# MS: MBE-19-0355

# Are universally conserved residues universally required for stable protein expression or functions of cryptochromes?

#### Authors

H. Liu<sup>1,2†</sup>, T. Su<sup>1,3†</sup>, W. He<sup>1,4</sup>, Q. Wang<sup>3\*</sup>, and C. Lin<sup>1\*</sup>

### Affiliations

<sup>1</sup>Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA.

<sup>2</sup>Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
 <sup>3</sup>UCLA-FAFU Joint Research Center on Plant Proteomics, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
 <sup>4</sup>College of Life Sciences, Fujian Normal University, Fuzhou 350108, China.

<sup>†</sup>These authors contributed equally to this work

\*Corresponding authors. Email: <u>clin@mcdb.ucla.edu</u> or <u>eva.wangqin@gmail.com</u>

### **Supplementary Materials**

Fig. S1. The double and triple mutants of the universally conserved Trp-triad residues of CRY2 remained photobiologically active *in vivo*.

Fig. S2. Amino acid multiple sequence alignment of representative Eukaryotic Cryptochromes.

- Fig. S3. RNA and protein expression of mutants of Arabidopsis CRY2 and hCRY1.
- Fig. S4. Subcellular localization of the GFP-CRY2 mutants.

Fig. S5. Spearman's correlations.

Fig. S6. Blue light-dependent CRY2 dimerization is abolished in the CRY2<sup>G427A</sup> proteins.

Fig. S7. Blue-light dependent proteolysis of CRY2.

Fig. S8. Functional analyses of neighboring UCRs of CRY2.

Table S1. Summary of the relative protein abundance and relative specific activities of CRY2 trp-triad mutants.

Table S2. Eukaryote proteins used for multiple sequence alignment shown in fig. S2.

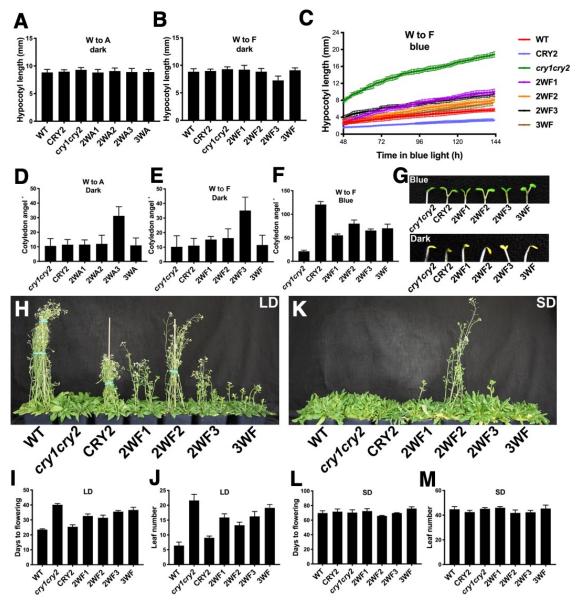

Table S3. Summary of the relative protein abundance and relative specific activities of UCR mutants of CRY2 with stable protein expression.

Table S4. Summary of UCR mutants of CRY2 without stable expression from the "lack of protein" group.

Table S5. List of previously reported mutants of cryptochromes included in Fig. 2D.

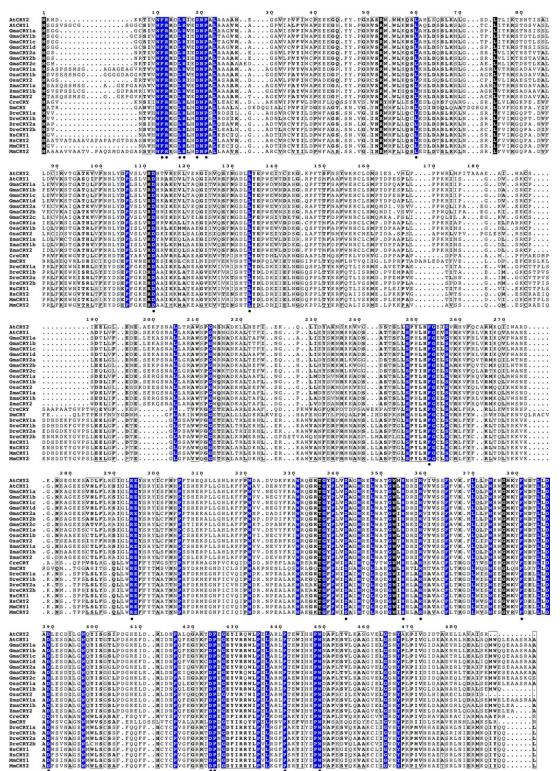
 Table S6. Primers used for site-directed mutagenesis

Fig. S1

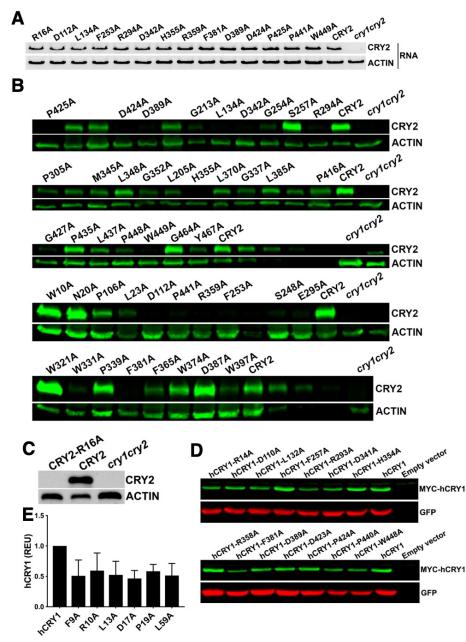


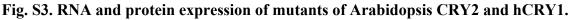
# Fig. S1. The double and triple mutants of the universally conserved Trp-triad residues of CRY2 remained photobiologically active *in vivo*.

(A-B) Hypocotyl length of six-day-old seedlings expressing the respective wild-type (GFP-CRY2) or double and triple mutants of the Trp-triad residues of CRY2, and *cry1cry2* mutant or wild-type (WT) seedlings grown in continuous blue light (20  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>). The residue replacements involved in each mutant were listed in table S1. Bar indicates SD of the mean (n≥20).


(C) The assay was carried out as described in Fig. 1B.

(**D-E**) Cotyledon unfolding angels of six-day-old seedlings of the indicated genotypes grown in dark were manually measured using Fiji (NIH). Bar indicates SD of the mean ( $n\geq 20$ ).


(F) Angles between the two cotyledons, indicating the cotyledon unfolding phenotype, were measured from the images taken for Fig. S1C at 114 hours after germination. Bars indicates SD of the mean (n=3).


(G) The cotyledon unfolding phenotype. Representative images of 6-day-old seedlings grown in blue light (20  $\mu$ mol $\cdot$ m<sup>-2</sup> $\cdot$ s<sup>-1</sup>) (upper) or darkness (lower) are shown.

(H-M) Images of 40 (H) or 60 (K) -day-old plants grown in in long-day (16 h day/ 8 h night) or shortday photoperiod (8 h day/ 16 h night). Days to flowering (I, L) and rosette leaf number (J, M) at flowering of the respective genotypes are shown. Bars indicates SD of the mean ( $n\geq 8$ ). The wild-type (WT) and transgenic plants constitutively expressing the "wild-type" GFP-CRY2 (CRY2) fusion protein or three different double (2WF1, 2WF2, 2WF3) or triple (3WF) mutants of the Trp-triad residues of CRY2 as the GFP-CRY2 fusion proteins in the *cry1cry2* mutant background are indicated. See Table S1 for more detailed information.



**Fig. S2. Amino acid multiple sequence alignment of representative Eukaryotic Cryptochromes.** The 57 universally conserved residues are labelled with blue (analyzed in the current study) or black background (not analyzed in the current study, excluding the start codon); the residues whose the alanine replacement were classified as "lack of protein" (Fig. 3 and table S4) are labelled with round dots. NCBI accession number and species of proteins used in the alignment are listed in table S2.





(A) RT-PCR analyses of mRNA expression of wild-type or mutant of *GFP-CRY2* (upper) and *ACTIN* (lower) genes of seven-day-old seedlings grown in the long-day (16 h day/ 8 h night) period in the genotypes indicated.

(**B**) Immunoblots showing wild-type or UCR mutant of GFP-CRY2 fusion proteins expressed in transgenic plants. Samples were extracted from seven-day-old seedlings grown in the long-day (16 h day/8 h night) period, fractionated in SDS/PAGE (10%), blotted, probed with anti-CRY2 antibody (CRY2) and anti-ACTIN antibody (ACTIN, control), then probed with fluorophore-conjugated secondary antibodies, and detected by the Odyssey CLx System (LI-COR).

(C) Immunoblots showing wild-type or the CRY2<sup>R16A</sup> mutant of GFP-CRY2 fusion proteins expressed in transgenic plants. Samples were prepared, blotted, and probed primary antibodies as described in B,

then probed with HRP (horseradish peroxidase)-conjugated secondary antibodies and detected by the ECL (Enhance Chemiluminescence) method.

(**D**) Immunoblot showing stable protein expression of hCRY1 UCR mutant proteins, each being altered at the residue equivalent to the corresponding Arabidopsis CRY2 UCR "lack of protein) mutants. Samples were prepared from whole cell lysates of HEK293T cells co-transfected by two plasmids: the sample plasmid encoding the indicated MYC-hCRY1 protein mutated at the indicated UCR and the control plasmid encoding GFP as the transfection and immunoblot controls.

(E) Quantification of protein expression of hCRY1 in HEK293T cells from Fig. 2C. GFP-hCRY1 Signals were acquired from fluorescent immunoblot (LI-COR) and quantified by an internal method of Image Studio Lite software (LI-COR), and normalized to GFP signals, and presented as hCRY1 relative expression unit (REU). Bars indicates SD of the mean (n=3).



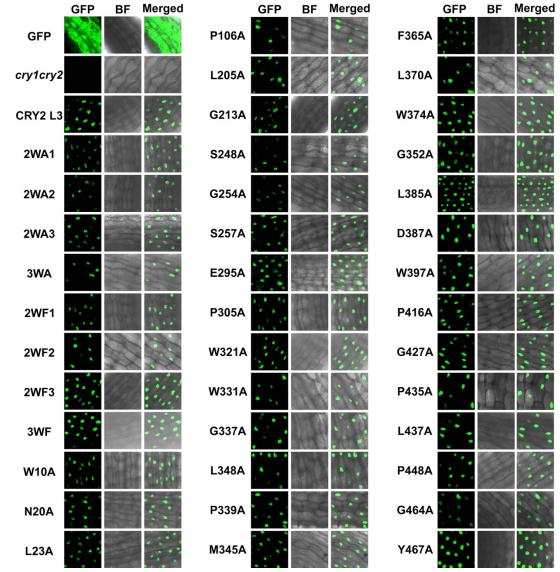
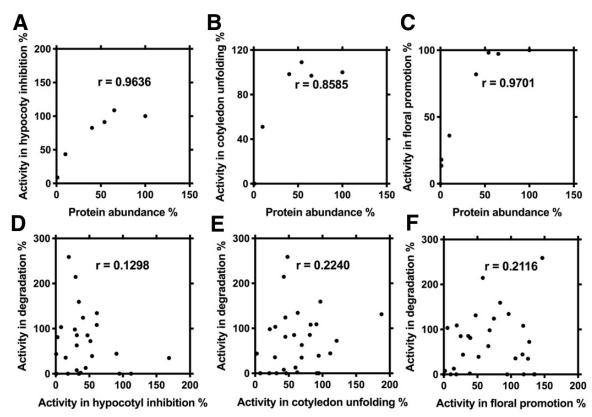




Fig. S4. Subcellular localization of the GFP-CRY2 mutants.

Seedlings were grown on MS medium in the long-day (16 h day/ 8 h night) period of white light. Roots of two-day-old seedlings were directed analyzed by a Zeiss LSM700 confocal fluorescence microscope, and processed by the Fiji (NIH) software.





# Fig. S5. Spearman's correlations.

(A-C) Correlations between protein abundance and the relative specific-activities of the blue-light dependent inhibition of hypocotyl elongation (A), cotyledon unfolding (B) and floral promotion (C) for wild-type GFP-CRY2 fusion proteins.

(**D-F**) Correlations between the blue-light dependent proteolysis activities (calculation detailed in SI Appendix, Materials and Methods) and the relative specific-activities of the blue-light dependent inhibition of hypocotyl elongation (D), cotyledon unfolding (E) and floral promotion (F) for transgenic plants of mutants of universally conserved GFP-CRY2 fusion proteins.

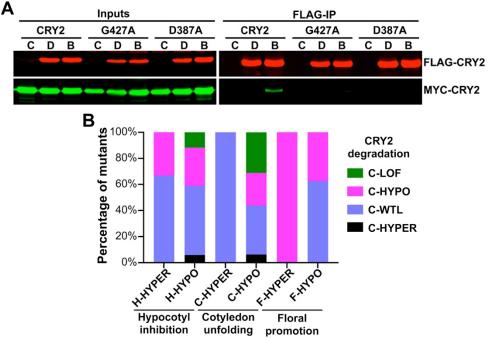
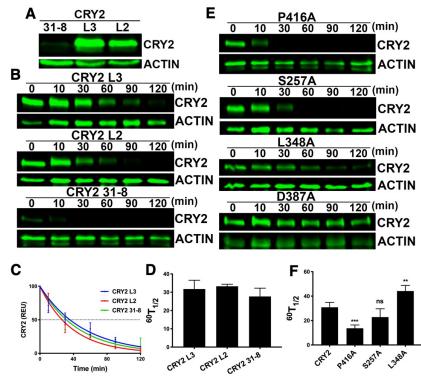




Fig. S6. Blue light-dependent CRY2 dimerization of the CRY2<sup>G427A</sup> proteins and correlation between physiological and biochemical activities.

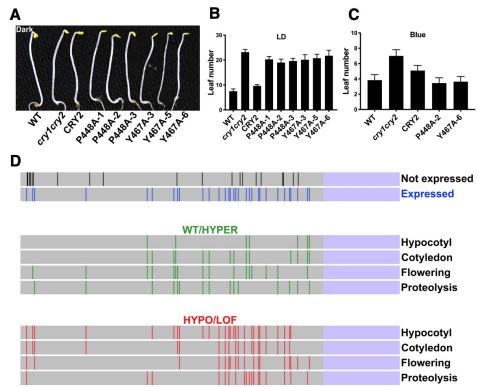
(A) HEK293T cells were cotransfected to express the indicated proteins, exposed to blue light (100  $\mu$ mol m<sup>-1</sup> s<sup>-1</sup>) for 120 minutes, and immunoprecipitated by antibody to FLAG (FLAG-IP). The IP signal (FLAG-CRY2) or the co-IP signals (MYC-CRY2) were detected by immunoblots probed with antibodies to FLAG (upper panel) or to MYC (lower panel).

(B) Classification in blue light-induced proteolysis of the CRY2 mutants classified as hypermorphic or hypomorphic for hypocotyl inhibition (H-HYPER, H-HYPO), cotyledon unfolding (C-HYPER, C-HYPO) and floral promotion (F-HYPER, F-HYPO).





(A) Immunoblots showing wild-type GFP-CRY2 fusion proteins expressed in transgenic plants. Samples were extracted from seven-day-old seedlings grown in the long-day (16 h day/8 h night) period, fractionated in SDS/PAGE (10%), blotted, probed with anti-CRY2 antibody (CRY2) and anti-ACTIN antibody (ACTIN, control), then probed with fluorophore-conjugated secondary antibodies, and detected by the Odyssey CLx System (LI-COR)


(**B**) Representative immunoblots of samples prepared from six-day-old etiolated seedlings exposed to blue light (60  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>) for the indicated time in the indicated genotypes. Samples were probed with antibodies to CRY2 and ACTIN (control).

(C) Degradation curves of wild-type GFP-CRY2 fusion proteins. Assays were conducted as described in Fig. 3H. Bars indicates SD of the mean (n=2).

(**D**) Half-life ( ${}^{60}T_{1/2}$ ) of proteolysis was calculated from degradation curves of C as described in Fig. 3J. Bars indicates SD of the mean (n=2).

(E) Representative immunoblots of samples prepared from six-day-old etiolated seedlings exposed to blue light (60  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>) for the indicated time in the representative mutants of GFP-CRY2 classified as HYPER (P416A), WTL (S257A), HYPO (L348A) and LOF (D387A). Assays were conducted as described in *B*.

(F) Half-life ( $^{60}T_{1/2}$ ) of representative mutants of GFP-CRY2 classified as HYPER (P416A), WTL (S257A), HYPO (L348A) was calculated from degradation curve in Fig. 2H as described in Fig. 3J. Three asterisks indicate P=0.0003, "ns" indicates P>0.05, double asterisks indicate P=0.0027, compared with half-life of wild-type GFP-CRY2 fusion proteins.



# Fig. S8. Functional analyses of neighboring UCRs of CRY2.

(A) Six day-old seedlings expressing wild-type GFP-CRY2 or GFP- CRY2<sup>P448A</sup> (P448A), CRY2<sup>Y467A</sup> (Y467A) mutants, and *cry1cry2* mutant or wild-type seedlings grown in dark.

(**B-C**) Number of rosette leaves at the time of flowering of independent lines of CRY2<sup>P448A</sup> and CRY2<sup>Y467A</sup> mutants in the long-day (16 h day/ 8 h night) period (B), or in the continuous blue light (70-80  $\mu$ mol•m<sup>-2</sup>•s<sup>-1</sup>) (C). Bars indicates SD of the mean (n≥8).

(**D**) Linear representation of mutants of CRY2. Grey and light blue color represents PHR and CCE domain, respectively. Black, blue, green, red, purple and pink lines indicate activities as labeled at the top of each panel.

| Table | S | 1 |
|-------|---|---|
|-------|---|---|

| Residues              | Mutant | Protein   | Hypocoty | l inhibition | Cotyledor | unfolding | Floral initiation |          |
|-----------------------|--------|-----------|----------|--------------|-----------|-----------|-------------------|----------|
| Residues              | Mutant | Abundance | Activity | Category     | Activity  | Category  | Activity          | Category |
| W321A + W374A         | 2WA1   | 117.43%   | 30.03%   | НҮРО         | 55.67%    | НҮРО      | 38.36%            | НҮРО     |
| W321A + W397A         | 2WA2   | 344.10%   | 30.97%   | НҮРО         | 88.43%    | НҮРО      | 77.45%            | НҮРО     |
| W374A + W397A         | 2WA3   | 46.09%    | 39.38%   | НҮРО         | 39.37%    | HYPO      | 57.91%            | НҮРО     |
| W321A + W374A + W397A | 3WA    | 77.53%    | 51.94%   | НҮРО         | 74.10%    | НҮРО      | 87.19%            | WTL      |
| W321F + W374F         | 2WF1   | 26.98%    | 17.65%   | НҮРО         | 34.15%    | НҮРО      | 45.10%            | НҮРО     |
| W321F + W397F         | 2WF2   | 106.56%   | 30.03%   | НҮРО         | 59.06%    | НҮРО      | 52.62%            | НҮРО     |
| W374F + W397F         | 2WF3   | 38.20%    | 28.98%   | НҮРО         | 44.46%    | НҮРО      | 27.84%            | НҮРО     |
| W321F + W374F + W397F | 3WF    | 17.95%    | 29.83%   | НҮРО         | 49.15%    | WTL       | 21.05%            | НҮРО     |

Table S1. Summary of the relative protein abundance and relative specific activities of CRY2 trp-triad mutants.

The protein abundance and physiological activities of double and triple mutants of Trp-triad expressed in the *cry1cry2* parental lines were shown. "HYPER", "WTL", "HYPO" and "LOF" represent hypermorph (increased activity), "wild-type"-like, hypomorph (reduced activity) and loss-of-function, respectively. Protein abundance and activities were normalized to L5 of wild-type GFP-CRY2 line (Fig. 3, A-C and table S3). Activities were categorized using the standard curves shown in Fig. 3 (A-C).

| 1 | Table | S2  |
|---|-------|-----|
| - | 1     | ~ - |

| Name     | Group                | Family             | Species                   | NCBI           | aa    |
|----------|----------------------|--------------------|---------------------------|----------------|-------|
| AtCRY2   | Plants-Dicots        | Brassicaceae       | Arabidopsis thaliana      | NP_171935.1    | 1-487 |
| AtCRY1   | Plants-Dicots        | Brassicaceae       | Arabidopsis thaliana      | NP_567341.1    | 1-501 |
| GmaCRY1a | Plants-Dicots        | Fabaceae           | Glycine max               | XP_025980601.1 | 1-494 |
| GmaCRY1b | Plants-Dicots        | Fabaceae           | Glycine max               | NP_001241002.1 | 1-495 |
| GmaCRY1c | Plants-Dicots        | Fabaceae           | Glycine max               | NP_001235205.1 | 1-494 |
| GmaCRY1d | Plants-Dicots        | Fabaceae           | Glycine max               | NP_001240855.1 | 1-494 |
| GmaCRY2a | Plants-Dicots        | Fabaceae           | Glycine max               | KRG92422.1     | 1-494 |
| GmaCRY2b | Plants-Dicots        | Fabaceae           | Glycine max               | XP_006588363.1 | 1-494 |
| GmaCRY2c | Plants-Dicots        | Fabaceae           | Glycine max               | NP_001241551.1 | 1-495 |
| OsaCRY1a | Plants-Monocots      | Poaceae            | Oryza sativa              | BAB70686.1     | 1-510 |
| OsaCRY1b | Plants-Monocots      | Poaceae            | Oryza sativa              | BAB70688.2     | 1-501 |
| OsaCRY2  | Plants-Monocots      | Poaceae            | Oryza sativa              | BAC56984.1     | 1-486 |
| ZmaCRY1a | Plants-Monocots      | Poaceae            | Zea mays                  | XP_008644161.1 | 1-506 |
| ZmaCRY1b | Plants-Monocots      | Poaceae            | Zea mays                  | PWZ40305.1     | 1-502 |
| ZmaCRY2  | Plants-Monocots      | Poaceae            | Zea mays                  | XP_008677763.1 | 1-502 |
| CreCRY   | Plants-Green algae   | Chlamydomonadaceae | Chlamydomonas reinhardtii | XP_001698054.1 | 1-493 |
| DmCRY    | Animals-Invertebrate | Drosophilidae      | Drosophila melanogaster   | NP_732407.1    | 1-514 |
| DreCRY1a | Animals-Invertebrate | Cyprinidae         | Danio rerio               | NP_001070765.1 | 1-491 |
| DreCRY1b | Animals-Invertebrate | Cyprinidae         | Danio rerio               | NP_571865.4    | 1-491 |
| DreCRY2a | Animals-Invertebrate | Cyprinidae         | Danio rerio               | CAQ13306.1     | 1-491 |
| DreCRY2b | Animals-Invertebrate | Cyprinidae         | Danio rerio               | NP_571867.2    | 1-494 |
| HsCRY1   | Animals-Vertebrate   | Hominidae          | Homo sapiens              | NP_004066.1    | 1-491 |
| HsCRY2   | Animals-Vertebrate   | Hominidae          | Homo sapiens              | NP_066940.3    | 1-510 |
| MmCRY1   | Animals-Vertebrate   | Muridae            | Mus musculus              | NP_031797.1    | 1-491 |
| MmCRY2   | Animals-Vertebrate   | Muridae            | Mus musculus              | NP_034093.1    | 1-509 |

2 Table S2. Eukaryote proteins used for multiple sequence alignment shown in fig. S2

3 Fifty-seven residues of CRY2 are universally conserved among the cryptochromes family of

4 the eukaryotes. NCBI accession numbers, and residues forming the PHR domain of each protein used

5 for alignment were shown in "NCBI" and "aa", respectively.

# 6 Table S3

| CRY2         | Muta      | Protein       |              | ocotyl<br>bition |              | ledon<br>lding | Floral i     | nitiation    |                | rotein<br>·adation | hCRY<br>1    |                      | Pre           | viously publis  | shed mutants                           |
|--------------|-----------|---------------|--------------|------------------|--------------|----------------|--------------|--------------|----------------|--------------------|--------------|----------------------|---------------|-----------------|----------------------------------------|
| residue<br>s | nt        | Abundan<br>ce | Activit<br>y | Categor<br>y     | Activit<br>y | Categor<br>y   | Activit<br>y | Categor<br>y | $^{60}T_{1/2}$ | Category           | residu<br>es | Species              | Protein       | Mutant          | References                             |
| Endog<br>CR  |           | 4.159%        | 45.5%        | N/A              | 99.88<br>%   | N/A            | 100%         | N/A          | N/A            | N/A                | N/A          |                      |               | N/A             |                                        |
| GFP-CI       |           | 10.41%        | 43.5%        | N/A              | 51.00<br>%   | N/A            | 36%          | N/A          | N/A            | N/A                | N/A          |                      |               | N/A             |                                        |
| GFP-CI       | RY2 L2    | 40.07%        | 82.6%        | N/A              | 98.31<br>%   | N/A            | 82%          | N/A          | 33             | N/A                | N/A          |                      |               | N/A             |                                        |
| GFP-CI       | RY2 L3    | 53.72%        | 91.3%        | N/A              | 109.1<br>%   | N/A            | 98%          | N/A          | 32             | N/A                | N/A          |                      |               | N/A             |                                        |
| GFP-CI       | RY2 L4    | 64.67%        | 109%         | N/A              | 96.97<br>%   | N/A            | 97%          | N/A          | N/A            | N/A                | N/A          |                      |               | N/A             |                                        |
| GFP-CI       | RY2 L5    | 100.0%        | 100%         | N/A              | 100.0<br>%   | N/A            | 100%         | N/A          | N/A            | N/A                | N/A          |                      |               | N/A             |                                        |
| W10          | W10A      | 64.60%        | 1.17%        | LOF              | 21.64<br>%   | НҮРО           | 10%          | LOF          | >120           | LOF                | W8           |                      |               | N/A             |                                        |
| N20          | N20A      | 72.71%        | 14.8%        | НҮРО             | 30.55<br>%   | НҮРО           | 105%         | WTL          | 59             | НҮРО               | N18          |                      |               | N/A             |                                        |
| L23          | L23A      | 24.72%        | 1.83%        | LOF              | 35.70        | НҮРО           | 28%          | НҮРО         | 36             | WTL                | L21          |                      |               | N/A             |                                        |
| P106         | P106A     | 31.77%        | 48.8%        | НҮРО             | 54.51<br>%   | НҮРО           | 75%          | WTL          | 25             | WTL                | P104         |                      |               | N/A             |                                        |
| L205         | L205A     | 10.67%        | 44.2%        | WTL              | 49.35<br>%   | WTL            | 60%          | WTL          | 119            | НҮРО               | L205         |                      |               | N/A             |                                        |
| G213         | G213<br>A | 8.971%        | 13.0%        | НҮРО             | 33.78<br>%   | WTL            | 26%          | WTL          | 43             | WTL                | G213         | Mus musculus         | mCRY<br>2     | G230R           | (McCarthy et al. 2009)                 |
| S248         | S248A     | 6.436%        | 11.4%        | НҮРО             | 38.14<br>%   | WTL            | 26%          | WTL          | 22             | WTL                | S252         | Mus musculus         | mCRY<br>1     | S252A/<br>D     | (Ode et al. 2017)                      |
| G254         | G254<br>A | 13.22%        | 15.1%        | НҮРО             | 13.17<br>%   | НҮРО           | 35%          | WTL          | 31             | WTL                | G258         | Pisum sativum        | PsCRY<br>1    | G250E           | (Platten et al. 2005)                  |
|              |           |               |              |                  | 49.58        |                |              |              |                |                    |              | Arabidopsis thaliana | CRY2<br>mCRY  | G254R<br>S261A/ | (Guo et al. 1998)                      |
| S257         | S257A     | 115.0%        | 43.6%        | НҮРО             | %            | НҮРО           | 79%          | НҮРО         | 26             | WTL                | S261         | Mus musculus         | 1             | D               | (Lamia et al. 2009; Ode et al. 2017    |
| E295         | E295A     | 5.963%        | 6.1%         | LOF              | 17.96        | WTL            | 43%          | WTL          | 14             | HYPER              | E294         | Mus musculus         | mCRY<br>2     | E312K           | (McCarthy et al. 2009)                 |
| P305         | P305A     | 20.71%        | 40.8%        | НҮРО             | 61.12<br>%   | WTL            | 76%          | WTL          | 29             | WTL                | P304         |                      |               | N/A             |                                        |
| W321         | W321<br>A | 414.1%        | 44.2%        | НҮРО             | 74.89<br>%   | НҮРО           | 46%          | НҮРО         | 113            | НҮРО               | W320         | Prev                 | viously publi | ished Trp-triad | d residues were not listed.            |
| W331         | W331<br>A | 26.91%        | 5.84%        | LOF              | 17.04<br>%   | НҮРО           | 0.00%        | LOF          | >120           | LOF                | W330         | Arabidopsis thaliana | CRY1          | W334A/<br>F     | (Gao et al. 2015)                      |
|              |           |               |              |                  |              |                |              |              |                |                    |              | Arabidopsis thaliana | CRY1          | G340E           | (Ahmad and Cashmore 1993; Ruckle 2007) |
| G337         | G337<br>A | 28.06%        | 33.9%        | НҮРО             | 49.61<br>%   | НҮРО           | 11%          | LOF          | 88             | НҮРО               | G336         | Mus musculus         | mCRY<br>1     | G336D           | (Czarna et al. 2013)                   |
|              |           |               |              |                  |              |                |              |              |                |                    |              | Mus musculus         | mCRY<br>2     | G354D           | (McCarthy et al. 2009)                 |
| P339         | P339A     | 85.98%        | 32.4%        | НҮРО             | 86.56<br>%   | WTL            | 37%          | НҮРО         | 35             | WTL                | P338         | Mus musculus         | mCRY<br>2     | P356L           | (McCarthy et al. 2009)                 |

| M345 | M345<br>A | 22.67% | 43.4%      | НҮРО  | 93.04<br>% | WTL   | 86%   | WTL       | 39   | WTL   | M344 |                            |              | N/A                  |                         |
|------|-----------|--------|------------|-------|------------|-------|-------|-----------|------|-------|------|----------------------------|--------------|----------------------|-------------------------|
| L348 | L348A     | 48.37% | 0.460<br>% | LOF   | 2.248<br>% | LOF   | 25%   | НҮРО      | 53   | НҮРО  | K347 | Arabidopsis thaliana       | CRY2         | L348F                | (Taslimi et al. 2016)   |
| G352 | G352<br>A | 23.09% | 5.51%      | LOF   | 23.16<br>% | НҮРО  | 3.6%  | LOF       | 30   | WTL   | G351 |                            |              | N/A                  |                         |
| F365 | F365A     | 38.09% | 76.6%      | WTL   | 101.3<br>% | WTL   | 97%   | WTL       | 53   | НҮРО  | F364 |                            |              | N/A                  |                         |
| L370 | L370A     | 30.35% | 132%       | HYPER | 70.24<br>% | WTL   | 95%   | HYPE<br>R | 60   | НҮРО  | L370 |                            |              | N/A                  |                         |
| W374 | W374<br>A | 69.86% | 58.9%      | НҮРО  | 47.76<br>% | НҮРО  | 92%   | WTL       | >120 | LOF   | W374 | Prev                       | iously publi | shed Trp-triad resid | ues were not listed.    |
| L385 | L385A     | 26.59% | 23.3%      | НҮРО  | 34.61<br>% | НҮРО  | 1.2%  | LOF       | 98   | НҮРО  | L385 |                            |              | N/A                  |                         |
|      |           |        |            |       |            |       |       |           |      |       |      | Drosophila<br>melanogaster | dCRY         | D410N                | (Stanewsky et al. 1998) |
| D387 | D387<br>A | 99.56% | 0.910<br>% | LOF   | 8.592<br>% | LOF   | 19%   | LOF       | >120 | LOF   | D387 | Arabidopsis thaliana       | CRY2         | D387A                | (Liu et al. 2008)       |
|      |           |        |            |       |            |       |       |           |      |       |      | Mus musculus               | mCRY<br>1    | D387N                | (Hitomi et al. 2009)    |
| W397 | W397<br>A | 16.94% | 21.2%      | НҮРО  | 21.59<br>% | НҮРО  | 78%   | WTL       | >120 | LOF   | W397 | Prev                       | iously publi | shed Trp-triad resid | ues were not listed.    |
| P416 | P416A     | 11.88% | 14.8%      | НҮРО  | 24.39<br>% | НҮРО  | 28%   | WTL       | 17   | HYPER | P415 |                            |              | N/A                  |                         |
| G427 | G427<br>A | 6.763% | 6.17%      | LOF   | 3.049<br>% | LOF   | 0.00% | LOF       | >120 | LOF   | G426 |                            |              | N/A                  |                         |
| P435 | P435A     | 26.13% | 34.9%      | НҮРО  | 46.81<br>% | НҮРО  | 18%   | НҮРО      | 35   | WTL   | P434 |                            |              | N/A                  |                         |
| L437 | L437A     | 13.33% | 28.8%      | НҮРО  | 57.44<br>% | WTL   | 26%   | НҮРО      | 57   | НҮРО  | L436 |                            |              | N/A                  |                         |
| P448 | P448A     | 19.19% | 130%       | HYPER | 65.58<br>% | WTL   | 12%   | LOF       | 29   | WTL   | P447 |                            |              | N/A                  |                         |
| G464 | G464<br>A | 85.24% | 89.5%      | WTL   | 81.70<br>% | НҮРО  | 92%   | WTL       | >120 | LOF   | G463 |                            |              | N/A                  |                         |
| Y467 | Y467<br>A | 10.13% | 145%       | HYPER | 98.32<br>% | HYPER | 20%   | НҮРО      | 25   | WTL   | Y466 |                            |              | N/A                  |                         |

10 The protein abundance and activities of wild-type and mutant GFP-CRY2 expressed in the *cry1cry2* parental lines were shown.
11 "HYPER", "WTL", "HYPO" and "LOF" represent hypermorph (increased activity), "wild-type"-like, hypomorph (reduced activity) and
12 loss of function, respectively. Protein abundance and activities were normalized to L5 of wild-type GFP-CRY2 line. Activities were
13 categorized using the standard curves shown in Fig. 3 (A-C). N/A, not applied.

 <sup>8</sup> Table S3. Summary of the relative protein abundance and relative specific activities of UCR mutants of CRY2 with stable protein
 9 expression

| 15 | Table | S4 |
|----|-------|----|
| 15 | Table | S4 |

| CRY2     | Mutant | hCDV1 masidu as |             | Previous | ly publish | ed mutants               |
|----------|--------|-----------------|-------------|----------|------------|--------------------------|
| residues | Mutant | hCRY1 residues  | Species     | Protein  | Mutant     | References               |
| F11      | F11A   | F9              |             |          | N/A        |                          |
| R12      | R12A   | R10             |             |          | N/A        |                          |
| L15      | L15A   | L13             |             |          | N/A        |                          |
| R16      | R16A   | R14             |             |          | N/A        |                          |
| D19      | D19A   | D17             | Arabidopsis | CRY1     | D21N       | (Ruckle et al. 2007)     |
| P21      | P21A   | P19             |             |          | N/A        |                          |
| L60      | L60A   | L59             |             |          | N/A        |                          |
| D112     | D112A  | D110            |             |          | N/A        |                          |
| L134     | L134A  | L132            |             |          | N/A        |                          |
| F253     | F253A  | F257            | mouse       | mCRY1    | F257A      | (Rosensweig et al. 2018) |
| R294     | R294A  | R293            |             |          | N/A        |                          |
| D342     | D342A  | D341            |             |          | N/A        |                          |
| H355     | H355A  | H354            |             |          | N/A        |                          |
| R359     | R359A  | R358            | mouse       | mCRY1    | R358K      | (Hitomi et al. 2009)     |
| F381     | F381A  | F381            |             |          | N/A        |                          |
| D389     | D389A  | D389            |             |          | N/A        |                          |
| D424     | D424A  | D423            |             |          | N/A        |                          |
| P425     | P425A  | P424            |             |          | N/A        |                          |
| P441     | P441A  | P440            |             |          | N/A        |                          |
| W449     | W449A  | W448            |             |          | N/A        |                          |

16 **Table S4. Summary of UCR mutants of CRY2 without stable expression from the "lack of** 

17 protein" group.

18 N/A, not applied.

19

Table S5

| CRY2<br>residue | Specie<br>s | Durtain   |                 |             |             |                          |
|-----------------|-------------|-----------|-----------------|-------------|-------------|--------------------------|
| <b></b>         | Б           | Protein   | Mutation        | Category    | Phenotype   | Reference                |
| T7              | Mm          | mCRY<br>2 | S23L            | Non-<br>UCR | circadian   | (McCarthy et al. 2009)   |
| D19             | At          | CRY1      | D21N (cry1-401) | UCR         | hypocotyl   | (Ruckle et al. 2007)     |
| C39             | Mm          | mCRY<br>1 | D38A            | Non-<br>UCR | circadian   | (Rosensweig et al. 2018) |
| P40             | Mm          | mCRY<br>1 | P39G            | Non-<br>UCR | circadian   | (Rosensweig et al. 2018) |
| E42             | Mm          | mCRY<br>1 | F41S            | Non-<br>UCR | circadian   | (Rosensweig et al. 2018) |
| R53             | Mm          | mCRY<br>1 | R51A            | UCR         | circadian   | (Rosensweig et al. 2018) |
| S59             | At          | CRY1      | S66N (cry1-388) | Non-<br>UCR | hypocotyl   | (Shalitin et al. 2003)   |
| S72             | Mm          | mCRY<br>1 | S71A/D          | Non-<br>UCR | interaction | (Lamia et al. 2009)      |
| S72             | Mm          | mCRY<br>1 | S71A/D          | Non-<br>UCR | circadian   | (Ode et al. 2017)        |
| Y104            | Mm          | mCRY<br>1 | S102A/D         | Non-<br>UCR | circadian   | (Ode et al. 2017)        |
| D105            | Mm          | mCRY<br>1 | E103K           | Non-<br>UCR | circadian   | (Rosensweig et al. 2018) |
| D105            | Mm          | mCRY<br>2 | E121K           | Non-<br>UCR | circadian   | (McCarthy et al. 2009)   |
| V107            | Mm          | mCRY<br>1 | F105A           | Non-<br>UCR | circadian   | (Rosensweig et al. 2018) |
| S108            | Mm          | mCRY<br>1 | G106R           | Non-<br>UCR | circadian   | (McCarthy et al. 2009)   |
| S108            | Mm          | mCRY<br>1 | G106R/W         | Non-<br>UCR | circadian   | (Rosensweig et al. 2018) |
| R111            | Mm          | mCRY<br>1 | R109Q           | UCR         | circadian   | (McCarthy et al. 2009)   |
| L133            | Mm          | mCRY<br>1 | T131A/D         | Non-<br>UCR | circadian   | (Ode et al. 2017)        |
| K156            | Mm          | mCRY<br>1 | T155A/D         | Non-<br>UCR | circadian   | (Ode et al. 2017)        |
| L159            | Mm          | mCRY<br>1 | S158A/D         | Non-<br>UCR | circadian   | (Ode et al. 2017)        |
| G213            | Mm          | mCRY<br>2 | G230R           | UCR         | circadian   | (McCarthy et al. 2009)   |
| W214            | Mm          | mCRY<br>1 | E214K           | Non-<br>UCR | circadian   | (McCarthy et al. 2009)   |
| N216            | Mm          | mCRY<br>1 | E216            | Non-<br>UCR | circadian   | (McCarthy et al. 2009)   |
| A217            | At          | CRY1      | G220D (hy4-6)   | Non-<br>UCR | hypocotyl   | (Ahmad et al. 1995)      |
| A217            | At          | CRY1      | G220D (hy4-6)   | Non-<br>UCR | flower      | (Ahmad et al. 1998)      |
| A217            | Mm          | mCRY<br>1 | A217V           | Non-<br>UCR | circadian   | (McCarthy et al. 2009)   |

| D218 | Mm | mCRY<br>1 | L218F            | Non-<br>UCR | circadian   | (McCarthy et al. 2009)    |
|------|----|-----------|------------------|-------------|-------------|---------------------------|
| F224 | Mm | mCRY<br>1 | H224E            | Non-<br>UCR | interaction | (Czarna et al. 2013)      |
| Y232 | Mm | mCRY<br>1 | A232T            | Non-<br>UCR | circadian   | (McCarthy et al. 2009)    |
| G241 | Mm | mCRY<br>1 | S243A/D          | Non-<br>UCR | circadian   | (Ode et al. 2017)         |
| S243 | Mm | mCRY<br>1 | S247A/D          | Non-<br>UCR | circadian   | (Ode et al. 2017)         |
| S243 | Mm | mCRY<br>1 | S247D            | Non-<br>UCR | interaction | (Czarna et al. 2013)      |
| S245 | Mm | mCRY<br>1 | T249A/D          | Non-<br>UCR | circadian   | (Ode et al. 2017)         |
| S248 | Mm | mCRY<br>1 | S252D            | UCR         | circadian   | (Ode et al. 2017)         |
| Y250 | Mm | mCRY<br>1 | Y254A/D          | Non-<br>UCR | circadian   | (Ode et al. 2017)         |
| F253 | Mm | mCRY<br>1 | F257A            | UCR         | circadian   | (Rosensweig et al. 2018)  |
| G254 | At | CRY2      | G254R            | UCR         | flower      | (Guo et al. 1998)         |
| E255 | Mm | mCRY<br>1 | C259Y            | Non-<br>UCR | circadian   | (McCarthy et al. 2009)    |
| S257 | Mm | mCRY<br>1 | S261A/D          | UCR         | circadian   | (Ode et al. 2017)         |
| K268 | Mm | mCRY<br>1 | T270A/D          | Non-<br>UCR | circadian   | (Ode et al. 2017)         |
| S278 | Mm | mCRY<br>1 | S280A/D          | Non-<br>UCR | interaction | (Lamia et al. 2009)       |
| S278 | Mm | mCRY<br>1 | S280A/D          | Non-<br>UCR | circadian   | (Ode et al. 2017)         |
| G280 | At | CRY1      | G283E (hy4-5)    | Non-<br>UCR | hypocotyl   | (Ahmad et al. 1995)       |
| S283 | At | CRY1      | S286N (cry1-402) | Non-<br>UCR | hypocotyl   | (Ruckle et al. 2007)      |
| D285 | Mm | mCRY<br>1 | S285A/D          | Non-<br>UCR | circadian   | (Ode et al. 2017)         |
| R289 | Mm | mCRY<br>1 | G288R            | Non-<br>UCR | circadian   | (McCarthy et al. 2009)    |
| E295 | Mm | mCRY<br>2 | E312K            | UCR         | circadian   | (McCarthy et al. 2009)    |
| Q310 | Mm | mCRY<br>1 | M309I            | Non-<br>UCR | circadian   | (McCarthy et al. 2009)    |
| G334 | At | CRY1      | G337D (hy4-4)    | UCR         | hypocotyl   | (Ahmad and Cashmore 1993) |
| G334 | Mm | mCRY<br>2 | G351D            | UCR         | circadian   | (McCarthy et al. 2009)    |
| G337 | At | CRY1      | G340E (cry1-404) | UCR         | hypocotyl   | (Ruckle et al. 2007)      |
| G337 | At | CRY1      | G340E (hy4-1)    | UCR         | hypocotyl   | (Ahmad and Cashmore 1993) |
| G337 | Mm | mCRY<br>1 | G336D            | UCR         | circadian   | (Czarna et al. 2013)      |

| G337 | Mm | mCRY<br>2 | G354D                | UCR         | circadian                 | (McCarthy et al. 2009)        |
|------|----|-----------|----------------------|-------------|---------------------------|-------------------------------|
| P339 | Mm | mCRY<br>2 | P356L                | UCR         | circadian                 | (McCarthy et al. 2009)        |
| G344 | At | CRY1      | G347E (hy4-16)       | Non-<br>UCR | hypocotyl                 | (Ahmad et al. 1995)           |
| G344 | At | CRY1      | G347R (hy4-15)       | Non-<br>UCR | hypocotyl                 | (Ahmad et al. 1995)           |
| G344 | At | CRY1      | G347R (cry1-<br>375) | Non-<br>UCR | hypocotyl                 | (Shalitin et al. 2003)        |
| L348 | At | CRY2      | L348F                | UCR         | interaction               | (Taslimi et al. 2016)         |
| W349 | At | CRY2      | W349R                | Non-<br>UCR | interaction               | (Taslimi et al. 2016)         |
| T351 | Mm | mCRY<br>2 | E368K                | Non-<br>UCR | circadian                 | (McCarthy et al. 2009)        |
| N356 | Mm | mCRY<br>1 | H355E                | Non-<br>UCR | interaction               | (Czarna et al. 2013)          |
| V367 | At | CRY2      | V367M                | Non-<br>UCR | cotyledon                 | (Botto et al. 2003)           |
| V367 | At | CRY2      | V367M                | Non-<br>UCR | flower                    | (El-Din El-Assal et al. 2001) |
| G377 | At | CRY1      | G380R (cry1-<br>344) | UCR         | hypocotyl                 | (Shalitin et al. 2003)        |
| W382 | Mm | mCRY<br>1 | E382A                | Non-<br>UCR | circadian                 | (Rosensweig et al. 2018)      |
| D393 | Mm | mCRY<br>1 | N393A/C              | Non-<br>UCR | circadian                 | (Ode et al. 2017)             |
| Y399 | At | CRY2      | Y399A/F              | Non-<br>UCR | hypocotyl/degradatio<br>n | (Eckel et al. 2018)           |
| I404 | At | CRY1      | L407F                | Non-<br>UCR | flower/germination        | (Exner et al. 2010)           |
| I404 | Mm | mCRY<br>1 | S404A/D              | Non-<br>UCR | circadian                 | (Ode et al. 2017)             |
| P405 | Mm | mCRY<br>1 | F405A                | Non-<br>UCR | interaction               | (Czarna et al. 2013)          |
| G420 | Mm | mCRY<br>2 | G437D (cry1-<br>305) | Non-<br>UCR | circadian                 | (McCarthy et al. 2009)        |
| W433 | Mm | mCRY<br>1 | Y432A/D              | Non-<br>UCR | circadian                 | (Ode et al. 2017)             |
| S459 | At | CRY1      | A462V (cry1-<br>305) | Non-<br>UCR | hypocotyl                 | (Shalitin et al. 2003)        |
| S486 | Mm | mCRY<br>1 | K485D/E              | Non-<br>UCR | interaction               | (Czarna et al. 2013)          |
| E490 | At | CRY2      | E490G                | Non-<br>UCR | interaction               | (Taslimi et al. 2014)         |
| N/A  | At | CRY1      | E508K (cry1-349)     | Non-<br>UCR | hypocotyl                 | (Shalitin et al. 2003)        |
| N/A  | At | CRY1      | E515K (hy4-19)       | Non-<br>UCR | hypocotyl                 | (Ahmad et al. 1995)           |
| N/A  | At | CRY1      | E531K (hy4-20)       | Non-<br>UCR | hypocotyl                 | (Ahmad et al. 1995)           |
| N/A  | At | CRY1      | R536K (cry1-<br>321) | Non-<br>UCR | hypocotyl                 | (Shalitin et al. 2003)        |

| N/A     | At  | CRY1  | P549L (hy4-9)     | Non- | hypocotyl            | (Ahmad et al. 1995)              |  |
|---------|-----|-------|-------------------|------|----------------------|----------------------------------|--|
| 10/11   | 110 | entri | 10 I) L (IIJ I )) | UCR  | njpototji            | (riiinaa ee an 1995)             |  |
| N/A     | At  | CRY1  | G380R (cry1-      | Non- | hypocotyl            | (Shalitin et al. 2003)           |  |
| 1.0/2.1 | 211 | CRII  | 344)              | UCR  | nypocotyr            | (Bhantin et al. 2005)            |  |
| N/A     | At  | CRY2  | K541R             | Non- | hypocotyl/degradatio | (Zuo et al. 2012)                |  |
| 1N/A    | At  | CR12  | KJ41K             | UCR  | n                    | (Zuo et al. 2012)                |  |
| N/A     | At  | CRY1  | E559L (hy4-22)    | Non- | hypocotyl            | (Ahmad et al. 1995)              |  |
| 1N/A    | At  | UKII  | E339L (IIy4-22)   | UCR  | hypocotyr            | (Animau et al. 1993)             |  |
| N/A     | At  | CRY1  | R581K (hy4-23)    | Non- | hypocotyl            | (Ahmad et al. 1995)              |  |
| 1N/A    | At  | UKII  | KJölK (lly4-25)   | UCR  | hypocotyr            | (Allinau et al. 1995)            |  |
| N/A     | At  | CRY1  | 611K (by $4.24$ ) | Non- | hupocotul            | (Ahmed at al. 1005)              |  |
| N/A     | At  | CKII  | 611K (hy4-24)     | UCR  | hypocotyl            | (Ahmad et al. 1995)              |  |
| N/A     | At  | CRY1  | E623K (cry1-403)  | Non- | hunaaatul            | (Ruckle et al. 2007)             |  |
| 1N/A    | At  | CKII  | E023K (Cly1-403)  | UCR  | hypocotyl            | (Ruckie et al. 2007)             |  |
| N/A     | Mar | mCRY  | S492A/D           | Non- | circadian            | $(0.4a \text{ st s}^{-1}, 2017)$ |  |
| N/A     | Mm  | 1     | 5492A/D           | UCR  | circadian            | (Ode et al. 2017)                |  |
| NT/A    | Max | mCRY  | 0500 A /D         | Non- | ainca dian           | $(0.4a \text{ st s}^{-1}, 2017)$ |  |
| N/A     | Mm  | 1     | S588A/D           | UCR  | circadian            | (Ode et al. 2017)                |  |

# Table S5. List of previously reported mutants of cryptochromes included in Fig. 2D.

Only residues not selected based on level of sequence conservation were included here. Different mutations in the same residue were considered as 2 hits (1) if the mutations were separately examined in two independent studies (e. g. residue S72 of Arabidopsis CRY2), or (2) if a residue was mutated into two different other residues in the same phenotype-based genetic screen in a study (e. g. mutant hy4-15 and hy4-16). In contrast, different mutations of the same residue were considered as 1 hit if the residue was rationally selected to be changed into different residues in the same study (e. g. Y104 of Arabidopsis CRY2). N/A, not applied because corresponding residues are not available. At, *Arabidopsis thaliana*. Mm, *Mus Musculus*. Table S6

| pECED C CDV2E                  |                                                                                 |
|--------------------------------|---------------------------------------------------------------------------------|
| pFGFP-C-CRY2F                  | tccagctccaggatccATGAAGATGGACAAAAAGAC<br>GAGAAAGCTTGGATCC TCATTTGCAACCATTTTTTCCC |
| CRY2-W10A-36R                  | TCTAAACGCAACTATAGTCT                                                            |
| CRY2-W10A-30K<br>CRY2-W10A-22F | ATAGTTGCGTTTAGAAGAGA                                                            |
| CRY2-W10A-22F<br>CRY2-F11A-39R | TCTTCTAGCCCAAACTATAG                                                            |
| CRY2-F11A-39R<br>CRY2-F11A-25F | GTTTGGGCTAGAAGAGACCT                                                            |
| CRY2-R12A-42R                  | GTCTCTTGCAAACCAAACTA                                                            |
| CRY2-R12A-42K<br>CRY2-R12A-28F | TGGTTTGCAAGAGACCTAAGGA                                                          |
| CRY2-L15A-51R                  | AATCCTTGCGTCTCTTCTAA                                                            |
| CRY2-L15A-37F                  | AGAGACGCAAGGATTGAGGA                                                            |
| CRY2-R16A-54R                  | CTCAATTGCTAGGTCTCTTC                                                            |
| CRY2-R16A-40F                  | GACCTAGCAATTGAGGATAA                                                            |
| CRY2-D19A-63R                  | AGGATTAGCCTCAATCCTTA                                                            |
| CRY2-D19A-49F                  | ATTGAGGCTAATCCTGCATT                                                            |
| CRY2-N20A-66R                  | TGCAGGAGCATCCTCAATCC                                                            |
| CRY2-N20A-52F                  | GAGGATGCTCCTGCATTAGC                                                            |
| CRY2-P21A-69R                  | TAATGCAGCATTATCCTCAA                                                            |
| CRY2-P21A-55F                  | GATAATGCAGCATTAGCAGC                                                            |
| CRY2-L23A-75R                  | TGCTGCTGCTGCAGGATTAT                                                            |
| CRY2-L23A-61F                  | CCTGCAGCAGCAGCAGCTGC                                                            |
| CRY2-L60A-186R                 | GTGAGCAGCTGATTGTTTCA                                                            |
| CRY2-L60A-172F                 | CAATCAGCTGCTCACTTATC                                                            |
| CRY2-P106A-324R                | CGAAACAGCATCATAGAGGT                                                            |
| CRY2-P106A-310F                | TATGATGCTGTTTCGTTAGT                                                            |
| CRY2-D112A-342R                | GGTATGGGCCCGAACTAACG                                                            |
| CRY2-D112A-328F                | GTTCGGGCCCATACCGTAAA                                                            |
| CRY2-L134A-408R                | TTCATACGCTAGATCTCCAT                                                            |
| CRY2-L134A-394F                | GATCTAGCGTATGAACCGTG                                                            |
| CRY2-L205A-621R                | AGTTAACGCCGCATTGCTCG                                                            |
| CRY2-L205A-607F                | AATGCGGCGTTAACTAGAGC                                                            |
| CRY2-G213A-645R                | GCTCCATGCTGGAGACCAAG                                                            |
| CRY2-G213A-613F                | TCTCCAGCATGGAGCAATGC                                                            |
| CRY2-S248A-750R                | ATACGGAGCAAGTAGTGAAG                                                            |
| CRY2-S248A-736F                | CTACTTGCTCCGTATCTCCA                                                            |
| CRY2-F253-765R                 | TTCCCCGGCATGGAGATACG                                                            |
| CRY2-F253A-751F                | CTCCATGCCGGGGAAATAAG                                                            |
| CRY2-G254-768R                 | TATTTCCGCGAAATGGAGAT                                                            |
| CRY2-G254A-754F                | CATTTCGCGGAAATAAGCGT                                                            |
| CRY2-S257A-777R                | TCTGACGGCTATTTCCCCGA                                                            |
| CRY2-S257A-763F                | GAAATAGCCGTCAGACACGT                                                            |
| CRY2-R294A-888R                | ATACTCTGCTAAACCGATTC                                                            |
|                                |                                                                                 |

CRY2-R294A-874F CRY2-E295A-891R CRY2-E295A-877F CRY2-P305A-921R CRY2-P305A-907F **CRY2-W321A** CRY2-W331A-999R CRY2-W331A-1004F CRY2-G337A-1017R CRY2-G337A-1003F CRY2-P339A-1023R CRY2-P339A-1009F CRY2-D342A-1032R CRY2-D342A-1018F CRY2-M345A-1041R CRY2-M345A-1027F CRY2-L348A-1050R CRY2-L348A-1036F CRY2-G352A-1062R CRY2-G352A-1048F CRY2-H355A-1071R CRY2-H355A-1057F CRY2-R359A-1083R CRY2-R359A-1069F CRY2-F365A-1101R CRY2-F365A-1087F CRY2-L370A-1116R CRY2-L370A-1102F CRY2-W374A-1128R CRY2-W374A-1114F CRY2-F381A-1149R CRY2-F381A-1135F CRY2-L385A-1161R CRY2-L385A-1147F CRY2-D387A-1167R CRY2-D387A-1153F CRY2-D389A-1173R CRY2-D389A-1159F CRY2-W397A-1197R CRY2-W397A-1183F CRY2-P416A-1254R CRY2-P416A-1259F

GGTTTAGCAGAGTATTCTCGGT AGAATACGCTCTTAAACCGA TTAAGAGCGTATTCTCGGTA AGTAAACGCGAAGTTGAAAC AACTTCGCGTTTACTCACGA

TTGTCTCGCGGCCTTGAACT AAGGCCGCGAGACAAGGCAG CGGATAAGCGGTCCTGCCTT AGGACCGCTTATCCGTTGGT CACCAACGCATAACCGGTCC GGTTATGCGTTGGTGGATGC TCCGCCAGCCACCAACGGAT TTGGTGGCTGCCGGAATGAGA CTCTCTCGCTCCGGCATCCA GCCGGAGCGAGAGAGCTTTG AGCCCAAGCCTCTCTCATTC AGAGAGGCTTGGGCTACCGG CATCCATGCGGTAGCCCAAA GCTACCGCATGGATGCATAA TCTGTTAGCCATCCATCCGGT TGGATGGCTAACAGAATAAGA AATCACTGCTATTCTGTTAT AGAATACGAGTGATTGTTTC CACAGCAGCGCTTGAAACAA TCAAGCGCTGCTGTGAAGTT AAGGAGAGCAAACTTCACAG AAGTTTGCTCTCCTTCCATG CCATTTGGCTGGAAGGAGAA CTTCCAGCCAAATGGGGAAT ATCCCAGGCATACTTCATTC AAGTATGCCTGGGATACACT ATCCAAAGCTGTATCCCAGA GATACAGCTTTGGATGCTGA ATCAGCAGCCAAAAGTGTAT CTTTTGGCTGCTGATTTGGA TTCCAAAGCAGCATCCAAAA GATGCTGCTTTGGAATGTGA ATACTGGGCGCCAAGGATGTC CTTGGCGCCCAGTATATCTC TAACGCGGCATTGTCCAAGC GACAATGCCGCGTTACAAGG

| CRY2-D424A-1278R | TTCTGGGGCATATTTGGCGC |
|------------------|----------------------|
| CRY2-D424A-1264F | AAATATGCCCCAGAAGGTGA |
| CRY2-P425A-1281R | ACCTTCTGCGTCATATTTGG |
| CRY2-P425A-1267F | TATGACGCAGAAGGTGAGTA |
| CRY2-G427A-1287R | GTACTCAGCTTCTGGGTCAT |
| CRY2-G427A-1273F | CCAGAAGCTGAGTACATAAG |
| CRY2-P435A-1311R | AAGCTCGGCAAGCCATTGCC |
| CRY2-P435A-1297F | TGGCTTGCCGAGCTTGCGAG |
| CRY2-L437A-1317R | TCTCGCAGCCTCGGGAAGCC |
| CRY2-L437A-1303F | CCCGAGGCTGCGAGATTGCC |
| CRY2-P441A-1315R | TTCAGTTGCCAATCTCGCAA |
| CRY2-P441A-1315F | AGATTGGCAACTGAATGGAT |
| CRY2-P448A-1350R | GTCCCATGCATGATGGATCC |
| CRY2-P448A-1336F | CATCATGCATGGGACGCTCC |
| CRY2-W449A-1353R | AGCGTCCGCTGGATGATGGA |
| CRY2-W449A-1339F | CATCCAGCGGACGCTCCTTT |
| CRY2-G464A-1398R | GTTTGTTGCGAGTTCCACAC |
| CRY2-G464A-1384F | GAACTCGCAACAAACTATGC |
| CRY2-Y467A-1407R | TTTCGCAGCGTTTGTTCCGA |
| CRY2-Y467A-1393F | ACAAACGCTGCGAAACCCAT |

Table S6. Primers used for site-directed mutagenesis