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Supplemental	Mathematical	Model	

The following is a quantitative mechanical model for the lamellipodial wrinkling we observe, 
designed with the specific goal of calculating the dependence of the wrinkle wavelength on 
geometric and material properties of the lamellipodial F-actin network, such as its thickness and 
bending modulus. The mathematical relationship between these quantities is derived in the 
framework of elasticity theory, and is thus analogous to the relationships previously obtained for 
wrinkling in different systems (1, 2). The particular derivation given here is specific to the 
boundary conditions and constraints of the lamellipodium, which is attached to the substrate via a 
thin adhesive layer and cannot buckle below the substrate. Our derivation shows that, just as in the 
previously studied systems with wrinkles, an optimal wrinkling wavelength is selected and it is 
constrained from below by the resistance of the actin network to bending.  

We model the F-actin cytoskeleton in the lamellipodium as a thin elastic sheet in the xy-plane with a 
thickness ℎ, length L	and width w (x- and y-dimensions) and elastic modulus 𝐸௧, and assume that 
myosin tension results in a compressive strain 𝑈along the x-axis direction (the direction parallel to 
the leading edge). The compressive strain is treated as being distributed continuously throughout 
the elastic sheet, with U	corresponding to its integral across the sheet. This continuous strain 
represents the action of myosin motors acting as force dipoles that are scattered broadly within the 
sheet. Our model treats the lamellipodium near the leading edge only, neglecting two-dimensional 
effects that may arise due to higher concentrations of myosin motors further back from the leading 
edge.  

We assume that, when there is no compression, the elastic sheet rests on the ventral membrane of 
the cell and that the sheet is attached to the ventral membrane by an array of springs, each 
representing an individual adhesion complex. These springs have an area density g, resulting in an 
effective substrate Young's modulus 𝐸 = ks g, where ks is the stretch elasticity of an individual 
spring. A greater spring density g would thus result in a higher effective Young’s modulus 𝐸. When 
the local distance between the wrinkled elastic sheet and the ventral membrane differs by 𝜁, it costs 
elastic energy of 𝐸 𝜁ଶ 2⁄  per unit area. We note that this physical picture is closely related to a 
previously described model for the wrinkling of a thin hard sheet resting on a semi-infinite soft 
elastic substrate (1). However, the deformation of the soft medium in such a model is spread over a 
depth proportional to the wavelength, yielding a vertical strain that scales as deformation 
amplitude over wavelength and an overall energy of deformation of the elastic substrate that scales 
as amplitude squared divided by the wavelength. By contrast, in our model, the cumulative energy 
of the springs is wavelength-independent and scales simply as the amplitude squared.  

Furthermore, we expect the energetics of the actin sheet interacting with the surface to be highly 
asymmetric, with a stiff contact energy preventing the sheet from penetrating the ventral 
membrane and a softer energy of stretched springs due to displacement of the actin away from the 
ventral surface. Consequently we focus the subsequent discussion on periodic wrinkle patterns 
confined to the positive half-space (𝜁> 0). 

For a periodic pattern of wrinkles with a wavenumber k along the x-axis and amplitude 𝜁,𝜁 ൌ
𝜁ሺ1 െ cosሺkxሻሻ, the bending energy is given by 
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 is the bending modulus of the thin sheet and 𝜈is its Poisson ratio. The energy of 

stretching of the springs is  
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The total energy per unit area is  
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We now assume that the wrinkling relieves the x-axis strain, U, such that  
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Plugging this expression into the equation for the total energy per unit area, we obtain  
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The free energy is proportional to a sum of two expressions, one with 𝜆ଶin the numerator and the 
other with 𝜆ଶin the denominator. Therefore, it is clear that there is an optimum value of the 
wavelength minimizing the free energy. This value (found by differentiating the equation with 
respect to 𝜆 and equating the derivative to zero) is  
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Importantly, 𝐸௧ scales with the bending modulus, B, and 𝐸 scales with adhesion density, g. The 
optimum wavelength is an inverse function of g and, as in previous models of elastic wrinkling, a 
direct function of B. The selection of the optimum wavelength arises from a balance between the 
energy associated with bending the elastic sheet and that required to stretch adhesive bonds. In the 
elastic model described here, both the stretching and the bending energy depend on the squared 
amplitude of the wrinkling deformation, and this squared amplitude varies in proportion to the 
applied strain U. Since both energy terms have the same dependence on the strain, the optimal 
wavelength is strain-independent, and increasing compression should simply raise the magnitude 
of the wrinkles without varying their wavelength. Our experimental data is consistent with this 
prediction (Fig. S4e). While a strain-dependent wavelength could be derived from other models 
where the constraint keeping the actin sheet attached to the ventral surface is not linearly elastic in 
nature, we chose to focus here on the simplest model reproducing the observed behavior. 

Comparison	to	experimental	data	
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Note that our model predicts a 1/4 power law scaling relationship between 𝜆 and 𝐸௧ and between 𝜆 
and 𝐸. This prediction is difficult to test experimentally, because the bending modulus of the actin 
sheet and stretching modulus of the molecular bonds between the substratum and the actin 
network (that the adhesion complexes are part of) cannot be directly measured. Nonetheless, if we 
make the rough assumption that the actin sheet behaves similarly to an in vitro entangled cross-
linked network, where 𝐸௧ has been shown to scale with actin filament density to the power 2.2 (3), 
our model would predict 

𝜆 ∝ ሺ𝑎𝑐𝑡𝑖𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦ሻଶ.ଶ ସ⁄ ൌ ሺ𝑎𝑐𝑡𝑖𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦ሻ.ହହ 

i.e. a 50% decrease in actin density should result in a 32% decrease in wavelength. When plotted 
together with our experimental data, a power law of 0.55 shows reasonable agreement (Fig. 6j). It 
should be noted, however, that the perturbations employed in this study (pH changes and 
latrunculin application) may in principle affect other aspects of the system, such as the thickness of 
the actin sheet. If the latter effect was to dominate, a scaling of wavelength with phalloidin density 
to the 0.75 power would be expected. Given the substantial variability of measurements between 
cells, a more definitive comparison between model and experiment is precluded.  

Finally, the stability of the periodic wrinkling patterns discussed here depends on the precise 
boundary conditions and the form of the contact energy preventing penetration of the elastic sheet 
below the ventral surface. The periodic wrinkling pattern would be destabilized if the springs were 
allowed to break beyond a certain cutoff height, as seems likely given the large amplitude of 
wrinkling at large distances from the cell leading edge. Because the breaking of adhesions increases 
the vertical stress on neighboring adhesions caused by the buckled actin sheet, this adhesion 
breaking could spread like a fracture, leading to delamination of the sheet. In this scenario, a 
periodic wrinkled pattern is inherently unstable and, given sufficient time, the actin network would 
fully detach from the ventral membrane (or the ventral membrane would detach from the 
substratum) to make a single large bump above the lamellipodium. A stable wrinkling pattern 
requires some elastic constraint to prevent the formation of such a large bump, and we therefore 
hypothesize that the periodic wrinkle pattern is maintained by the intact adhesions at the leading 
edge, where the amplitude of wrinkles is small. Unlike the simple one-dimensional model we 
formulated and analyzed above, the actual actin network is two-dimensional and, within 30-60 s, it 
moves all the way back towards the cell body (in the framework of the moving cell), which may not 
allow enough time for catastrophic delamination. The simple model described here thus contains 
the fundamental physical ingredients leading to the selection of an optimal wavelength for periodic 
wrinkling and predicts the character of the dependence of this wavelength on the bending modulus 
of the actin sheet and the density of the adhesion complexes. 

An alternate explanation for stable wrinkle pattern formation could be a catch-bond response in 
adhesions near the wrinkle troughs, with adhesion binding strength increasing under higher stress. 
Such a stress response at the molecular level could prevent large-scale delamination that joins 
multiple wrinkles into a single large bump. However, a separate mechanism would then need to be 
postulated to explain delamination at the peaks of the wrinkles. A sufficiently high stress to break 
adhesions at the wrinkle peak would lead to concentration of even higher stresses in nearby 
adhesions, again triggering a propagating delamination. Maintaining a stable wrinkle pattern would 
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then require either spatially heterogeneous adhesion properties or time-dependent variation in the 
stresses and strains on the lamellipodial sheet as it moves backward from the leading edge, both of 
which lie outside the scope of the current work. 
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Supplemental	Figures	
	

	

	
	
	

	

	

Figure	S1 – Keratocyte fragments also form wrinkles (related to Figure 1). 
Two example actin height maps of keratocyte fragments with wrinkles 

Figure	S2 – Wrinkles open space in lamellipodium for vesicles and organelles (related to Figure 
2). 
a. Slice from an electron micrograph showing wrinkled actin structures in the lamellipodium and small 

membranous structures permeating underneath the lamellipodial wrinkles. Sections are taken parallel 
to the coverslip and z indicates the approximate distance from the coverslip 

b. Inset of region boxed in (a), with the same region from sections immediately before and after the 
section shown in (a). The vesicles can be seen spanning multiple sections, and the position of the 
vesicles relative to the actin network suggests that they are below the actin network, at the back of the 
lamellipodial region. 

c. A different section of the same cell shown in Fig. 2e, showing and object within the lamellipodial space. 
d. Higher resolution view of the boxed region in (c), showing the presence of a membranous structure 

within the lamellipodium. 
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e. Stills from a timelapse movie of a keratocyte labeled with ER Tracker dye. IN these frames the 
endoplasmic reticulum penetrates into the taller regions of the lamellipodium, indicated by phase-
dense regions (cf. Fig. 1b). 

Figure	S3 – Wrinkle properties vary with distance from the leading edge (related to Figure 3). 
Mean wavelength, amplitude, and strain measured in n = 168 cells at distances ranging from 0 to 4 µm in 
from the leading edge. Shaded area shows standard deviation. 

Figure	S4 – Effect of blebbistatin and calyculin on wrinkle geometry (related to Figure 5).
a. Average phalloidin intensity per cell, normalized for cell area, for the indicated cell populations. N = 57, 

95, 109, 76, 122, 108, respectively, for the conditions shown. 
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b. Total summed phalloidin intensity per cell for the indicated cell populations. Sample sizes are the same 
as in a.  

c. Mean wavelength per cell measured 2.5µm from the leading edge for the indicated cell populations. N = 
18, 24, 27, 20, respectively. 

d. % strain as a function of distance from the leading edge measured in cell populations treated with 
calyculin compared with DMSO control. N = 59 for DMSO treatment; N = 80 for calyculin treatment. 

n.s.: p > 0.05, **: p < 0.01 as measured by two-sample t-test. 

Figure	S5 – Varying surface RGD affects cell adhesivity (related to Figure 6). 
Cells plated on surfaces functionalized with 50% and 5% RGD were counted before and after a one-
minute 500×g centrifugation of the inverted coverslip. Plotted is the % of cells remaining on the surface 
after centrifugation. Data points coming from the same batch of coverslip preparation are connected by a 
line (n = 4 batches). *: p < 0.05 as measured by a paired-sample t-test. 
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Figure	S6 – Myosin localization does not correlate with wrinkle positions near the leading edge 
(related to Figure 6). 
a. SIM image of a keratocyte showing phospho-myosin antibody staining and the height of the actin 

network based on phalloidin, as described in the Materials and Methods. Myosin puncta appear 
scattered throughout the lamellipodium. 

b. Average phospho-myosin intensity in a 3µm deep by  x 1.4µm wide region around each peak or trough 
in each cell. Paired data reflect the average intensity across all peaks or troughs in a single cell (n = 13 
cells).  

n.s.: not significant (p > 0.5, two-tailed paired t-test). 

Figure	S7 – Neither wavelength nor amplitude positively correlate with cell speed (related to 
Figure 6). 
Correlation between cell speed and wavelength or amplitude is shown (n = 49 cells). Slower cells have 
more time for actin turnover. 
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Figure	S8 – Wavelength and effective strain are not correlated (related to Figure 6). 
a. Wavelength plotted vs. % strain for 163 untreated cells. 
b. Wavelength plotted vs. inverse square root of strain for same cells as in (a). cf. Supp. Ref. 4. 
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Supplemental	Movie	Legends	
	
Movie	S1 – 3D rendering of the actin cytoskeleton illustrates wrinkle geometry 
(related to Fig. 1) 
3D rendering of the AF488-phalloidin-stained actin cytoskeleton in a representative 
cell as imaged by 3D structured illumination microscopy. Movie shows the 
rendering rotated around the x and z axes. This video corresponds to Fig. 1c. 
 
Movie	S2 – Live imaging of ventral membrane dynamics. (related to Fig. 1) 
Time-lapse phase contrast and TIRF microscopy movie of the representative cell 
expressing membrane-localized EGFP-CAAX shown in Fig. 1f. Time stamp (upper 
right) is in the format minutes:seconds. Frames were acquired every 3 seconds for 
3:21 minutes. Scale bar is 10 microns. 
 
Movie	S3 – Wrinkles allow endoplasmic reticulum to penetrate into the 
lamellipodium (related to Fig. S2) 
Side-by-side views of phase contrast (magenta, left) and widefield fluorescence 
microscopy (green, center) of a representative cell whose endoplasmic reticulum is 
stained with the dye ER Tracker. The right panel shows the two channels merged 
together. As the wrinkle pattern changes over time, the infiltration of the ER into the 
lamellipodium follows the wrinkles. Frames were acquired every 4 seconds for 160 
seconds. Scale bar is 10 μm. This video corresponds to Fig. S2e. 
 
Movie	S4 – Wrinkle positions over time in a motile cell (related to Fig. 4) 
Time-lapse phase microscopy movie of a representative cell where wrinkle peaks as 
detected by our algorithm are continuously overlaid over the movie. Images were 
acquired with a widefield microscope. Time stamp (upper left) is in the format 
minutes:seconds. Frames were acquired every 2 seconds for 4 minutes. Scale bar is 
10 microns. This video corresponds to Fig. 4c. 
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