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ABSTRACT During clathrin-mediated endocytosis, a patch of flat plasma membrane is deformed into a vesicle. In walled cells,
such as plants and fungi, the turgor pressure is high and pushes the membrane against the cell wall, thus hindering membrane
internalization. In this work, we study how a patch of membrane is deformed against turgor pressure by force and by curvature-
generating proteins. We show that a large amount of force is needed to merely start deforming the membrane and an even larger
force is needed to pull a membrane tube. The magnitude of these forces strongly depends on how the base of the membrane is
constrained and how the membrane is coated with curvature-generating proteins. In particular, these forces can be reduced by
partially, but not fully, coating the membrane patch with curvature-generating proteins. Our theoretical results show excellent
agreement with experimental data.
SIGNIFICANCE Yeast cells have been widely used as a model system to study clathrin-mediated endocytosis. The
mechanics of membrane during endocytosis has been extensively studied mostly in low turgor pressure condition, which is
relevant for mammalian cells, but not for yeast cells. It has been suggested that as a result of high turgor pressure in yeast
cells, a large amount of force is needed to drive the progress of the membrane invagination. In this work, we investigated
mechanisms to reduce the force requirement. We highlight the role of boundary conditions at the membrane base, which is
a factor that has been largely ignored in previous studies. We also show that a large protein coat does not necessarily
reduce the force barrier.
INTRODUCTION

Clathrin-mediated endocytosis (CME) is an active process
eukaryotic cells use to transport materials from their
outside environment to inside of the cell (1–6). During
CME, a patch of flat plasma membrane is bent into the
cell and severed to release a vesicle (Fig. 1 a). Deforming
the membrane toward the cytoplasm is opposed by mem-
brane’s resistance to bending and membrane tension (8,9).
In walled cells such as plants and fungi, the inward defor-
mation is also opposed by turgor pressure, which pushes
the membrane against the cell wall (10–12). In yeast cells,
the inner pressure can be up to 1.5 MPa (13,14). It is con-
jectured that as a consequence of this high turgor pressure,
the membrane invagination exhibits a narrow tubular
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shape with a diameter of �30 nm in yeast cells (4,7),
whereas in mammalian cells, the invagination exhibits a
spherical shape with a diameter of �100 nm because of
relatively low pressure (�1 kPa) (15).

In the past decade, several theoretical models have been
proposed to account for the membrane shape evolution dur-
ing CME (16–21). Most of these models have assumed
conditions relevant to mammalian cells, i.e., low turgor
pressure (<1 kPa) and focused on the role of membrane
tension. Such tension-dominant membrane deformations
have also been extensively studied in in vitro experiments
in which membrane tethers are pulled from giant liposomes
(22–24). In contrast, the pressure-dominant regime of
membrane deformations, which is relevant to endocytosis
in walled cells, has been rarely studied (18). The role of
turgor pressure in shaping the membrane has been exten-
sively studied in the case of closed vesicles (25–27). The
typical force barrier to invaginate a membrane tube against
a membrane tension of 0.01 pN/nm is only 10–100 pN,
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FIGURE 1 CME in yeast and membrane models

for CME. (a) Electron micrograph of a membrane

tube formed during CME in budding yeast. The

image was obtained from https://www.embl.de/

download/briggs/endocytosis.html and adapted un-

der the permission of the authors of (7). The scale

bar represents 50 nm. (b) Schematic illustration of

the membrane and key endocytoic proteins shown

in (a). The actin network surrounding the membrane

tube is depicted as a meshwork of branched and

cross-linked filaments, though their precise organi-

zation cannot be resolved in the electron micrograph

and the meshwork appears as a zone from which ri-

bosomes are excluded. A clathrin coat covering the

tip of the membrane tube is also depicted, though

the specific spatial distribution of clathrin molecules

cannot be resolved in (a). (c) Illustration of the

membrane models. The membrane (green layer) is

pulled up by a point force f against osmotic pressure

p. The membrane is coated with proteins (orange

layer) that locally change the spontaneous curvature

of the membrane c0. The position of the base (red

triangles) is maintained at a constant value Rb. We

consider a homogeneous model (top) in which the

membrane is fully coated or fully uncoated with cur-

vature-generating proteins and an inhomogeneous

model (bottom) in which the membrane is partially

coated. We consider two types of BCs, the free-

hinge BC (left) in which the membrane is allowed

to freely rotate at the base and the fixed-hinge BC

(right) in which the membrane angle is fixed. To

see this figure in color, go online.
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whereas a substantial force (�1000 pN or more) seems to
be required to overcome a turgor pressure of 1 MPa
(5,28,29).

The cytoskeleton protein actin is essential for generating
the forces required for CME in yeast cells (11,30–36).
However, the exact organization of actin filaments around
the membrane invagination remains elusive. Actin filaments
are likely organized into a tight meshwork because ribo-
somes are excluded from the endocytic sites and actin fila-
ments are heavily cross-linked (Fig. 1, a and b; (37)).
How the actin machinery produces force to bend the mem-
brane remains unclear. The most commonly accepted
hypothesis is that polymerization of actin filaments is con-
verted into a pulling force acting on the tip of the invagina-
tion through a push-pull mechanism (28,38–40). In this
mechanism, actin filaments are nucleated on a ring around
a patch of clathrin and adaptor proteins. Polymerization of
actin filaments at the ring, which is the base of the invagina-
tion, pushes the actin meshwork away from the plasma
membrane and, in turn, pulls the invagination inwards
1626 Biophysical Journal 120, 1625–1640, May 4, 2021
thanks to the adaptor proteins that link actin filaments to
the membrane tip.

Membrane can also be bent by proteins that induce mem-
brane curvature. Clathrin molecules can assemble into a
cage-like icosahedral lattice composed of hexagons and
pentagons in vitro (41,42). The clathrin lattice alone is
able to induce spherical buds from membrane in reconsti-
tuted experiments (43). In yeast cells, the clathrin lattice
acts as a scaffold linked to the plasma membrane via adaptor
proteins, and together, they form a rigid coat at the mem-
brane invagination tip (44,45). Based on measurements of
the copy number of clathrin molecules in yeast cells, this
coat is expected to form a hemispherical cap (46). Many cla-
thrin-associated proteins, such as BAR-domain proteins and
epsin, have also shown the capacity to induce membrane
curvature and might help with CME (47,48).

In this work, we study CME under conditions of high
turgor pressure and low membrane tension by investigating
a theoretical model, which describes how a membrane patch
is deformed by a point force and by proteins that induce

https://www.embl.de/download/briggs/endocytosis.html
https://www.embl.de/download/briggs/endocytosis.html


Endocytosis against high turgor pressure
membrane curvature. In the absence of coat proteins, we
show that as a result of high turgor pressure (1 MPa), a large
amount of force is needed to merely start deforming the
membrane and an even larger force is needed to pull a mem-
brane tube. We also show that the magnitude of these forces
strongly depends on the constraints at the base of the mem-
brane patch. In particular, the force to start deforming the
membrane increases with the base radius, whereas the force
barrier to pull a membrane tube decreases with the base
radius. The forces also depend on whether the angle of the
membrane at the base can freely rotate or not.

When the membrane is coated with curvature-generating
proteins, we show that the forces to deform partially coated
membranes are quantitatively and qualitatively different
from the forces to deform fully coated membranes. By
partially coating the membrane, the force barrier that is usu-
ally present for fully coated membranes can be dramatically
reduced to zero, which implies that the membrane can be
spontaneously curved up into a vesicular shape.

We find excellent agreement between our theory and ex-
periments. With a single set of parameters for the partially
coated membrane model, we can fit geometric features of
the membrane shape obtained via electron tomography
across different stages of CME. From the comparison, we
estimate that the force required for CME in yeast cells is
�2500 pN if the membrane angle at the base is free to rotate
and almost 5000 pN if the angle is fixed to be in parallel with
the cell wall. This result suggests that actin polymerization
alone is insufficient to provide the force to drive the mem-
brane invagination during CME.
TABLE 1 Possible BCs at the base of the endocytic

membrane

Base radius Membrane angle at the base Mathematical definition

BC1a fixed free R ¼ Rb,
vG
v _j

¼ 0

BC2b fixed fixed R ¼ Rb, j ¼ 0

BC3 free free vG
v _R

¼ 0, vG
v _j

¼ 0

BC4c free fixed vG
v _R

¼ 0, j ¼ 0

aReferred to as the free-hinge BC.
bReferred to as the fixed-hinge BC.
cBC4 has been studied in (18) for a fully coated membrane.
METHODS

Model of the membrane patch at the endocytic
site

We model the membrane patch at the endocytic site as an axisymmetric

two-dimensional surface. The shape of the membrane is parameterized

with its meridional coordinates [R(s), Z(s)], where s is the arclength along

the meridional direction (Fig. 1 c). The angle j(s) spans between the

tangential direction and the horizontal direction. The actin polymerization

force is modeled as a point force f acting at the symmetry center of the

membrane, which is lifted to a height L relative to the cell wall (Fig. 1

c). The membrane patch is in contact with the cell wall at a base radius

of Rb, which is covered by a ring of proteins as observed in recent experi-

ments (28). We assume the proteins serve as anchors that fix the base of the

membrane to the cell wall, therefore Rb is a constant. Outside of Rb, there is

a lipid reservoir such that the membrane tension s is kept constant at the

base points. An isotropic turgor pressure p is exerted on the membrane,

which possesses a bending rigidity k and spontaneous curvature c0 due to

protein coating. Here, we assume the turgor pressure p is a constant and

neglect the concentration change caused by volume reduction upon endocy-

tosis because the reduced volume of the membrane invagination only oc-

cupies a tiny fraction (1/106) of the total cell volume. The free energy of

the membrane, which takes into account the influence of curvature-gener-

ating proteins, can be written as

G ¼ k

2

Z
ðc1 þ c2 � c0Þ2dAþ sAþ pV � fL; (1)
where c1 and c2 denote the two principal curvatures of the membrane sur-

face (49), A denotes the surface area, and V denotes the volume between the

membrane and the cell wall. The reference state for the free energyG in Eq.

1 is a vertically flat and horizontally circular shape. We consider both a

homogeneous model in which the spontaneous curvature c0 is spatially

uniform—such as a bare membrane or a membrane fully coated with cur-

vature-generating proteins—and an inhomogeneous model in which c0 is

spatially varied—such as a membrane partially coated by curvature-gener-

ating proteins (Fig. 1 c).

Because of rotational symmetry about the z axis, the free energy of the

membrane in Eq. 1 can be expressed as a functional

G ¼ 2p

Z S

0

G
h
j;R; _j; _R;g

i
ds; (2)

where _j and _R denote their derivatives with respect to the arclength s, S de-

notes the total arclength from the tip to the base, and g is a Lagrangian

multiplier that enforces the geometric relation _R ¼ cosj (see Appendix

for the explicit form of G). The shape of the membrane is determined by

minimization of the free energy G with respect to small variations of the

membrane shape variables dj and dR. Proper boundary conditions (BCs)

at the base, where the ring of proteins is formed and the membrane is in con-

tact with the cell wall, are also needed to determine the membrane shape.

The exact BCs require knowledge of the microscopic interactions between

the membrane, the cell wall, and the ring of proteins. Because these micro-

scopic interactions are unclear, we choose to derive the BCs in the

following way. The small variations of dj and dR result in variation of

the free energy dG, which consists of boundary terms like vG
v _j
dj and

vG
v _R
dR. Four types of BCs at the base can be identified by letting these bound-

ary terms vanish (Table 1). Physically, they correspond to the combination

of whether the base radius is fixed or variable and whether the angle of the

membrane at the base is fixed or free to rotate. We focus on the two BCs for

which the base radius is fixed (R ¼ Rb) and refer them as free-hinge BC

(BC1 in Table 1) if the membrane angle is free to rotate (vG
v _j

¼ 0)

and fixed-hinge BC (BC2 in Table 1) if the membrane angle is fixed to

zero (j¼ 0). We also compare our results with a previous work (18), which

studied the homogeneous model with a BC in which the base is free to move

and the membrane angle is fixed (BC4 in Table 1).
RESULTS

The characteristic forces to elongate a membrane
tube are different between pressure-dominant
and tension-dominant conditions

To demonstrate the distinct physics of CME between pres-
sure-dominant and tension-dominant conditions, we
approximate the elongated endocytic invagination (as in
Fig. 1 a, for example) as a cylindrical tube of radius R
and length L and derive analytic formulas for the forces to
Biophysical Journal 120, 1625–1640, May 4, 2021 1627
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elongate a membrane tube. The free energy (Eq. 1) under
this approximation becomes

Gtube ¼ 2pRL

�
k

2

�
1

R
� c0

�2

þ sþ pR

2

�
� fL: (3)

Without considering the effect of the spontaneous curva-
ture (c0 ¼ 0), in the case of pressure-dominant condition
(s ¼ 0), by minimization of Ftube with respect to R and L,
we obtain the characteristic tube radius Rp and the corre-
sponding force fp (18):

Rp ¼
�
k

2p

�1=3

; fp ¼ 3pR2
pp ¼ 3p

2

�
2k2p

�1=3
: (4)

Note that the tube radius scales with the turgor pressure as
Rp f p�1/3, but the force obeys fp f p1/3. This means a
higher turgor pressure results in a narrower tube but needs
larger forces to elongate. In the case of the tension-dominant
condition, the characteristic tube radius Rs and force fs read
(50)

Rs ¼
� k

2s

	1=2

; fs ¼ 4pRss ¼ 2pð2ksÞ1=2: (5)

As for endocytosis in yeast cells, s z 0.01 pN/nm (19),
p z 1 MPa (13,14), and k z 300kBT (44). These numbers
lead to a rough estimation of Rp z 8.5 nm, fp z 700 pN and
Rs z 250 nm, fs z 30 pN. The radius of long endocytic in-
vaginations observed experimentally is about 15 nm (7),
which is much closer to the estimated Rp than the estimated
Rs, thus supporting the statement that the turgor pressure,
but not the membrane tension, is the dominant factor that
opposes endocytosis in yeast cells. For the rest of the study,
we assume s ¼ 0.002pRp such that Rs ¼ 22Rp >> Rp, and
therefore, the turgor pressure always dominates over the sur-
face tension in shaping the membrane. We measure the
length in units of the characteristic radius Rp and the force
in units of the characteristic force fp. The pressure is nondi-
mensionalized with k/R3

p to a constant 0.5. The mechanics of
the system is then determined by only a few dimensionless
parameters, including the rescaled base radius Rb/Rp, the re-
scaled spontaneous curvature c0Rp, and the rescaled coating
area a0/(2pR

2
p) and rescaled edge sharpness parameter

a2pR2
p when considering the inhomogeneous model (see

Eq. 6).
A large base radius lowers the force barrier to pull
a membrane tube against turgor pressure

We first consider the case of a membrane at the endocytic
site void of any curvature-generating proteins (i.e., c0Rp ¼
0) and study the effect of base radius on the required forces
to pull a membrane tube. The effect of forces on the mem-
brane deformation is characterized by the force-height (f-L)
1628 Biophysical Journal 120, 1625–1640, May 4, 2021
curve, which in general is nonmonotonic (Fig. 2, a–d). A
force barrier Fmax appears at a relatively low height L
when the membrane is dome shaped (Fig. 2, a–d, inset,
labeled by circles). As the membrane is lifted further up,
the membrane changes from a dome shape to an U-shape,
when a narrow neck appears (signaled by the tangential
angle j ¼ p/2 at an intermediate arclength). The force f
then decreases with L and approaches the elongation force
Fe h limL/Nf(L), which equals fp in the case of a bare
membrane as expected by Eq. 4. The existence of a force
barrier in the f-L curve is similar to that in the tension-domi-
nant condition (50). However, two striking differences
should be noted: 1) in the pressure-dominant condition dis-
cussed here, a nonzero initiation force Finit h f(L ¼ 0) is
needed to merely start deforming the membrane, i.e., to
lift the membrane just off the cell wall (Fig. 2, e and f, dia-
monds), whereas in the tension-dominant condition, Finit ¼
0 is independent of Rb (50); and 2) when pressure domi-
nates, the force barrier Fmax significantly varies with the
base radius Rb (Fig. 2, e and f, circles), whereas in the ten-
sion-dominant condition, Fmax always overshoots 13% rela-
tive to the equilibrium force fs (50), independent of Rb.

When comparing the differences between the f-L curves
for the two BCs, we notice that 1) the initiation force Finit

scales with the base radius Rb as Finit ¼ 3/8pR2
bp for the

free-hinge BC, whereas Finit ¼ 1/4pR2
bp for the fixed-hinge

BC (Fig. 2, e and f, solid curves; see Supporting materials
and methods for the derivation); 2) though the initiation
force Finit is smaller for the fixed-hinge BC than for the
free-hinge BC, the opposite trend is observed for the force
barrier Fmax. The difference in Fmax is more pronounced
for smaller base radii. For instance, when Rb ¼ 0.5Rp, the
force barrier Fmax is about 4fp for the free-hinge BC,
whereas it is 7fp for the fixed-hinge BC (Fig. 2, a and b,
labeled by circles); and 3) the membrane neck appears at
a smaller membrane height for the fixed-hinge BC than
for the free-hinge BC. For instance, when Rb ¼ 2Rp, the
neck appears at a height of 3Rp for the fixed-hinge BC but
4Rp for the free-hinge BC (Fig. 2, c and d, labeled by
squares).

When the membrane is pulled up above the height of
6Rp, the force to elongate the tube remains almost un-
changed (Fe ¼ fp), regardless of the BCs and the base radii.
However, the shape of the membrane can be quite different
for different radii Rb. If Rb < Rp, the membrane exhibits a
balloon shape with a narrower base than the tubular body
(Fig. 2, a and b, inset, labeled by triangles), whereas
when Rb > Rp, a wider base connected to a narrower
body is observed (Fig. 2, c and d, inset, labeled by trian-
gles), which is more consistent with experimental observa-
tions (7).

For both BCs, the force barrier Fmax is significantly
reduced with increasing base radius Rb. When the base
radius is increased from 0.5Rp to 3Rp, the force barrier is
reduced from 4fp to 1.5fp for the free-hinge BC and from



FIGURE 2 Effect of the base radius Rb on the

membrane shape and force requirement. (a–d)

Force-height relationship f-L of membrane deforma-

tions for a fixed base radius Rb/Rp¼ 0.5 in (a) and (b)

and Rb/Rp ¼ 2 in (c) and (d), where Rp is the charac-

teristic tube radius (Eq. 4). The spontaneous curva-

ture c0Rp ¼ 0. Insets show membrane shapes at the

points indicated by the corresponding symbols on

the f-L curve. The square indicates the critical shape

where the membrane is about to form a neck. The

scale bar corresponds to the characteristic tube

radius Rp. (e and f) Force barrier Fmax (circle), initi-

ation force Finit (diamond), and elongation force Fe

(square) for varying base radii Rb. The solid curve

represents the analytical solution for Finit. (a–f) In

the left column (a, c, and e), the free-hinge BC is

imposed at the base points R ¼ Rb, and in the right

column (b, d, and f), the fixed-hinge BC is imposed.

On the left and bottom axes (black), nondimension-

alized quantities are used, and on the right and top

axes (blue), quantities are measured in their physical

units. The parameters are listed in Table 2 except

Rb ¼ 8 nm in (a) and Rb ¼ 10.5 nm in (b). To see

this figure in color, go online.
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7fp to 2fp for the fixed-hinge BC (Fig. 2, e and f, circles).
These results suggest that a relatively wide base facilitates
CME in yeast cells. With the parameters listed in Table 2,
the force barrier to pull a membrane tube against a turgor
TABLE 2 Fitting parameters to compare with experimental

data

Symbols Physical meaning

Values for the

free-hinge BC

Values for

the fixed-hinge BC

P turgor pressure 1 MPa 1 MPa

Rp characteristic

tube radius

16 nm 21 nm

c0 spontaneous curvature

of the membrane

induced

by the protein coat

0.063 nm�1 0.048 nm�1

a0 coating area of proteins 1609 nm2 2771 nm2

Rb base radius of the

membrane patch

32 nm 42 nm

s surface tension at

the base

0.032 pN/nm 0.042 pN/nm

a control parameter for

the sharpness of the

coating edge

0.006 nm�2 0.004 nm�2
pressure of 1 MPa can be reduced to 3500 pN for the free-
hinge BC and 8000 pN for the fixed-hinge BC when the
base radius Rb is greater than 30 nm (Fig. 2, e and f, circles).
For the rest of the study, we fix the base radius at Rb ¼ 2Rp

and study the other factors that influence the membrane
shape and the force to pull a membrane tube.
The ability of a fully covered protein coat to
reduce the force barrier and the initiation force
depends on BCs

In this section, we consider the effect of a uniform coat of
curvature-generating proteins on membrane deformations.
The ability of curvature-generating proteins to induce mem-
brane curvature is characterized by the spontaneous curva-
ture c0 in the model. When the spontaneous curvature c0
is small, e.g., c0Rp ¼ 0.2, the f-L curves show similar trends
as a fully uncoated membrane. However, a new branch of
solutions with negative forces emerges (Fig. 3, a and b,
dashed line). On this branch, the membrane exhibits a high-
ly curved U-shape and has part of the shape lying below the
plane z¼ 0. The membrane, therefore, may interact with the
Biophysical Journal 120, 1625–1640, May 4, 2021 1629



FIGURE 3 Effect of the spontaneous curvature c0
on membrane shape and force requirement for a

fully coated membrane. (a–d) Force-height (f-L)

relationship of membrane deformations for a fixed

spontaneous curvature c0Rp ¼ 0.2 in (a) and (b)

and c0Rp ¼ 1 in (c) and (d). Insets show membrane

shapes at the points indicated by the corresponding

symbols on the f-L curve. The square indicates the

critical shape where the membrane is about to

form a neck. The scale bar corresponds to Rp. In

(a)–(d), the solid line indicates shapes of the lowest

free energy, and the dashed line indicates shapes of

relatively high free energy. The dark color indicates

membrane shapes that are all above z ¼ 0, and the

gray color indicates shapes that have parts below

z¼ 0. (e and f) Force barrier Fmax (circle), initiation

force Finit (diamond), and elongation force Fe

(square) for varying c0. The solid curve represents

the analytical solution for Finit. (a–f) In the left col-

umn (a, c, and e), the free-hinge BC is imposed at

the base points Rb ¼ 2Rp, and in the right column

(b, d, and f), the fixed-hinge BC is imposed. On

the left and bottom axes (black), nondimensional-

ized quantities are used, and on the right and top

axes (blue), quantities are measured in their phys-

ical units. The parameters are listed in Table 2. To

see this figure in color, go online.

Ma and Berro
cell wall. This interaction is not considered in our model.
The branch terminates at a limiting shape of a closed spher-
ical vesicle budding off from the base (Fig. 3, a and b, inset,
labeled by stars). The free energy of the membrane on this
negative-force branch is significantly higher than that on the
positive-force branch (Fig. S1), thus being energetically un-
favorable. Hereafter, the free energy refers to Eq. 1
excluding the contribution �fL from the external pulling
force.

When the spontaneous curvature c0 is large, e.g., c0Rp ¼
1, the f-L curve breaks into two branches, each branch only
covering part of the membrane height (Fig. 3, c and d). In
the small-L branch, one L has two corresponding forces f.
The larger f corresponds to a solution with a dome shape
(Fig. 3, c and d, inset, labeled by circles), and the smaller
f corresponds to a solution with an U-shape (Fig. 3, c and
d, inset, labeled by hexagons). The dome shape has lower
free energy than the U-shape for the same membrane height
L and therefore is energetically more stable (Fig. S1, c and
d). The large-L branch starts from a point at which the force
f is slightly above zero, and the shape of the membrane is
shown as a vesicle budding off from the base (Fig. 3, c
and d, inset, labeled by stars). This shape has the lowest
free energy in the large-L branch, which implies that if a
1630 Biophysical Journal 120, 1625–1640, May 4, 2021
long tube is pulled up and maintained by a force, when
the force is gradually released, the tube retracts, and a
vesicle spontaneously forms and detaches from the base of
the membrane.

For a fully coated membrane, increasing the spontaneous
curvature c0 is able to reduce the elongation force Fe. With
increasing c0Rp from 0 to 1, Fe shows exactly the same
dependence on c0 for both BCs and drops from fp to about
0.2fp (Fig. 3, e and f, squares). However, the impact of the
spontaneous curvature c0 on the initiation force Finit and
the force barrier Fmax shows qualitative differences between
the two BCs: 1) under the free-hinge BC, the initiation force
Finit drops down with increasing c0 and becomes negative
for c0Rp> 0.5 (Fig. 3 e, diamonds and solid line). This nega-
tive Finit implies that the membrane is spontaneously bent
off the cell wall without external forces. By contrast, under
the fixed-hinge BC, the initiation force Finit remains positive
and almost constant (Fig. 3 f, diamonds and solid line); and
2) the force barrier Fmax noticeably decreases from 1.5fp to
fp with increasing c0 under the free-hinge BC, whereas Fmax

remains almost constant at 2fp under the fixed-hinge BC
(Fig. 3, e and f, circles).

In biological terms, our results suggest that for a mem-
brane fully coated with curvature-generating proteins, the
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protein coat might significantly reduce the forces to start de-
forming the membrane if the membrane angle at the base is
free to rotate. However, the protein coat has little impact on
the forces if the membrane angle is fixed to zero. With the
parameters listed in Table 2, the force barrier to pull a mem-
brane tube for the fixed-hinge BC can be reduced from 3500
pN for a fully uncoated membrane to 2500 pN for a fully
coated membrane (Fig. 3 e, circles), but the force barrier
is kept at 8000 pN for the fixed-hinge BC, regardless of
the spontaneous curvature (Fig. 3 f, circles).
Partially coating the membrane with curvature-
generating proteins can reduce the initiation
force and the force barrier, but not the elongation
force

In this section, we study the inhomogeneous model in which
the membrane is coated with curvature-generating proteins
only around the tip, thus mimicking the distribution of cla-
thrin and other adaptor proteins. The spontaneous curvature
in our model spatially varies as
c0ðaÞ ¼ c0
2
f1� tanh½aða� a0Þ�g; (6)

where a(s) is the surface area calculated from the tip to the
position of arclength s. The parameter a controls the sharp-
ness of the coating edge. The coating area of proteins is de-
noted by a0, and these proteins induce a spontaneous
curvature of c0 in the coated region of the membrane. This
form of spontaneous curvature has been used in many previ-
ous studies (16,17,19,20).

We first vary the coating area a0 while fixing the sponta-
neous curvature at c0Rp¼ 1. When a0 is small, the f-L curves
are nonmonotonic with a single force barrier F1

max at a low
membrane height, similar to that of a bare membrane
(data not shown). However, when a0 is above a critical
value, a second force barrier F2

max emerges on the f-L curve
at a higher membrane height at which the membrane ex-
hibits an U-shape (Fig. 4, a and b, inset, labeled by trian-
gles). For a0/(2pR

2
p) ¼ 1, the protein coat forms a

hemispherical cap when the membrane is pulled up into a
tubular shape (Fig. 4, a and b, inset, labeled by triangles).
FIGURE 4 Effect of the coating area a0 of curva-

ture-generating proteins on membrane shape and

force requirement for a partially coated membrane.

(a–d) Force-height (f-L) relationship of membrane

deformations for a fixed coating area a0/(2pR
2
p) ¼

1 in (a) and (b) and a0/(2pR
2
p) ¼ 2 in (c) and (d). In-

sets show membrane shapes at the points indicated

by the corresponding symbols on the f-L curve.

The orange part represents the area of the membrane

coated with proteins, and the green part represents

the bare membrane. The scale bar corresponds to

Rp. In (a)–(d), the solid line indicates shapes of the

lowest free energy, and the dashed line indicates

shapes of relatively high free energy. The dark color

indicates membrane shapes that are all above z ¼ 0,

and the gray color indicates shapes that have parts

below z ¼ 0. (e and f) Low-height force barrier

F1
max (circle), high-height force barrier F2

max (star),

and initiation force Finit (diamond) for varying a0.

(a–f) In the left column (a, c, and e), the free-hinge

BC is imposed at the base points Rb ¼ 2Rp, and in

the right column (b, d, and f), the fixed-hinge BC

is imposed. On the left and bottom axes (black), non-

dimensionalized quantities are used, and on the right

and top axes (blue), quantities are measured in their

physical units. The parameters are listed in Table 2.

To see this figure in color, go online.
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The initiation forces are negative for both BCs, and the zero
force f ¼ 0 intersects with the f-L curve at a positive mem-
brane height (Fig. 4, a and b, inset, labeled by circles). For a
very large coating area (a0/(2pR

2
p) ¼ 2), the membrane

is almost fully coated with proteins when the membrane is
flat (Fig. 4 c, inset, labeled by circles). The f-L curve is
broken into two branches, each branch only covering part
of the membrane height (Fig. 4, c and d), similar to the
f-L curve of a fully coated membrane. The two branches
might overlap in some intermediate membrane heights.
For the free-hinge BC, the zero force f ¼ 0 intersects with
the f-L curve at three points, two of them lying on the
small-L branch and the third one on the large-L branch
(Fig. 4 c, inset, labeled by circles and squares in the
small-L branch and triangles in the large-L branch). The
two points on the small-L branch correspond to a dome
shape of low free energy and a tubular shape of high free en-
ergy (Fig. S2 c, circles and squares). Therefore, in the
absence of forces, the membrane adopts a dome shape,
spontaneously curved off from the cell wall. The one point
on the large-L branch corresponds to a highly curved U-
shape with a narrow neck (Fig. 4 c, inset, labeled by trian-
gles), which is the final shape of a long membrane tube
when it retracts upon force release. The large-L branch starts
with a limiting membrane shape that is a closed vesicle
budding off from the base (Fig. 4 c, inset, labeled by stars).
In contrast with the fully coated membrane, the force at this
point is negative, which means that a downward force is
further needed to push the membrane into a budding vesicle
when the membrane tube retracts. Under the fixed-hinge
BC, the f-L curve for a0/(2pR

2
p) ¼ 2 shows similar features

with that of the free-hinge BC, except that the dome-shaped
solution at f¼ 0 does not exist (Fig. 4 d). This is because the
initiation force Finit is positive and the membrane cannot be
spontaneously curved off from the cell wall.

Despite some common features in the f-L curves for both
BCs, differences also exist: 1) under the free-hinge BC, the
initiation force Finit decreases and remains negative with
increasing a0, whereas under the fixed-hinge BC, Finit is
negative for intermediate values of a0 and becomes positive
for larger a0 (Fig. 4, e and f, diamonds); 2) a similar differ-
ence is also observed for the low-height force barrier F1

max,
which is monotonically decreasing with a0 under the free-
hinge BC, whereas it is nonmonotonic under the fixed-hinge
BC (Fig. 4, e and f, circles).

For a partially coated membrane, the low-height force
barrier F1

max can be significantly reduced to below fp for
some coating areas (Fig. 4, e and f, circles), whereas the
high-height force barrier F2

max increases with a0 and remains
above fp (Fig. 4, e and f, stars). This is because the force bar-
rier F2

max must be greater than the elongation force Fe, which
equals fp for both BCs and any coating areas. This tradeoff
between the two force barriers implies there is an optimum
coating area that minimizes the overall force barrier. With
the parameters listed in Table 2, the optimum coating area
1632 Biophysical Journal 120, 1625–1640, May 4, 2021
is about 1200 nm2 for the free-hinge BC and 2000 nm2

for the fixed-hinge BC. The minimal force barrier is about
2500 pN for the free-hinge BC and about 4000 pN for the
fixed-hinge BC. Compared with the force barrier of 8000
pN for a fully coated membrane under the fixed-hinge BC,
partially coating the membrane significantly reduces the
force barrier.
Increasing the spontaneous curvature of a
partially coated membrane leads to a sharp
transition of the membrane shape

In this section, we vary the spontaneous curvature c0 while
fixing the coating area (a0/(2pR

2
p) ¼ 1) to study how c0 in-

fluences the f-L curves for a partially coated membrane.
Upon gradually increasing c0, the f-L curve shows similar
trends to what we observed when increasing the coating
area. Above a critical value of c0, a high-height force barrier
F2
max appears on the f-L curve in addition to the low-height

force barrier F1
max (Fig. 5, a and b). Further increasing the

spontaneous curvature c0 splits the f-L curve into two
branches, a small-L branch and a large-L branch (Fig. 5, c
and d). A striking new feature is that when c0Rp ¼ 2, the
force for the entire small-L branch falls below zero
(Fig. 5, c and d). The zero force f ¼ 0 intersects with the
f-L curve on the long-L branch at only one point, which cor-
responds to a highly curved U-shape (Fig. 5, c and d, inset,
labeled by squares). This shape has the lowest free energy
(Fig. S3, c and d, labeled by squares), which implies that
even in the absence of forces, increasing the spontaneous
curvature c0 can lead to a transition of the membrane from
the dome shape in the small-L branch to the U-shape in
the large-L branch. The membrane height has a sharp in-
crease during this transition.

The spontaneous curvature c0 not only influences the
forces but also the morphology of the clathrin coat. When
c0Rp ¼ 2, the clathrin coat tends to bend the membrane to
a narrow radius of �0.5Rp, and the coated area exhibits a
pearl-like structure when elongated (Fig. 5, c and d, trian-
gles). However, for c0Rp ¼ 1, the clathrin coat maintains a
roughly hemispherical cap (Fig. 4, a and b, triangles).

Both the low-height force barrier F1
max and the initiation

force Finit linearly decrease with increasing c0 (Fig. 5, e
and f, circles and diamonds), and they become negative
when c0 is beyond a critical value. By contrast, the high-
height force barrier F2

max linearly increases with c0 (Fig. 5,
e and f, stars) and remains above fp. The optimum sponta-
neous curvature, which has the minimal force barrier, is
about 0.8R�1

p for both BCs. The corresponding force barrier
is as much as fp, which is the lowest force barrier one can
achieve by partially coating the membrane with curvature-
generating proteins. With the parameters listed in Table 2,
the optimum spontaneous curvature corresponds to a
preferred radius of about 40 nm for the free-hinge BC and
50 nm for the fixed-hinge BC. The force barrier for the



FIGURE 5 Effect of the spontaneous curvature c0
of curvature-generating proteins on membrane shape

and force requirement for a partially coated mem-

brane. (a–d) Force-height (f-L) relationship of mem-

brane deformations for a fixed spontaneous curvature

c0Rp ¼ 0.6 in (a) and (b) and c0Rp ¼ 2 in (c) and (d).

Insets show membrane shapes at the points indicated

by the corresponding symbols on the f-L curve. The

orange part represents the area of the membrane

coated with proteins and the green part represents

the bare membrane. The scale bar corresponds to

Rp. In (a)–(d), the solid line indicates shapes of the

lowest free energy, and the dashed line indicates

shapes of relatively high free energy. The dark color

indicates membrane shapes that are all above z ¼ 0,

and the gray color indicates shapes that have parts

below z ¼ 0. (e and f) Low-height force barrier

F1
max (circle), high-height force barrier F2

max (star),

and initiation force Finit (diamond) for varying c0.

(a–f) In the left column (a, c, and e), the free-hinge

BC is imposed at the base points Rb ¼ 2Rp, and in

the right column (b, d, and f), the fixed-hinge BC

is imposed. On the left and bottom axes (black), non-

dimensionalized quantities are used, and on the right

and top axes (blue), quantities are measured in their

physical units. The parameters are listed in Table 2.

To see this figure in color, go online.
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free-hinge BC is about 2500 pN and for the fixed-hinge BC
is about 4000 pN.
Our theory agrees well with experiments

The shapes of endocytic invaginations in budding yeast have
been imaged with electron tomography (7). These shapes
typically do not have perfect axisymmetry assumed in our
model (Fig. 6, a and b). However, from these images one
can numerically fit the membrane shape and extract geomet-
ric features of the shape, which typically include the tip
radius Rt, the tip-neck distance Dt, and the membrane height
L (7). The tip radius Rt is defined as the reciprocal of the me-
ridian curvature _j averaged over an arc that extends over
15 nm from the endocytic invagination tip. The tip-neck dis-
tance Dt is defined as the distance from the center of the
neck to the most distant profile point from the neck. The
membrane height L is defined as the maximal height of
the fitted profile above the base. The experimental data
sets Rt vs. L and Dt vs. L contain the shape information of
the endocytic invagination across different stages of CME.
We use the two data sets as the fitting data to compare our
theory with experiments. The fitting procedure is elaborated
in the Appendix, in which we use the characteristic radius
Rp as the single parameter to fit the data. We find the opti-
mum R�

p that minimizes the fitting error for the two data
sets. For the free-hinge BC, the optimum R�

p ¼ 16 nm,
and for the fixed-hinge BC, R�

p ¼ 21 nm (Fig. S4). The fitting
errors at the optimum R�

p are comparable for the two BCs,
and we cannot distinguish which BC fits the experimental
data better (Fig. S4).

Using the optimum R�
p, our calculated membrane

shapes agree well with the experimental profiles, particu-
larly in the early stage when the membrane height is
low (Fig. 6, a and b). For membrane shapes that are
higher than 65 nm, experimental membrane shapes are
typically asymmetric and exhibit a narrower neck than
the calculated ones, probably because of the presence of
other membrane proteins that arrive later during CME
and impose a cylindrical curvature at the neck of the invag-
ination (e.g., amphiphysins). These effects are not consid-
ered in our model.

As for the geometric features, experimental data
show that the tip radius Rt drops from 50–100 to 15 nm
Biophysical Journal 120, 1625–1640, May 4, 2021 1633
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FIGURE 6 Comparison between our theory and

experiments. (a and b) Membrane shapes obtained

by electron tomography are grouped according to

their heights and overlaid at the tip. The data

come from the database https://www.embl.de/

download/briggs/endocytosis.html maintained by

the authors of (7). The membrane shapes obtained

by our model are represented by solid curves. The

orange part represents the area of the membrane

coated with proteins, and the green part represents

the bare membrane. (c and d) Comparison of the

tip radius Rt between results obtained with our

theory (line) and measured experimentally (dots).

(e and f) Comparison of the neck to tip distance Dt

between results obtained with our theory (line) and

measured experimentally (dots). (g and h) Predic-

tion of the force-height (f-L) relationship from our

theory using the parameters listed in Table 2 that

fit the experimental shapes in (a) and (b). (a–h) In

the left column (a, c, e, and g), the free-hinge BC

is imposed at the base points Rb ¼ 32 nm, and in

the right column (b, d, f, and h), the fixed-hinge

BC is imposed at the base points Rb ¼ 42 nm. To

see this figure in color, go online.
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as the membrane height increases. Our theory matches
the trend of the experimental data, particularly for the
part where Rt < 40 nm (Fig. 6, c and d). The fitting
for the tip radius with the free-hinge BC is slightly
better than that with the fixed-hinge BC. For the tip-neck
distance Dt, our theory predicts that Dt grows slowly with
the membrane height L when L is less than 65 nm. Beyond
this point, Dt scales almost linearly with L with a larger
slope than the initial phase. This theoretical prediction
again matches well with the experimental data (Fig. 6, e
and f). The fitting for the tip-neck distance with the
fixed-hinge BC is slightly better than that with the fixed-
hinge BC.

We stress that the different optimum R�
p-values for the two

BCs result in a large difference in the magnitude of forces in
the f-L curve (Fig. 6, g and h). This is because the unit of the
force is the characteristic force fp, which scales with the
characteristic radius Rp as fpf R2

p. As a result, the force bar-
1634 Biophysical Journal 120, 1625–1640, May 4, 2021
rier is about 2500 pN for the free hinge, whereas it is about
4000 pN for the fixed hinge.
Fixed base is a more proper BC than freely
moving base

We have focused on BCs for which the base radius of the
membrane is fixed. For a membrane fully coated with curva-
ture-generating proteins, the initiation force Finit either de-
creases with the intrinsic curvature c0 under the free-hinge
BC or is independent of c0 under the fixed-hinge BC
(Fig. 3, e and f, diamonds and solid lines). A previous
work (18) studied a similar homogeneous model but used
the free-base and fixed-hinge BC (BC4 in Table 1). This
BC led to the surprising conclusion that the initiation force
Finit of a fully coated membrane is proportional to the spon-
taneous curvature c0, which implies that increasing the
spontaneous curvature c0 hinders CME because it raises

https://www.embl.de/download/briggs/endocytosis.html
https://www.embl.de/download/briggs/endocytosis.html
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the force required to lift the membrane off the cell wall. In
addition, as a result of the freely moving base, the model
predicted that the base radius Rb approaches zero when
the membrane height is low. This result is inconsistent
with experimental observations that the base radius of mem-
brane invaginations remains roughly the same during the
entire course of CME, from shallow invaginations to long
tubes (Fig. 6, a and b). Therefore, the experimental data sup-
port our assumption that the base of the membrane is main-
tained at a fixed radius by endocytic proteins or by
attachment to the cell wall. A recent systematic study of pro-
teins involved in endocytosis by super-resolution micro-
scopy revealed that many proteins are organized in
concentric rings around the clathrin coat (28). These pro-
teins may serve as anchors and may fix the base radius of
the endocytic membrane. In addition, the actin network
around the endocytic invagination can also impose con-
straints on the extent the membrane base can spread.
Furthermore, we fix the surface tension at the fixed base
radius. It implies the assumption that the lipids can flow
past any structures that fix the membrane to the cell wall.

The different dependence of the initiation force Finit on c0
between the fixed-base BC and the free-base BC can be clar-
ified with a simple example. Because Finit is only related to
the early stage of CME when the membrane is almost flat,
we approximate the dome-shaped membrane as a spherical
cap and calculate its free energy E(R; c0, Rb) as a function of
the sphere radius R for different spontaneous curvatures c0
and base radii Rb (Fig. 7). For the fixed-base BC, the base
radius Rb is a constant. When c0 is small, E(R; c0, Rb)
decreases monotonically with R and has its minimum at
R ¼ N, which implies that a flat shape is more favorable
than a curved one (Fig. 7 a). When c0 becomes large,
E(R; c0, Rb) has a nontrivial minimum at a finite radius R
(Fig. 7 b, Rb¼ 2Rp), which implies that the membrane spon-
taneously bends into a curved shape. However, for the free-
base BC assumed in the work of (18), the base radius Rb

becomes a free parameter and the free energy E(R, Rb; c0)
is a function of both R and Rb. No matter how large c0 is,
the energy E(R, Rb; c0) always admits a trivial minimum
at Rb ¼ 0, which represents a solution without any deforma-
tion (Fig. 7, a and b, Rb ¼ 0Rp). If a force f is applied, a non-
trival minimum of the total free energy F(R, Rb; f, c0) ¼
c0Rp=0 c0Rp=

R
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E(R, Rb; c0) � fL(R, Rb) may exist for a positive force f
(Fig. S5). However, the base radius for this nontrivial min-
imum is unrealistically narrow (�0.02 nm; see Supporting
materials and methods); therefore, a freely moving base is
probably not a proper BC to model CME in yeast.
DISCUSSION

Free hinge versus fixed hinge

Our analysis of the experimental data favors the BC with a
fixed base radius over that with a freely moving base. How-
ever, we cannot directly distinguish whether the angle of the
membrane at the base is free to rotate (free hinge) or fixed to
zero (fixed hinge) because both BCs show good agreements
with the experimental data (Fig. 6, a–f). Under the free-
hinge BC, the membrane shape has a kink at the base points.
We stress that this discontinuity in the membrane angle is
physically and biologically plausible. First, for a membrane
fully coated with curvature-generating proteins, the mem-
brane’s spontaneous curvature can change abruptly at the
base points and such discontinuity of the mechanical prop-
erties of the membrane will result in a kink. Second, for a
partially coated membrane whose mechanical properties
smoothly change across the base points, the kink can be
induced by external factors. Though it is hypothetical,
early-arriving endocytic proteins, such as myosin-I motors
and BAR-domain proteins Syp1p, Cdc15p, and Bzz1p,
form a ring-like structure around the clathrin-coated pit
(28). The microscopic interactions between the ring, the
membrane, and the cell wall determine the exact BCs. At
the macroscopic level, the phenomenological method of
membrane mechanics used in this work allows the presence
of a kink as long as the underlying microscopic interactions
permit it. The free-hinge BC is only one of the many
possible BCs that form a kink. Even for the fixed-hinge
BC, the fixed angle is not necessarily zero but determined
by the microscopic interactions. When tuning the membrane
angle at the base for the fixed-hinge BC, we notice that the
force barrier to pull a bare membrane into a tube can be
reduced by increasing the base angle (Fig. S6).

Our calculations assume a single type of BCs for the
entire stage of CME. We have shown that the free-hinge
R

Rb

1

6 8 10
p

FIGURE 7 Free energy of membrane deforma-

tions under spherical cap approximation. (a and b)

Free energy of the membrane as a function of the

sphere radius R for c0Rp ¼ 0 in (a) and c0Rp ¼ 1

in (b). For different base radii Rb, the range of R is

[Rb,N], where R ¼ Rb corresponds to a hemispher-

ical cap and R ¼ N corresponds to a flat shape. To

see this figure in color, go online.
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BC and the fixed-hinge BC might lead to dramatically
different f-L curves. These results suggest a new way to
regulate CME by tuning the BCs. By changing the BC
from the fixed hinge to the free hinge, the force barrier is
typically reduced. If at an early stage, the BC is fixed hinge,
switching to free hinge permits the accumulated force to
drive the transformation of the membrane from a dimple
shape to a tubular shape, providing the force is larger than
the force barrier determined by the free-hinge BC but
smaller than the force barrier determined by the fixed-
hinge BC.
Homogeneous model versus inhomogeneous
model

We have studied not only the homogeneous model, i.e., a
fully coated (or fully uncoated) membrane, but also the
inhomogeneous model, i.e., a partially coated membrane.
Comparing the two models, we noted the following differ-
ences: 1) in the inhomogeneous model, two force barriers
in the f-L curve emerge as the spontaneous curvature c0 in-
creases, and the low-height force barrier can be significantly
reduced, even to values below zero, with increasing c0
(Fig. 5, e and f, circles). However, in the homogeneous
model, there is only one force barrier, which can hardly
be reduced with increasing c0, especially in the fixed-hinge
BC (Fig. 3, e and f, circles). 2) The elongation force Fe can
be reduced with c0 in the homogeneous model (Fig. 3, e
and f, squares), whereas in the inhomogeneous model, it re-
mains at a constant value of fp regardless of BCs and param-
eter values of a0 and c0. These differences suggest that a
partially coated membrane can be spontaneously lifted up
to a significant height via the curvature-generating protein
coat, whereas it is impossible to do so when the membrane
is fully coated.
Actin polymerization alone is insufficient to
overcome the force barrier for CME in yeast cells
even with the help of proteins that induce
membrane curvature

One of the key questions we aimed to address in this work
is how much force is needed to pull a membrane tube
against high turgor pressure during CME. We have
assumed a turgor pressure of 1 MPa and estimated that
the force barrier is about 2500 pN for the free-hinge BC
but 4000 pN for the fixed-hinge BC (Fig. 6, g and h). In
this calculation, we have assumed a point force acting on
the membrane, which is a good approximation if the forces
produced by actin filaments are concentrated near the tip of
the membrane because the point force is the limit of a
concentrated force distribution. We expect the point force
is the most efficient way to deform a flat membrane into
a tubular shape because it minimizes the total amount of
force necessary to deform the membrane. Indeed, let us
1636 Biophysical Journal 120, 1625–1640, May 4, 2021
consider a concentrated force distribution acting on the
membrane such that the normal stress is larger than the
turgor pressure at the stress-applied area. The stress is
able to overcome the turgor pressure and therefore pulls
the membrane up locally, and the stress-free parts of the
membrane are raised up correspondingly. If the same
amount of force is distributed on a larger area, the resulting
stress is reduced and might be smaller everywhere on the
membrane than the turgor pressure and therefore could
not pull the membrane up. As an attempt to test this
idea, we calculated the f-L curve assuming the forces are
distributed within an area of af near the membrane tip
and pointing in the normal direction. In agreement with
our expectation, when the forces are distributed on a larger
area af, a larger magnitude of the total force f is needed to
pull up the membrane, and the increase in the magnitude of
the force barrier can be more than twofold (Fig. S8, a and
b). Nevertheless, the z-component of the total force re-
mains the same with the value calculated with the point
force assumption when the membrane height is large
(Fig. S8, c and d). Based on this argument, we expect
our results provide a lower bound for the magnitude of
the force barrier and a good estimation for the z-component
of the elongation force. However, even 2500 pN is still
beyond the force (<200 pN) that can be generated by poly-
merization alone of 150–200 actin filaments at the endo-
cytic site (46,51) given that the measured polymerization
force for a single filament is only 1 pN, the force generated
by a group of filaments is usually smaller than the sum of
each individual ones, and a large fraction of the filaments
are capped (52). Investigating non-polymerization-based
force production by the actin machinery will be our future
work. A possible way is to release the elastic energy stored
in geometrically frustrated cross-linkers, such as fimbrin
(53,54). There are some important factors about CME in
yeast cells we do not consider in our model. The clathrin
coat in general is stiffer than the plasma membrane (44).
Therefore, the clathrin-coated part of the membrane should
have a larger bending rigidity k than the uncoated part.
There are also BAR proteins that bind to the side of the
membrane invagination, and they impose an anisotropic
curvature on the membrane. Investigating these missing
factors will help us provide a more accurate estimation
of the force requirement to pull the membrane up against
turgor pressure for CME in yeast cells.
CONCLUSIONS

We have studied membrane deformations driven by a point
force and by curvature-generating proteins in the presence
of a high turgor pressure. A significant amount of force is
required to deform the membrane as a result of the high
turgor pressure. We have investigated possible ways to
reduce the force requirement. This includes fully or partially
coating the membrane with curvature-generating proteins



Endocytosis against high turgor pressure
and letting the membrane angle at the base freely rotate. By
comparing with experimental data, we have shown that the
BC with a fixed base radius is more appropriate than the
freely moving base in describing membrane invaginations
at the endocytic sites. The minimal force barrier predicted
by our theory is about 2500 pN.
APPENDIX

Derivation of the membrane shape equations

The membrane shape is parameterized with its meridional coordinates

[R(s), Z(s)], which are related to the tangent angle j(s) via the geometrical

relation

_R ¼ cos j (7)

and

_Z ¼ � sinj: (8)

To obtain the Euler-Lagrange equation associated with the free energy

Eq. 1, we express G in Eq. 2 explicitly as
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Here, we introduce the rescaled Lagrangian multiplier 2pg(s) and

2ph(s) to impose the geometric constraints set by Eqs. 7 and 8 The variation
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which contains both the bulk terms (first line) and the boundary terms

(second line). The Euler-Lagrange equations can be obtained by the vanish-

ing bulk terms, which are reduced to

€j ¼ cos j sin j

R2
�

_j

R
cos jþ p

2k
R cos jþ g

kR
sin j

þ h

kR
cos j� f

2pkR
cos j; (11)

1 � 	2 ksin 2 j

_g ¼

2
k _j� c0 �

2R2
þ sþ pR sin j; (12)

and

_h ¼ 0; (13)
as well as Eqs. 7 and 8.

For the homogeneous model, the spontaneous curvature c0 is uniform

and G is explicitly independent of the arclength s. This symmetry leads

to a conserved quantity (55)

Hh
k

2
R

�
_j
2 �

�
sin j

R
� c0

�2�
� p

2
R2 sin j� sR

þ g cos j� h sin jþ f

2p
sinj

¼ 0: (14)

For the inhomogeneous model, the spontaneous curvature c0[a(s)] is

spatially varied over the arclength s as depicted by Eq. 6. The variation

of the functional G in Eq. 10 needs to change to include a spatially varied

surface tension s(s) to ensure that the membrane area is locally unstretch-

able. The detailed derivation can be found in (16). The equation for s reads

_s ¼ k

�
sinj

R
þ _j� c0

�
_c0: (15)

In addition to the varied surface tension, Eq. 11 for the membrane angle

j needs to change to include a new term c0,

€j ¼ cos j sin j

R2
�

_j

R
cos jþ p

2k
R cos jþ g

kR
sinj

þ h

kR
cosj� f

2pkR
cosjþ _c0: (16)

It is easy to verify that the new Eqs. 15 and 16, together with Eqs. 12 and

13, ensure that H is conserved, i.e., _H ¼ 0.

When considering the effect of distributed forces, we assume the forces

are localized in an area of af near the membrane tip and pointing in the

normal direction. Specifically, we express the normal stress (force per

unit area) gn as the following form:

gn ¼ g0n
2

�
1� tanh



af

�
a� af

���
; (17)

where g0n denotes the magnitude of the normal stress within the area af
where forces are loaded, and af controls the sharpness of the force drop at

af. In this case, Eqs. 12 and 13 need to make the following changes:

_g ¼ 1

2
k
�
_j� c0

	2

� ksin 2 j

2R2
þ sþ pR sin j� gnR sin j

(18)

and

_h ¼ � gnR cos j: (19)

The total force f is calculated as the surface integral of the normal stress

f ¼ 2p

Z S

0

gnRds: (20)

The z-component of the force reads
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fz ¼ 2p

Z S

0

gnR cos jds: (21)

Derivation of the BCs

To get proper BCs, we set the boundary terms in Eq. 10 to zero. At the mem-

brane tip (s ¼ 0), R ¼ 0 by definition, and we choose j ¼ 0 to avoid any

singularity. As a result, dR ¼ 0 and dj ¼ 0, and the boundary terms auto-

matically vanish.

At the base of the invagination (s ¼ S), as a result of the product of two

conjugate variables vG
v _j

and dj, we have the freedom to let either vG
v _j

¼ 0, i.e.,

the membrane can be freely rotate (free-hinge BC), or dj¼ 0, i.e., the angle

of the membrane is fixed (fixed-hinge BC). Similarly, we can choose vG
v _R
¼ 0,

i.e., the base can freely move, or dR ¼ 0, i.e., the base radius is fixed. The

combination of the two choices makes up the four possible BCs listed in

Table 1.
Numerical methods to calculate the force-height
(f-L) relationships

For the homogeneous model with a uniform spontaneous curvature c0,

Eqs. 7, 11, and 12 and h ¼ 0 constitute a complete system of equations,

which are numerically solved by a shooting method that has been widely

used in Helfrich models (18,50). The idea is to numerically integrate the

three equations from the membrane tip s ¼ 0 with MATLAB solver

ode45 (The MathWorks, Natick, MA) until the free-hinge BC or the

fixed-hinge BC is met. The numerical integration needs input of the initial

values of R(s ¼ 0), j(s ¼ 0), _j(s ¼ 0), and g(s ¼ 0). The radius R(s ¼ 0)

should be zero at the membrane tip. However, Eqs. 11 and 12 have a singu-

lar point at R¼ 0. To avoid the singular point, we set R(s¼ 0)¼ 3Rp, where

3¼ 0.001 is chosen to be a small number such that values smaller than

0.001 do not produce numerically distinguishable results. The initial angle

j(s ¼ 0) ¼ 0 is to ensure continuity of the membrane shape at the tip. The

derivative _j(s ¼ 0) is the tuning parameter to match the BCs. For any given
_j(s ¼ 0), g(s ¼ 0) is solved via Eq. 14. Once the four initial values are set,

the numerical integration continues until the free-hinge BC or the fixed-

hinge BC is met. This is achieved by setting the termination event function

in the ode45 solver. The membrane height L ¼ R S
0
sinjds is then obtained

via Eq. 8. Note that for different trials, the final arclength S when the solver

terminates are different. The shooting method is to find a proper pair of

( _j(s ¼ 0), f) such that when the integration terminates, i.e., the free-hinge

BC or the fixed hinge has been satisfied, the other BCs R ¼ Rb and L ¼ L0
are fulfilled for a particular membrane height L0. To construct the f-L curve,

once we get the solution of ( _j*(s¼ 0), f*) for a particular L0, we extend the

membrane height L with a small increment to L0 þ DL. The solution

( _j*(s ¼ 0), f*) for L ¼ L0 is then used as the initial trial for searching

the solution for L ¼ L0 þ DL.

For the inhomogeneous model with a spatially varied spontaneous cur-

vature c0(s) defined by Eq. 6, Eqs. 7, 12, 15, and 16 and _a ¼ 2pR and h ¼
0 constitute a complete system of equations. In addition to the four initial

values required by the homogeneous model, a(s ¼ 0) and s(s ¼ 0) are

needed to numerically integrate the equations. We set a(s ¼ 0) ¼ 0 and

tune the combination of ( _j(s ¼ 0), s(s ¼ 0), f) to match R ¼ Rb, L ¼ L0,

and s ¼ s0 when the solver terminates. The f-L curve is constructed in a

similar way by gradually extending the membrane height L with small

increment of DL.

When considering the effect of distributed forces on a homogeneous

membrane, Eqs. 7, 11 (with f ¼ 0), 18, and 19, and _a ¼ 2pR constitute a

complete system of equations. In addition to the four initial values required

by the homogeneous model, a(s ¼ 0) and h(s ¼ 0) are needed to numeri-

cally integrate the equations. We set a(s ¼ 0) ¼ 0 and h(s ¼ 0) ¼ 0 and

tune the combination of ð _jðs¼ 0Þ; g0nÞ to match R ¼ Rb and L ¼ L0
when the solver terminates. The total force is calculated with (20).
1638 Biophysical Journal 120, 1625–1640, May 4, 2021
Numerical procedure to fit the experimental data

We have seven parameters in the inhomogeneous model listed in Table 2.

The turgor pressure p is fixed at p ¼ 1 MPa. For the remaining six param-

eters, we express five of them as the function of the characteristic radius Rp

and use Rp as the single parameter to fit the experimental data. The surface

tension at the base s is set to be 0.002pRp such that the surface tension s

plays a much less important role than the turgor pressure p in determining

the tube radius because
ffiffiffiffiffiffiffiffiffiffi
k=2s

p ¼ 22Rp >> Rp. The base radius Rb is fixed

at Rb ¼ 2Rp such that for a bare membrane, the force barrier Fmax as a func-

tion of Rb is close to the plateau and not sensitive to the variation of base

radius (see Fig. 2, e and f). Based on the experimental observation that

the copy number of clathrin molecules stays small and almost constant dur-

ing the assembly and disassembly of actin meshwork (46) and the measured

copy number of 30–40 implies a hemispherical cap of the clathrin coat, we

assume the coating area a0 ¼ 2pR2
p and the spontaneous curvature c0 ¼

1/Rp. The sharpness of the coating edge is controlled by the parameter a,

which is set to be 10/(2pR2
p). Values of a greater than 10/(2pR2

p) do not

make a difference on the resulting f-L curve (Fig. S7).

We use the geometric features Rt and Dt vs. membrane height L as our

fitting data. For the data points of {(Li, Ri
t)}, i ¼ 1, ., M in Fig. 6, c and

d, the corresponding theoretical prediction of the tip radius ThR(Li) is

calculated for a given Rp. The fitting error then reads

err1 ¼ 1

M

XM
i¼ 1

��Ri
t �ThR

�
Li
� �� : (22)

Similarly, the fitting error for the distance from neck to tip Dt reads

err2 ¼ 1

M

XM
i¼ 1

��Di
t �ThD

�
Li
� �� ; (23)

where ThD(Li) denotes the theoretical prediction of Dt at L ¼ Li. When

plotting err1 þ err2 as a function of the fitting parameter Rp, we find the

optimum R�
p that minimizes the sum err1 þ err2 (Fig. S4).
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DERIVATION OF THE ANALYTICAL SOLUTION FOR THE INITIATION FORCE
The derivation here is based on the analytical solution obtained in the work of (1) in the limit of small angles. It assumes that
the membrane is almost flat such that the tangential k � 1. Keeping only the first order of k and its derivatives and performing
the coordinate transformation of k(B) to k('), the shape equation can be reduced to

'2k ′′ + 'k ′ − ('2feff
^
+ 1)k = − 5

2c^
' + ?

2^
'3 (S1)

where the prime (′) indicates the derivative with respect to the radial coordinate ' and feff = f + 1
2 ^2

2
0.

The general solution to Eq. (S1) that satisfies the boundary condition at the tip k(' = 0) = 0 reads

k(') = 5

2cfeff

1
'
− 1

2
?

feff
' − 5

2c√^feff
 1 ('

√
feff/^) + 2�1 ('

√
feff/^) (S2)

where �8 (G) and  8 (G) are modified Bessel functions. The constant 2 is determined by the other boundary condition at ' = 'b.
For the free-hinge BC, it reads

k ′ + k
'

= 20. (S3)

For fixed-hinge BC, it reads
k = 0. (S4)

To calculate the initiation force �init, we set the membrane height ! = 0, i.e.,∫ 'b

0
k(') = 0 (S5)

For the free-hinge BC, the initiation force in the limit of f → 0 reads

�init
2c

=

4(^23
0 + 2?)

[
1 − �0 (20'b/

√
2)

]
+ ?22

0'
2
b �0 (20'b/

√
2)

222
0

{
2 0 (20'b/

√
2) + �0 (20'b/

√
2) [2W − ln(8) + 2 ln(20'b)]

} , (S6)

where W is the Euler constant. As a special case 20 → 0, Eq. (S6) reduces to

�init =
3
8
c'2

b? (S7)
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For the fixed-hinge BC, the initiation force reads

�init
2c

= ?'2
b

4 − 4�0 (&) + 2&�1 (&)
16 − 8�0 (&) − 8& 1 (&) + 4&�1 (&) (2 ln& − ln 4 + 2W) , (S8)

where & = 20'b/
√

2. As a special case 20 → 0, Eq. (S8) reduces to

�init =
1
4
c'2

b? (S9)

SPHERICAL CAP APPROXIMATION
We approximate the dome-shaped membrane with a spherical cap of radius ' (see Figure 7, a and b, inset). The shape of the
spherical cap is fully determined by two parameters, the sphere radius ' and the base radius 'b. Note that neither the free-hinge
BC nor the fixed-hinge BC is satisfied in this case. The membrane height ! of the spherical cap reads

! = ' −
√
'2 − '2

1
, (S10)

and the corresponding membrane area � = 2c'! and the volume + = 1
3c!

2 (3' − !). The free energy of the membrane then
becomes

� =

[
1
2
^( 2
'
− 20)2 + f

]
� + ?+ . (S11)

In the case of a fixed base radius, the free energy � ('; 20, 'b) is a function of only '. For a barely coated membrane, i.e.,
20'p = 0, the free energy � ('; 20, 'b) decreases monotonically with the radius ' and the flat shape (' = ∞) has the lowest
energy (Figure 7 a). However, when 20 becomes large, e.g., 20'p = 1, the free energy � ('; 20, 'b) has a minimum at a finite
radius ' (Figure 7 b). This means the flat shape is no longer stable and the membrane can be bent up by proteins without any
external forces.

If the base radius is free to move, i.e., 'b being a free parameter, the free energy � (', 'b; 20) becomes a function of both
' and 'b, and always has its trivial minimum � = 0 at 'b = 0, regardless of the spontaneous curvature 20 (Figure 7a and b,
'b = 0'p). The corresponding solution at 'b = 0 represents an infinitely small patch of membrane. In the presence of an
external force 5 , the total free energy � (', 'b; 20, 5 ) = � (', 'b; 20, 5 ) − 5 ! can have a nontrivial minimum with a nonzero
'b. The minimum force 5min to have such a nontrivial minimum, i.e., to lift the membrane up, is given by

5min = min
','b

�

!
. (S12)

Both the denominator and the numerator are positive numbers, therefore 5min is always positive. For instance, for 20'p = 1,
the minimum force 5min = 0.0027 5p is obtained at ' = 1.998'p and 'b = 0.00057'p. Therefore an external force is always
required to lift the membrane up in this condition. However, the base radius 'b = 0.00057'p is an unrealistically narrow shape
given the typical value of 'p = 15-30 nm. Similar problem also exists in the model of (2) which used a freely-moving base BC.
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Figure S1: Free energy of membrane deformations for a fully coated membrane. (a - d) Free energy of membrane
deformations � as a function of membrane height !. The spontaneous curvature is fixed at 20'p = 0.2 in (a, b) and 20'p = 1 in
(c, d). The symbols on the �-! curve correspond to the same symbols on the 5 -! curve shown in Figure 3a-d. In (a - d), the
solid line indicates shapes of the lowest free energy and the dashed line indicates shapes of relatively high free energy. The dark
color indicates membrane shapes that are all above I = 0, and the gray color indicates shapes that have parts below I = 0. In the
left column (a, c), the free-hinge BC is imposed at the base points 'b = 2'p, while in the right column (b, d), the fixed-hinge
BC is imposed. On the left and bottom axes (black), non-dimensionalized quantities are used, while on the right and top axes
(blue), quantities are measured in their physical units. The parameters are listed in Table 2.
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Figure S2: Free energy of membrane deformations for a partially coated membrane.(a - d) Free energy of membrane
deformations � as a function of membrane height !. The coating area is fixed at 00/(2c'2

p) = 1 in (a, b) and 00/(2c'2
p) = 2 in

(c, d). The symbols on the �-! curve correspond to the same symbols on the 5 -! curve shown in Figure 4a-d. In (a - d), the
solid line indicates shapes of the lowest free energy and the dashed line indicates shapes of relatively high free energy. The dark
color indicates membrane shapes that are all above I = 0, and the gray color indicates shapes that have parts below I = 0. In the
left column (a, c), the free-hinge BC is imposed at the base points 'b = 2'p, while in the right column (b, d), the fixed-hinge
BC is imposed. On the left and bottom axes (black), non-dimensionalized quantities are used, while on the right and top axes
(blue), quantities are measured in their physical units. The parameters are listed in Table 2.
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Figure S3: Free energy of membrane deformations for a partially coated membrane.(a - d) Free energy of membrane
deformations � as a function of membrane height !. The coating area is fixed at 00/(2c'2

p) = 1 in (a, b) and 00/(2c'2
p) = 2 in

(c, d). The symbols on the �-! curve correspond to the same symbols on the 5 -! curve shown in Figure 5a-d. In (a - d), the
solid line indicates shapes of the lowest free energy and the dashed line indicates shapes of relatively high free energy. The dark
color indicates membrane shapes that are all above I = 0, and the gray color indicates shapes that have parts below I = 0. In the
left column (a, c), the free-hinge BC is imposed at the base points 'b = 2'p, while in the right column (b, d), the fixed-hinge
BC is imposed. On the left and bottom axes (black), non-dimensionalized quantities are used, while on the right and top axes
(blue), quantities are measured in their physical units. The parameters are listed in Table 2.
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Figure S4: Fitting error as a function of the fitting parameter 'p for the two BCs. The first row shows the fitting error for
the dataset of 't v.s. !, and the second row for the dataset of �t v.s. ! and the third row for the sum. In the left column, the
free-hinge BC is imposed, while in the right column, the fixed-hinge BC is imposed.

Figure S5: Free energy of membrane deformations in the presence of external force under spherical cap approximation.
Free energy of the membrane as a function of the sphere radius ' for 20'p = 0 in (a) and 20'p = 1 in (b). The external force
5 = 5p. For different base radii 'b, the range of ' is ['b,∞], where ' = 'b corresponds to a hemi-spherical cap and ' = ∞
corresponds to a flat shape.

6 Manuscript submitted to Biophysical Journal



Figure S6: �-! curves for the fixed-hinge BC with different values of the angle k at the base for a fully uncoated
membrane. The parameters are the same as in Figure 2d except that the angle at the base is varied.

Figure S7: �-! curves for a partially coated membrane with different values of U that controls the sharpness of the
coating edge. The parameters are the same as in Figure 4a and b except that the parameter U that controls the sharpness of the
coating edge is varied. In the left column, the free-hinge BC is imposed at the base points 'b = 2'p, while in the right column,
the fixed-hinge BC is imposed.
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Figure S8: �-! curves for a bare membrane with distributed forces. The forces are assumed to be distributed in an area of
0f near the membrane tip and pointing in the normal direction. The H-axis in (a, b) indicates the magnitude of the total force,
while in (c,d) indicates the vertical component of the total force. The black curve represents the 5 -! curve under the point force
assumption. The parameters are the same as in Figure 2c and d with an additional parameter Uf = 10/(2c'2

p). In the left column
(a,c), the free-hinge BC is imposed at the base points 'b = 2'p, while in the right column (b,d), the fixed-hinge BC is imposed.
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