Biophysical Journal, Volume 120

Supplemental information

Agonist efficiency from concentration-response curves: Structural im-

plications and applications

Dinesh C. Indurthi and Anthony Auerbach

Figure S1. <u>Constructing a CRC from single-channel currents (agonist, cytisine)</u>. A. Lowresolution view of cell-attached, single-channel currents showing clusters of openings and closing arising from a single AChR separated by long silent periods in which all AChRs in the patch are desensitized (open down). B. High-resolution views of example clusters at different cytisine concentrations and corresponding intra-cluster interval-duration histograms. The predominant shut and open interval durations (τ_s and τ_o) were used to calculate an openchannel probability (Po) at each agonist concentration. C. CRC fitted by Eq. 1 to estimate EC₅₀ and Po^{max} (symbols, mean±s.e.m.). Efficiency (η) was calculated by using Eqs. 2-5.

Figure S2. Activation of adult-type AChRs by agonists (open in down). Agonist abbreviations in Materials and Methods. Interval-duration histograms and an example cluster. The predominant intra-cluster shut and open interval durations (τ_s and τ_o) are in ms. CRCs are shown in Fig. 4A.

Figure S3. Activation of adult-type AChR in the presence of Ebt (epibatidine) and Ebx (epiboxidine). Time constants are ms. CRCs are shown in Fig. 4B.

Figure S4. Activation of adult-type AChR by TEA (tetraethylammonium), Var (varenicline) and TMP (tetramethylphosphonium). Time constants are ms. CRCs are shown in Fig. 4C.

Figure S5. Agonist head-group volume. Not shown: the head-groups of ACh, CCh, choline, 3OH-P and 4OH-B are the same as TMA, and those of Ebt and Ebx are the same as azabicycloheptane.

Figure S6. Using efficiency (η) to calculate I^{max} from EC₅₀ (from whole cell CRCs normalized to a maximum of 1; Table 2, right) (see Fig. 8B). Agonist, TMA; experimental EC₅₀, 1.3 mM; E₀=5.2x10⁻⁷. From non-normalized CRCs, the true I^{max}= 0.70 (Table 2, left). I^{max} calculated by using Eq. 9 is very sensitive to η , making it possible to estimate an agonist's efficiency by matching its calculated and experimental (non-normalized) efficacies.

Figure S7. Unliganded gating equilibrium constant (E_0) estimated from CRC parameters. The assumed η values were either 52% (red) or 41% (blue). The calculated mean E_0 of 1.8 x 10⁻⁶ (dashed line) is approximately the same regardless of η and reasonably close to the E_0 value estimated by using other methods, 7.4 x 10⁻⁷ (arrow).

	K _{dC} (mM)	K _{dO} (µM)	$\log K_{\text{dC}}$	$\log K_{\text{dO}}$	η
WT	0.166	0.028	-3.78	-7.55	0.50
αY93W	2.01	1.20	-2.70	-5.92	0.54
Н	3.20	2.90	-2.49	-5.54	0.55
А	1.21	1.30	-2.92	-5.89	0.50
F	2.59	5.80	-2.59	-5.24	0.51
S	6.24	14.0	-2.20	-4.85	0.55
αW149Y	2.41	3.00	-2.62	-5.52	0.53
F	12.8	19.0	-1.89	-4.72	0.60
А	28.8	260.0	-1.54	-3.59	0.57
αY190F	3.60	16.0	-2.44	-4.80	0.49
W	6.46	56.0	-2.19	-4.25	0.48
A	16.5	1900	-1.78	-2.72	0.35
αY198F	0.23	0.053	-3.64	-7.28	0.50
Н	5.70	9.10	-2.24	-5.04	0.55
W	0.61	0.88	-3.21	-6.06	0.47
S	3.90	12.0	-2.41	-4.92	0.51
Т	9.20	38.0	-2.04	-4.42	0.54
L	4.10	21.0	-2.39	-4.68	0.49
А	7.50	41.0	-2.12	-4.39	0.52
εP121L	0.72	2.20	-3.14	-5.66	0.44
Y	1.27	3.00	-2.90	-5.52	0.48
G	1.00	1.20	-3.00	-5.92	0.49

Table S1. ACh efficiency after mutation of a binding site residue (aromatics and ϵ P121).

Equilibrium dissociation constants (K_d) of ACh to resting (C) and active (O) conformations of the binding site (Fig. 1) estimated by kinetic modeling (1). Efficiency (η) is 1-logK_{dC}/logK_{dO}.

	Ligand	E2	Eo	K _{dC}	K _{dO}	log K _{dC}	log K _{dO}	η
αG153	Cho	0.05	7.4E-07	4.0E-03	1.5E-05	-2.40	-4.81	0.50
S	Cho	0.63	1.9E-05	3.7E-04	2.0E-06	-3.43	-5.69	0.40
А	Cho	1.18	4.2E-05	2.9E-04	1.7E-06	-3.54	-5.77	0.39
Р	Cho	1.1	4.8E-05	1.5E-04	1.0E-06	-3.81	-5.99	0.36
К	Cho	3	1.4E-04	2.6E-04	1.8E-06	-3.59	-5.75	0.38
αG153	DMP	0.4	7.4E-07	2.1E-03	2.9E-06	-2.68	-5.54	0.52
S	DMP	6.14	1.9E-05	1.8E-04	3.2E-07	-3.74	-6.50	0.42
А	DMP	12.2	4.2E-05	1.9E-04	3.6E-07	-3.71	-6.44	0.42
Р	DMP	13.8	4.8E-05	2.0E-04	3.8E-07	-3.69	-6.42	0.43
К	DMP	20.6	1.4E-04	2.3E-04	5.9E-07	-3.64	-6.23	0.41
αG153	TMA	2.5	7.4E-07	8.1E-04	4.4E-07	-3.09	-6.36	0.51
S	TMA	25.8	1.9E-05	8.1E-05	7.0E-08	-4.09	-7.16	0.43
А	TMA	285	4.2E-05	3.9E-05	1.5E-08	-4.41	-7.82	0.44
Р	TMA	179	4.8E-05	1.0E-04	5.2E-08	-4.00	-7.29	0.45
К	TMA	627	1.4E-04	1.7E-05	8.1E-09	-4.76	-8.09	0.41
αG153	Nicotine	0.87	7.4E-07	1.0E-03	9.2E-07	-3.00	-6.04	0.50
S	Nicotine	12.34	1.9E-05	9.2E-05	1.1E-07	-4.04	-6.94	0.42
А	Nicotine	17.7	4.2E-05	1.1E-04	1.8E-07	-3.94	-6.76	0.42
Р	Nicotine	12.5	4.8E-05	3.8E-05	7.4E-08	-4.42	-7.13	0.38
К	Nicotine	549	1.4E-04	1.2E-07	6.1E-11	-6.92	-10.22	0.32
Е	Nicotine	32.05	4.5E-05	2.6E-05	4.0E-09	-4.59	-8.40	0.45
R	Nicotine	23.64	3.8E-05	3.2E-05	5.7E-09	-4.49	-8.25	0.45

Table S2. Efficiency after mutation os α G153.

Equilibrium dissociation constants (K_d) of 4 agonists to resting (C) and active (O) conformations (Fig. 1) estimated by kinetic modeling (2). Efficiency (η) is 1-logK_{dC}/logK_{dO}.

Input values				Calculated values					
Ligand	E ₂	η	Eo	Po ^{max}	log E₀	log E ₂	log E ₂ -logE ₀	K _{dC} (mM)	EC₅₀ (mM)
ТМА	2.54	0.52	5.2E-7	0.72	-6.28	0.40	6.69	0.82	0.49
ETMA	0.25	0.52	5.2E-7	0.20	-6.28	-0.60	5.68	2.39	2.86
ΡΤΜΑ	0.29	0.52	5.2E-7	0.22	-6.28	-0.54	5.75	2.61	2.61
BTMA	2.44	0.52	5.2E-7	0.71	-6.28	0.39	6.67	0.83	0.51
Cho	0.05	0.52	5.2E-7	0.05	-6.28	-1.30	4.98	5.01	6.84
3OH-PT	0.15	0.52	5.2E-7	0.13	-6.28	-0.82	5.46	3.02	3.85
4OH-B	0.71	0.52	5.2E-7	0.42	-6.28	-0.15	6.14	1.47	1.42
Cl Cho	0.19	0.52	5.2E-7	0.16	-6.28	-0.72	5.56	2.71	3.37
20H-P	0.02	0.52	5.2E-7	0.02	-6.28	-1.70	4.59	7.65	10.7
Cholamine (pH 9.0)	0.04	0.52	5.2E-7	0.04	-6.28	-1.40	4.89	5.56	7.63

Table S3. EC $_{50}$ from efficacy given η and E_0 for analogues of choline.

Using η and E_0 to calculate EC₅₀ and K_{dc} (Eq. 7) from E_2 (3). TMA (tetramethyl ammonium), ETMA (ethyltrimethyl ammonium), PTMA (propyltrimethyl ammonium), BTMA (butyltrimethyl ammonium), Cho (choline), 3OH-PTMA (3-hydroxypropyl trimethyl ammonium), 4OH-BTMA (4-hydroxybutyl trimethyl ammonium), Cl Cho (2-chloroethyl trimethyl ammonium), 2OH-PTMA (2-hydroxypropyl trimethyl ammonium), cholamine (2aminoethyl trimethyl ammonium).

References:

1. Purohit P, Bruhova I, Gupta S, Auerbach A. Catch-and-Hold Activation of Muscle Acetylcholine Receptors Having Transmitter Binding Site Mutations. Biophysical Journal. 2014;107(1):88-99.

2. Jadey S, Purohit P, Auerbach A. Action of nicotine and analogs on acetylcholine receptors having mutations of transmitter-binding site residue alphaG153. J Gen Physiol. 2013;141(1):95-104.

3. Bruhova I, Auerbach A. Molecular recognition at cholinergic synapses: acetylcholine versus choline. J Physiol. 2017;595(4):1253-61.