (Foc), and *A. mellifera* (Ame). The dot diameter is proportional the percentage of significant genes with the GO term within the gene set. The dot color represents the

p-value level, blue >0.05, orange [0.05, 0.001),

red < 0.001.

Ylla et al. Supplementary Materials Page 4 of 12

- 42 Supplementary Figure 4: UpSet plot of orthologous genes withing the high and low CpG_{o/e}.
- 43 Top 50 intersections of orthogroups (OGs) that are common across the 8 different categories,
- 44 which are the high CpG_{o/e} and low CpG_{o/e} genes for *G. bimaculatus* (Gbi), *L. kohalensis* (Lko), *F.*
- 45 Occidentalis (Foc), and A. mellifera (Ame). Blue color indicates OGs that contain genes that only
- 46 belong to high CpG_{o/e} peak and yellow OGs that contains genes that only belong to the low
- 47 CpG_{o/e} and peak.
- 48

Supplementary Table 1: Number of species with available genome assembly in NCBI (RefSeq and GeneBank) for each of the 15 hemimetabolous orders and for all holometabolous species as for March 26, 2021.

Hemimetabolous Order	Number of spp with available genome assembly
Zoraptera	0
Mantodea	0
Mantophasmatodea	0
Grylloblattodea	0
Embiodea	0
Psocoptera	0
Dermaptera	1
Phthiraptera	2
Odonata	3
Ephemeroptera	3
Plecoptera	3
Thysanoptera	3
Blattodea	5
Orthoptera	6
Phasmatodea	13
Hemiptera	49

Taxon Holometabola

Number of spp with available genome assembly 601

- 50 Supplementary Table 2: RepeatMasker summary report for *G. bimaculatus*. Report of the
- 51 repeat content in the genome of *G. bimaculatus* generated by RepeatMasker using custom
- 52 libraries.
- 53

 Species: Gryllus bimaculatus

 sequences:
 47877

 total length:
 1658007496 bp (1601517380 bp excl N/X-runs)

 GC level:
 39.93 %

 bases masked:
 558652201 bp (33.69 %)

		Number of elements*	Length	Percentage
SINEs:		138895	26406967bp	1.59%
	ALUs	6	9564bp	0.00%
	MIRs	0	0bp	0.00%
LINEs:		454301	147302087bp	8.88%
	LINE1	1803	826764bp	0.05%
	LINE2	115576	32029561bp	1.93%
	L3/CR1	18286	6358119bp	0.38%
I TD elementer		121656	26070251hp	2 2 2 0/
LIR elements.		131030	309702310p	2.23%
		92	44183bp	0.00%
	ERVL-MaLKS	0		0.00%
	ERV_classi	11451	2441461bp	0.15%
	ERV_classII	980	401749bp	0.02%
DNA elements:		500741	142828465bp	8.61%
	hAT-Charlie	11512	4094376bp	0.25%
	TcMar-Tigger	2039	537995bp	0.03%
				/
Unclassified:		367653	126552078bp	7.63%
Total interspersed	repeats:		480059848bp	28.95%
Small RNA:		2562	1002728bp	0.06%
Satellites [.]		31087	7528498hn	0 45%
Simple repeats:		769175	77632578hp	4 68%
Low complexity		85129	6215377bp	0.37%

* most repeats fragmented by insertions or deletions have been counted as one element RepeatMasker version open-4.0.5 , default mode run with rmblastn version 2.2.27+

RepBase Update 20160829, RM database version 20160829

55 Supplementary Table 3: RepeatMasker summary report for L. kohalensis. Report of the

- 56 repeat content in the genome of *L. kohalensis* generated by RepeatMasker using custom
- 57 libraries.
- 58

Species: Laupala kohalensis Sequences: 148784 total length: 1595214429 bp (1563778341 bp excl N/X-runs) GC level: 35.58 % bases masked: 566518287 bp (35.51 %)

		Number of elements*	Longth	Doroontogo
			2002717hp	
SINES.		29510	10037170P	0.44%
	ALUS	304	101257bp	0.01%
	MIRs	1248	4305846p	0.03%
		1005151	000470040	00.040/
LINES:		1035151	322470849bp	20.21%
	LINE1	941	367057bp	0.02%
	LINE2	584526	167380843bp	10.49%
	L3/CR1	10257	4624100bp	0.29%
LTR elements:		57347	29690552bp	1.86%
	ERVL	231	43500bp	0.00%
	ERVL-MaLRs	0	0bp	0.00%
	ERV classl	1821	585650bp	0.04%
	ERV_classII	389	125302bp	0.01%
DNA elements:		189815	62384975bp	3.91%
	hAT-Charlie	15008	5154516bp	0.32%
	TcMar-Tigger	8896	2459752bp	0.15%
		400000	4000005501	0.000/
Unclassified:		409303	128822550bp	8.08%
Total interspersed	reneate:		550452643bp	31 51%
rotar interspersed	Tepeals.		000402040bp	54.5170
Small RNA:		13816	3005585bp	0.19%
Satellites:		2088	882748bp	0.06%
Simple repeats:		307925	19782955bp	1.24%
Low complexity:		48386	2381730bp	0.15%

* most repeats fragmented by insertions or deletions have been counted as one element RepeatMasker version open-4.0.5, default mode run with rmblastn version 2.2.27+

RepBase Update 20160829, RM database version 20160829

59

- **Supplementary Table 4**: The orthogroups (OG) containing the 31 *D. melanogaster* pickpocket
- 62 genes, with their FlyBase ID, symbol, and class according to Zelle, Lu¹.

OG	Flybase ID	Dmel symbol	Zelle 2013 class
OG0000361.fa	FBgn0034965	ppk29	I
OG0000361.fa	FBgn0039424	ppk15	I
OG0000361.fa	FBgn0051065	ppk31	I
OG0000361.fa	FBgn0053508	ppk13	I
OG0009052.fa	FBgn0032602	ppk17	V
OG0000185.fa	FBgn0039675	ppk21	III
OG0000185.fa	FBgn0039677	ppk30	III
OG0000185.fa	FBgn0039679	ppk19	III
OG0000185.fa	FBgn0065109	ppk11	IV
OG0000185.fa	FBgn0039676	ppk20	III
OG0000185.fa	FBgn0031802	ppk7	III
OG0000185.fa	FBgn0031803	ppk14	III
OG000072.fa	FBgn0022981	rpk / ppk2	V
OG000072.fa	FBgn0034730	ppk12	V
OG000072.fa	FBgn0052792	ppk8	V
OG000072.fa	FBgn0053289	ppk5	V
OG000072.fa	FBgn0020258	ppk / ppk1	V
OG000072.fa	FBgn0265001	ppk18	IV
OG000072.fa	FBgn0030795	ppk28	V
OG000072.fa	FBgn0035785	ppk26	V
OG0011276.fa	FBgn0035458	ppk27	IV
OG0000243.fa	FBgn0034489	ppk6	IV
OG0000243.fa	FBgn0039839	ppk24	IV
OG0000243.fa	FBgn0051105	ppk22	IV
OG0000243.fa	FBgn0065108	ppk16	IV
OG0000243.fa	FBgn0024319	Nach / ppk4	IV
OG0000167.fa	FBgn0050181	ppk3	II
OG0000167.fa	FBgn0053349	ppk25	II
OG0000167.fa	FBgn0065110	ppk10	II
OG0000167.fa	FBgn0085398	ppk9	II
OG0000167.fa	FBgn0030844	ppk23	VI

66 Supplementary Table 5: *pickpocket* genes present in previous QTL analyses examining the genetic basis for sound-based cricket

67 courtship behavior variation. Genomic position information for the *L. kohalensis pickpocket* genes found in linkage groups (LG) in

68 previously published QTL analyses^{2, 3, 4} examining mating song rhythm variations and female acoustic preference in the genus

- 69 Laupala.
- 70

								Table	S3 and S6	Table S4	Table 2 (Xu
								(Blank	ers, Oh ²)	(Blankers, Oh ³)	and Shaw ⁴)
Scaff names									proximit		
Shaw	Scaff Names NCBI	start	end	width	strand	Name	Ppk class	LG	У	LG	LG
Lko057S000409	NNCF01126148.1	1083057	1116038	32982	+	Lko_01144	Class IV	1	LOD1	1	
Lko057S000550	NNCF01126289.1	666338	667949	1612	-	Lko_06470	Class IV	3	LOD2		
Lko057S005538	NNCF01131273.1	20948	31450	10503	-	Lko_31867	Class V	4	LOD1		
Lko057S005538	NNCF01131273.1	6676	8154	1479	-	Lko_31866	Class V	4	LOD1		
Lko057S005538	NNCF01131273.1	43198	60736	17539	-	Lko_31869	Class V	4	LOD1		
Lko057S000206	NNCF01125945.1	353321	357106	3786	-	Lko_06341	Class III				3
Lko057S000206	NNCF01125945.1	404113	432386	28274	-	Lko_06342	Class III				3
71											

- 72
- 73 Supplementary Note 1: Genome size estimation by k-mer on a different dataset than the one 74 used for the genome assembly. For this analysis we used 751M reads obtained from DNA of
- 75 multiple specimens.
- 76 77

Platform	Number of Reads	Total bases	Ave. Read Length
GAIIx	353,824,480	52,699,721,836	148.943
HiSeq	398,005,266	40,198,822,874	101.001
Total	751,829,746	92,898,544,710	123.563

80

[K]	K-mer	17	
[D]	Peak K-mer	48	
[N]	Total Reads	751,829,746	
[L]	Average Read length	123.6	
[B]	Low frequency K-mer	47,170,416	
[G]	Estimate Size	1,683,793,716	bp
[G] =	{ [N] * ([L] - [K]+1) } - [B]	
[0]	[])]	

84	Supplementary References					
85						
86						
87	1.	Zelle KM, Lu B, Pyfrom SC, Ben-Shahar Y. The genetic architecture of				
88		degenerin/epithelial sodium channels in Drosophila. In: G3: Genes, Genomes, Genetics).				
89		Genetics Society of America (2013).				
90						
91	2	Blankers T. Oh KP. Shaw KL. The genetics of a behavioral speciation phenotype in an				
92	2.	Island system. In: <i>Genes</i>). Multidisciplinary Digital Publishing Institute (2018).				
/		istanta systemi, m. Senes), manaiserprinary Digitar i astroning mistature (2010).				
93						
94	3.	Blankers T, Oh KP, Bombarely A, Shaw KL. The genomic architecture of a rapid Island				
95		radiation: Recombination rate variation, chromosome structure, and genome assembly of				
96		the hawaiian cricket Laupala. In: Genetics). Genetics (2018).				
07						
97	Λ	Yu M. Shaw KI. The genetics of mating song evolution underlying rapid speciation:				
90	7.	Linking quantitative variation to candidate genes for behavioral isolation. In: <i>Ganatics</i>)				
99 100		(2010)				
100		(2017).				