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Abstract: Information processing can leave distinct footprints on the statistics of neural spiking.
For example, efficient coding minimizes the statistical dependencies on the spiking
history, while temporal integration of information may require the maintenance of
information over different timescales. To investigate these footprints, we developed a
novel approach to quantify history dependence within the spiking of a single neuron,
using the mutual information between the entire past and current spiking. This
measure captures how much past information is necessary to predict current spiking.
In contrast, classical pairwise measures of temporal dependence like the
autocorrelation capture how long–--potentially redundant-–-past information can still be
read out. Strikingly, we find for model neurons that our method disentangles the
strength  and  timescale  of history dependence, whereas the two are mixed in
classical approaches. When applying the method to experimental data, which are
necessarily of limited size, a reliable estimation of mutual information is only possible
for a coarse temporal binning of past spiking, a so called past embedding. To still
account for the vastly different spiking statistics and potentially long history
dependence of living neurons, we developed an embedding-optimization approach that
does not only vary the number and size, but also an exponential stretching of past
bins. For extra-cellular spike recordings, we found that the strength and timescale of
history dependence indeed can vary independently across experimental preparations.
While hippocampus indicated strong and long history dependence, in visual cortex it
was weak and short, while in vitro the history dependence was strong but short. This
work enables an information theoretic characterization of history dependence in
recorded spike trains, which captures a footprint of information processing that is
beyond pairwise measures of temporal dependence. To facilitate the application of the
method, we provide practical guidelines and a toolbox.
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Resubmission of our manuscript to PLOS Computational Biology

Dear editors, dear reviewers,

we thank you for your editorial consideration and the very helpful comments. Please find
enclosed a point-to-point response to the reviewer’s comments, and a manuscript file with
changes highlighted in colour.

In brief, the main improvements in the revised version of the manuscript comprise (1) a
clarification of our approach with respect to previous approaches that quantify temporal
dependence in neural spike trains, (2) we compare our approach to classical measures, and
show more simulated example neurons to illustrate the properties of the new approach, and
(3) we revised the definition of the timescale.

In more detail, first, we carve out more clearly that our measure of history dependence as-
sesses the window over which unique predictive information is accumulated; in contrast to
e.g. autocorrelation, which assesses how long—potentially redundant—past information can
still be read out. Moreover, the conventional estimate of timescale, the autocorrelation time,
mixes the effects of strength and timescale of history dependence. In contrast, these are
disentangled with our method.

Second, as proposed, we compare the novel measure on the example data sets to other well-
established statistics, such as the median interspike interval, the coefficient of variation and
the autocorrelation time. Moreover, we demonstrate its properties at a range of simulated
model neurons, including the Izhikevich neuron. Third, we replaced the temporal depth
of history dependence by a measure of a generalized timescale, which is equivalent to the
autocorrelation time, but can also be applied to our measure of history dependence. With its
similarity to the autocorrelation time, it facilitates the comparison to past work. In addition,
this measure of timescale is more robust to the recording length, and thus further improves
quantification.

With grounding our work in a more familiar terrain, and by introducing the robust measure
of timescale, we could improve the clarity of our manuscript and method.

We thank you very much for your editorial consideration and are looking forward to your
reply,

Lucas Rudelt & Viola Priesemann

Response to Reviewers
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Reviewer 1 This paper proposes new metrics for measuring history dependence in neural
spike trains, and uses a particular coarse-graining in combinationwith existing entropy/mutual
information estimationmethods to estimate this metric for a range of neural spike trains. The
authors then try to draw conclusions about their estimated metrics for various real neural
spike trains.

The methods aspect of this seems relatively sound. I do have a suggestion for the authors,
though, in terms of presentation: I’d put the vast majority of the methods in the Methods
rather than the Results section. Basically, the discussion of the curse of dimensionality and
the Data Processing Inequality in various forms (large number of bins is curse of dimen-
sionality, can lead to overestimation and small number of bins yields lower MI due to Data
Processing Inequality) seem to me to be well-worn statistical ground and not worthy of so
much of the Results section.

Thank you for your summary and your helpful comments. Indeed, we agree
with you and had similar discussions during the writing process. However, since
the article is aimed at a broad readership that might not be familiar with the
issue of over- or underestimation, we found it important to illustrate it here. To
incorporate your feedback in the revised manuscript, we included a statement at
the beginning of the benchmark results section that encourage readers familiar
with the concepts to skip this part (lines 341–344 in the new manuscript).

I’d also emphasizemore that yourmain contribution to estimation of these information quan-
tities is a particularly clever coarse-graining that assumes the recency hypothesis.

Thank you for this suggestion. We clarified this contribution for the estimation
by mentioning it explicitly in the abstract. The relevant passage reads
“To still account for the vastly different spiking statistics and potentially long
history dependence of living neurons, we developed an embedding-optimization
approach that does not only vary the number and size, but also an exponential
stretching of past bins.”

However, we would also like to point out that while our approach is based on
established estimators, theway the approach uses them for regularization during
the embedding optimization is novel and key to the estimation. As you point out,
the coarse-graining with the recency hypothesis is an additional important step,
but the approach could be used to optimize any other embedding model.

But that’s not my main worry. I’m mainly worried that the metric isn’t necessarily the right
one for the job. On the chopping block is not just yourR(T ) (which I would not call a redun-
dancy, but rather just a version of the predictive information divided by H) and TD (which
I have a few comments on later), but also the autocorrelation function (which you discard,
for reasons that make sense) and the predictive information (which you essentially have a
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version of in your numerator, but see Nemenman et al) and all the information measures in
”Anatomy of a Bit” by Ryan James et al.

Thank you very much for pointing this out. About the predictive information,
we regularly refer to it using both terms, predictable or redundant information.
It depends on the decoder perspective, whether the information is used or not. In
addition, we refer now explicitly to these measures and the additional literature
you quote. The relevant passage in the methods summary now reads
“We quantify history dependence based on the mutual information

I(spiking; past(T )) = H(spiking)−H(spiking|past(T )) (1)

between current spiking in a time bin [t, t+∆t) and its own past in a past range
[t − T, t) (Fig 1B). Here, we assume stationarity and ergodicity, such that the
measure is an average over all times t. This mutual information is also called ac-
tive information storage [5], and is related to the predictive information [18,19].
It quantifies how much of the current spiking information H(spiking) can be
predicted from past spiking.”

However, we want to stress that there are two important differences between
R(T ) and the predictive information: First, R(T ) quantifies how well spiking
in the next time bin can be predicted, similar to the active information storage
[5], whereas predictive information also increases the range of predicted spiking
with T . Therefore, R(T ) can have very distinct behavior as one increases T
(for example, the asymptotic rate is zero, see next comment). We chose active
information storage over predictive information, because we want to quantify
how redundant or predictable the current spiking is, based on its immediate past.
From a practical point of view, this quantify is also easier to estimate, because
only the past range T has to be embedded.
Second, we normalize the mutual information by the spiking entropy. This is a
crucial step to obtain ameasure of statistical dependence, instead of information,
similar to the correlation coefficient that normalizes covariance by the variance
of the process. See below for more details where we discuss this in light of our
novel results.
Finally, we would like to stress that the main goal here was not to introduce a
new information theoretic measure, but to use existing tools from information
theory to address a problem that was previously only tackled using measures
like the autocorrelation. However, in order to do so, we find it necessary to
normalize by the entropy.

Based on my experience playing with these metrics, I’d say the following: – it is likely that
TD will growwith the size of your data set, and so what’s really relevant is the rate of growth;
that may be a better way to distinguish between different time series;
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Your are right, the previous measure of temporal depth TD was highly sensitive
to the size of the data set, which we showed in the old S2 and S3 Figs. Therefore,
we revised this measure completely. We now define the information timescale
τR, which is more robust with respect to data size (see new S2 and S3 Figs),
and its definition has a nice analogy to the autocorrelation time. However, we
feel that you are referring to an asymptotic rate of growth R(T )/T as one lets
T → ∞, similar to the predictive information in [19]. In the case of R(T ),
this rate will always be zero, because R(T ) (with or without normalization) is
bounded by one (or the spiking entropy; see previous comment). Thus, no such
rate of growth can be defined for this measure.

– it is likely that R(T) has some weird behavior with the time bin size for the present neural
patterning that has not yet been discussed and should be;

We added a supplementary figure (S16 Fig) that shows the dependence of R(T )
on the time bin size for the experimental data. While the information timescale
τR is quite insensitive to the choice of∆t, the total history dependence decreases
for small ∆t. We added a passage in the methods summary where we discuss
and explain our choice of ∆t = 5ms, which reads
“Finally, all the above measures can depend on the size of the time bin∆t, which
discretizes the current spiking activity in time. Too small a time bin holds the
risk that noise in the spike emission reduces the overall predictability or his-
tory dependence, whereas an overly large time bin holds the risk of destroying
coding relevant time information in the neuron’s spike train. Thus, we chose
the smallest time bin ∆t = 5ms that does not yet show a decrease in history
dependence (S16 Fig).”

– I still have no idea how or if either R(T ) or TD (data set size) capture anything related to
history dependence.

To clarify this, we would like to point you to the new first section in Results,
as well as Figs 1, 3, 4, and S14 Fig that clarify the difference between R(T ) or
τR and the autocorrelation time, time-lagged mutual information and the total
mutual information (Rtot without normalization). For more details see below.

Before I recommend acceptance, I would ask for simulations of an Izhikevich neuron that
can adopt different neuron types. The strawmen, in my opinion, should be first the autocor-
relation function and then the predictive information. I believe that information measures
of time series can reveal the type of neuron or aspects of how it behaves, but I don’t see
why I should switch from using the predictive information to using R(T ) or its relative TD .
What am I getting from R(T ) that I’m not getting from predictive information? What is the
intuition behind introducing this new measure? What do the authors even mean by ”history
dependence”? If I am to normalize something like predictive information by single symbol
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entropy, as the authors do here, what neural spike train do I now correctly classify as hav-
ing long history dependence that I before believed had little history dependence? As I am
missing this intuition from the paper, I cannot recommend acceptance– yet.

Thank you very much for this comment. First of all, we added the analysis of the
Izhikevich neuron, together with the GLIF and a stochastic branching process,
as comparison (Fig 4). The history dependence, and the correlation or lagged
mutual information clearly show distinct behavior. In addition, we analyzed a
binary autoregressive process, where we could control the firing rate via an un-
correlated, external input, as well as the strength and temporal depth of past
dependencies in the process (Fig 3). We find that the total history Rtot correctly
captures an increase in the strength m of past dependencies, whereas the infor-
mation timescale τR is only sensitive to the temporal depth of the process. In
contrast, the two aspects are mixed in the autocorrelation time.

The example also addresses your question why the normalized mutual infor-
mation or redundancy R(T ) is the right measure for our purpose. The mutual
information is proportional to the spiking entropy, which depends crucially on
the time bin, as well as the neuron’s firing rate. As a consequence, the total
mutual information increases strongly with increasing strength of uncorrelated
inputs, whereas Rtot stays almost unaffected, or rather decreases (Fig 3B). Thus,
the mutual information cannot clearly distinguish between an increase in input,
or history dependence. In addition, we found that the total mutual information
is correlated with the firing rates of the neurons, whereas the normalization al-
lows to compare history dependence in neurons with vastly different firing rates
(S13 Fig).

Smaller things:
– I would not say that this measure of history dependence has anything to do with the ef-
ficient coding hypothesis, which is more about how stimulus is transformed by a neuron so
that the neuron has maximal entropy, or sometimes (depending on who’s using the term) is
about how mutual information between stimulus and neuron is close to the entropy of the
neural activity;

Thank you for this comment. As you point out, there are different formulations
of the efficient coding hypothesis. We refer to the first formulation, where a
stimulus is transformed by neurons so that they have maximal entropy – here
by reducing temporal redundancy within a single spike train. We refer to this
line of efficient coding in the introduction when we write “In classical, noise-less
efficient coding, history dependence should be low to minimize redundancy and
optimize efficiency of neural information transmission [1-3].”

Temporal redundancy is quantified byRtot, such that one can test for signatures
of this kind of efficient coding using this measure of history dependence. All
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of this, however, only makes sense if little noise is present, such that the stim-
ulus information is close to the capacity H(spiking) of the neuron. In contrast,
when significant noise is present, low history dependence can also be a signa-
ture of strong, uncorrelated noise, and cannot be attributed to the efficiency of
the encoding. In such a case, additional analyses that assess the noisiness in the
stimulus encoding are required. As first hint, we find in an ongoing follow-up
project on a data set where neurons are classified as having a significant or no
significant receptive field (which could be associated to noisiness of their encod-
ing), that neurons with no significant receptive field actually have higher Rtot,
consistently across different visual areas (not published yet).

– I would add some words on when your embedding method is likely to fail, which is pre-
cisely when initial conditions really really matter and the recency hypothesis is inaccurate–
e.g. network of Izhikevich neurons– and which (notably) some might call long-term history
dependence.

We totally agree and mention possible limitations in the discussion:
“Finally, our approach uses an embedding model that ranges from uniform em-
bedding to an embeddingwith exponentially stretching past bins—assuming that
past information farther into the past requires less temporal resolution. This
embedding model might be inappropriate if for example spiking depends on the
exact timing of distant past spikes, with gaps in time where past spikes are irrel-
evant. In such a case, embedding optimization could be used to optimize more
complex embedding models that can also account for this kind of spiking statis-
tics.”

However, we would like to emphasize that the degree of coarse-graining is op-
timized in our approach, so if the recency hypothesis is inaccurate, a uniform
binning will be chosen. If more detailed knowledge about past dependencies
is available, more specific embedding models could be optimized using our ap-
proach.

If the authors can convince me that their metric R(T ) and its relative TD (which should
really be some aspect of how TD changes with recording length) contain useful information
that stumps the predictive information, then I will happily recommend acceptance.

We hope that with the new figures and clarifications in the text we have con-
vinced you of the usefulness of the analysis usingRtot and τR, and the differences
to predictive information. In addition, for cases where the predictive informa-
tion is of interest, the embedding optimization approach presented in this paper
could facilitate its estimation, as is the case for R(T ).
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Reviewer 2 This paper is a potentially important contribution to neuroscientific toolbox.
The authors propose an extension of existing information theoretic approaches that allows
for an unbiased estimation of a neuron’s history dependence on temporal depth and history
dependence. The paper presents a thorough approach to controlling bias and overfitting.
Further, the method is applied to several open datasets and an intriguing finding is described.
Finally, the code to apply the methods described in the paper is made available with thorough
documentation.

Thank you for the great summary, your helpful requests and comments and your
support for improving the usability of the tool. To summarize our changes, we
now extended to link to existing approaches, which will facilitate to put our re-
sults into context. We expanded and improved our work, first by introducing a
measure of timescale that is technically much closer related to the autocorrela-
tion time, second by extending the analysis to several example model neurons,
and finally by including the additional analyses on the experimental data sets
that you proposed. We think that now the advantages, the distinction from pre-
vious approaches, and also the limitations are now much clearer. In the follow-
ing, we address each point you raised.

I am enthusiastic but have one minor concern and a few related requests for additional anal-
yses described below. In addition, I made a pull request on Github that may help improve
the usability of this tool; hopefully, the authors will build on it to include a few tests of the
code. This is not a requirement for this review, but it would be great to see code coverage
increase to > 50%.

Thank you very much for your contribution to the tool! That is really great!
Building on your pull request, we have increased testing coverage to 86%.

The concern is the following. History dependence R depends on the entropy of current
spiking conditional on the past, as well as on the entropy of current spiking. The average
firing rate of a neuron changes its entropy; presumably, this is the reason that entropy of
current spiking is in the denominator. In theory, the product does not depend on the neuron’s
average firing rate; however, it would be nice to get a demonstration that Rtot or TD do
not vary as a function of the GLIF neuron’s average firing rate, median ISI, or CV. More
importantly, I’d like to see a scatterplot of these quantities vs Rtot and TD in the datasets
from Fig. 5.

We conducted the proposed analyses on the data sets and included them in S13
and S14 Figs. We have also added a paragraph in the results section that analyzes
the relation between Rtot or τR and the median ISI, CV or autocorrelation time.
The paragraph reads
“To better understand how other well-established statistical measures relate to
the total history dependence Rtot and the information timescale τR, we show
Rtot and τR versus the median interspike inteval (ISI), the coefficient of variation
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CV = σISI/µISI of the ISI distribution, and the autocorrelation time τC in S14 Fig.
Estimates of the total history dependence Rtot tend to decrease with the median
ISI, and to increase with the coefficient of variation CV . This result is expected
for a measure of history dependence, because a shorter median ISI indicates
that spikes tend to occur together, and a higher CV indicates a deviation from
independent Poisson spiking. In contrast, the information timescale τR tends
to increase with the autocorrelation time, as expected, with no clear relation
to the median ISI or the coefficient of variation CV . However, the correlation
between the measures depends on the recorded system. For example in retina
(n = 111), Rtot is significantly anti-correlated with the median ISI (Pearson
correlation coefficient: r = −0.69, p < 10−5) and strongly correlated with
the coefficient of variation CV (r = 0.90, p < 10−5), and τR is significantly
correlated with the autocorrelation time τC (r = 0.75, p < 10−5). In contrast,
for mouse primary visual cortex (n = 142), we found no significant correlations
between any of these measures. Thus, the relation between Rtot or τR and the
established measures is not systematic, and therefore one cannot replace the
history dependence by any of them.”

Regarding the firing rate, we did not find any statistical influence onRtot and τR
(which replaces TD) on the data sets (S13 Fig, bottom). In contrast, if one does
not normalize by the entropy, one observes an increase in total mutual informa-
tion with the firing rate (S13 Fig, top) - as expected. We also demonstrate the
importance of the normalization in the new Fig 3B, whereRtot does not increase
as one increases the strength of uncorrelated input, whereas the total mutual
information does increase. The relevant passage in the results section reads
“The input strength h increases the firing rate and thus the spiking entropy
H(spiking). This leads to a strong increase in the total mutual information
Itot ≡ lim

T→∞
I(spiking; past(T )), whereas the total history dependence Rtot is

normalized by the entropy and does slightly decrease (Fig 3B). This slight de-
crease is expected from a sensible measure of history dependence, because the
input is random and has no temporal dependence. In addition, input activations
may fall together with internal activations, which slightly reduces the total his-
tory dependence.”

Note however, that normalizing by the entropy does not mean that Rtot will
not increase for higher firing rates. As an example, consider the GLIF model
neuron, where higher firing rates will result in more past spikes that trigger the
spike adaptation. In this case, the total history dependence increases with the
rate. Yet, for the GLIF model, it is hard to tune parameters such that one can vary
the firing rate, median ISI or CV in a controlled way; hence we did not include
such an analysis in the paper.

If authors find no correlation there, it may be instructive to look for a different connection to
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traditional statistics as described in the first section of Discussion. Surely, we won’t find any
perfect replacements for history dependence, but if TD is loosely related to some function of
autocorrelation, it will help ground researchers in more familiar terrain.

This is a great point, and a relation to previous measures of temporal dependence
was clearly missing. We added a new introduction Figure (Fig 1) that clarifies
the difference between R(T ) and measures of temporal dependence such as the
autcorrelation C(T ) and the lagged mutual information L(T ). Moreover, we
added two figures (Figs 3 and 4) that clearly show, for three different models,
howR(T ) capture aspects of history dependence that are not captured by C(T )
or L(T ). Finally, we added plots that compare the autocorrelation time τC to
Rtot and τR in S14 Fig, and added a scatter plot of Rtot versus τC in the Results
section in Fig 7B (previously Fig 5). The relevant passage from the Results sec-
tion reads
“Notably, total history dependence and the information timescale varied inde-
pendently among recorded systems, and studying them in isolation would miss
differences between recorded systems, whereas considering them jointly allows
to distinguish the different systems. Moreover, no clear differentiation between
cortical culture, retina and primary visual cortex is possible using the autocorre-
lation time τC (Fig 7B), with medians τC ≈ 68ms (culture), τC ≈ 60ms (retina)
and τC ≈ 80ms (primary visual cortex), respectively.”

We also discuss these results in the first section of Discussion, where the rele-
vant paragraph reads
“A key difference between history dependence R(T ) and the autocorrelation
or lagged mutual information is that R(T ) quantifies statistical dependencies
between current spiking and the entire past spiking in a past range T (Fig 1B).
This has the following advantages as a measure of statistical dependence, and as
a footprint of information processing in single neuron spiking. First, R(T ) al-
lows to compute the total history dependence, which, from a coding perspective,
represents the redundancy of neural spiking with all past spikes; or how much
of the past information is also represented when emitting a spike. Second, be-
cause past spikes are considered jointly, R(T ) captures synergistic effects and
dismisses redundant past information (Fig 4). Finally, we found that this en-
ables R(T ) to disentangle the strength and timescale of history dependence for
the binary autoregressive process. (Fig 3). In contrast, autocorrelation C(T ) or
lagged mutual information L(T ) quantify the statistical dependence of neural
spiking on a single past bin with delay T , without considering any of the other
bins (Fig 1A). Thereby, they miss synergistic effects; and they quantify redun-
dant past dependencies that vanish once spiking activity in more recent past is
taken into account (Fig 4). As a consequence, the timescales of these measures
reflect both, the strength and the temporal depth of history dependence in the
binary autoregressive process (Fig 3).”
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The following lists a few minor suggestions.

In most citations, the name of the journal is missing. Is this by design?

Thank you very much for your attention, we fixed this issue. The problem was
an incompatibility between the biblatex translator and the PLOS template.

In line 78, what does ’discrete past embedding of spiking activity’ mean? Do you refer to
a ’reduced representation’ of the past, or the discrete nature of spiking data? I am trying
to discern whether past embedding with binary data has been described in practical terms
before.

The ’discrete’ refers to the ’reduced representation’ of the past, because, from
an information theoretic view, spikes hold an infinite amount of information
due to the continuous nature of their time information. We have changed the
term to ’binary past embedding’, because this is a more precise description of the
reduced representation that we use in this paper (even if multiple spikes occur
in the same time bin, we represent them by 0 or 1).

In line 152, you may wish to say something like ’while minimizing the risk of overestima-
tion’.

Thank you for your suggestion, we adopted this formulation in the currentmanuscript.

Line 163 mentions errorbars, but none are visible in Fig. 2D. I think a different place in the
paper mentions 2xSTD errorbars being too small to be visible, but does that come later?

Thank you for pointing this out. The statement about errorbars not being visible
was made in the corresponding results section. To avoid confusion, we included
this statement also in the figure caption.

I am confused regarding the status of GLM in this paper. Line 337 justly points out its sys-
tematic underestimation of history dependence, while line 194 claims that the authors used
GLM as ground truth for R(T, d, κ). Please clarify.

The difference in the two cases is that for the data sets, the model assumptions of
the GLM are not met, whereas for the GLIF neuron, they are accurate. Therefore,
in case of the GLIF neuron, we use the GLM as an analytical tool to benchmark
the model-free estimation approach. On the data sets, however, the underlying
model is not known. There, we use the model-free estimates to show that the
GLM systematically underestimates history dependence, because the model as-
sumptions do not fully agree with the data. To avoid confusion, we removed the
sentence on how the ground truth for the GLIF was computed in the results sec-
tion, and only refer to Materials and methods. There, we clarify that the GLM
only serves as ground truth to this particular model, and not in general. The
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corresponding passage reads

“We can thus fit a GLM to the simulated data for the given past embedding T, d, κ
to obtain a good approximation of the corresponding true history dependence
R(T, d, κ). Note that this is a specific property if this model and does not hold
in general. For example in experiments, we found that the GLM accounted for
less history dependence than model-free estimates (Fig 6).”

In Fig 4, why are bootstrapping errorbars not centered around the median (bars’ height)?

The bootstrapping errorbars or 95% confidence intervals (here bootstrapped
over different sorted units) are not centered around the median, because they
do not assume a normal distribution. This is different from errorbars on esti-
mates of R(T ), which result from “blocks of blocks” bootstrapping of the time
series and assume a normal distribution.

When referring to results from extracellular recordings, it may be best to call the units identi-
fied through spikesorting ”single units” rather than ”neurons” to remind us that spikesorting
is somewhat subjective.

This is a great suggestion. As some units are multi units, and others are sin-
gle units, we now call them all ”sorted units” or simply ”units” throughout the
manuscript.

In Fig 5, would it be possible to include a scatterplot of history dependence estimated from
GLM?

TheGLM is very costly to optimize, such that it is infeasible to estimateR(T ) as a
function of T for all the sorted units, which is required to estimate the timescale
τR. Therefore, we did not include such a scatterplot in Fig 7 (old Fig 5).

Please attempt to interpret the results of Fig 6 further. Why is it that single unit 3 has such
a distinctive shape? What might this mean for the corresponding neuron’s information pro-
cessing? What follow-up would you suggest for researchers using your tool when they see
shapes like these? Would inspecting autocorrelograms help? Include any diagnostic infor-
mation you find helpful.

Thank you for digging deeper here. We extended the interpretation in the results
section and followed your suggestion to add the autocorrelograms to Fig 8 (old
Fig 6). The relevant passage in the results reads
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“In particular, sorted units display different signatures of history dependence
R(T ) as a function of the past range T . For some units, history dependence
builds up on short past ranges T (e.g. Fig 8A), for some it only shows for higher
T (e.g. Fig 8B), and for some it already saturates for very short T (e.g. Fig 8C).
A similar behavior is captured by the autocorrelation C(T ) (Fig 8, second row).
The rapid saturation in Fig 8C indicates history dependence due to bursty firing,
which can also be seen by strong positive correlation with past spikes for short
delays T (Fig 8C, bottom). To exclude the effects of different firing modes or
refractoriness on the information timescale, we only considered past ranges T >
T0 = 10ms when estimating τR, or delays T > T0 = 10ms when fitting an
exponential decay to C(T ) to estimate τC . The reason is that differences in the
integration of past information are expected to show for larger T . This agrees
with the observation that timescales among recorded systems were much more
similar if one instead sets T0 = 0ms, whereas they showed clear differences for
T0 = 10ms or T0 = 20ms (S15 Fig).”

Related: What is the interpretation of a peak followed by decay in R(T ) as in Fig S7, row 2,
middle two?

This is a great question. A peak as in Fig S7, row 2 is an artefact of the estimation.
It arises because the embedding-optimized estimator first captures relevant past
dependencies as T increases. For larger T , however, these dependencies cannot
be resolved due to the regularization and thus limited number of past bins. In
theory,R(T ) is monotonously increasingwithT , becausemore past information
can only increase the mutual information. We explicitly use this knowledge
when estimatingRtot and τR (see lines 846–866 in Materials and methods), such
that this behavior has no negative impact on our key observables.

There is a typo in line 1298 and in caption to S4.

Thank you, both has been updated.

The sentence that starts on line 1326 is too long. Also, it may be good to italicize ’blocks of
blocks’ here.

Thank you, we adapted both.

Reviewer 3

Embedding optimization reveals long-lasting history dependence in neural spiking Activ-
ity
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• Summary of the paper and novelties This work investigates how to reliably quantify the
dependence of a single neuron’s spiking on its own preceding activity, called history de-
pendence. Previous studies used limited representations of past activity (the so-called past
embedding) to estimate information theory-based measures. Here it is argued that a careful
embedding of past activity is crucial. A novel embedding-optimization method is proposed
here that optimizes temporal binning of past spiking to capture most of the magnitude and
the temporal depth of history dependence. The new method is validated against simulated
data of a LIF neuron model and empirical data from different databases that account for a
large variety of spiking statistics.
• Strengths The main strengths of the work are:
- It is demonstrated that previous ad hoc embedding strategies are likely to capture much
less history dependence, or lead to estimates that severely overestimate the true history de-
pendence. The new method maximizes the estimated history dependence while avoiding
overestimation.
- The new method is flexible enough to account for the variety of spiking statistics encoun-
tered in experiments.

Thank you for the great summary and your positive and helpful comments. Be-
low, you clearly pointed out the problems with estimating the temporal depth.
Thereby, you stimulated us to come up with a different measures of a timescale.
This new measure, which we call information timescale, is not only more robust
with respect to the data size, but also allows a much better comparison to the
timescale of autocorrelation. We also agree with you that the limitations of the
approach should be discussed explicitly in the discussion, and have added addi-
tional paragraphs that address the limitations that you pointed out. Below, we
address your points one by one.

• Weaknesses and suggestions A weak point of the work is that for spike trains with long
temporal depths (e.g., larger than 3 seconds, as in Fig. 3 C), the temporal depth estimated by
the optimization method is much smaller (630 ms). This is a critical point to discuss in terms
of possible limitations to estimate the timescale of neural processing at different stages of
the brain.

This is a very important point that we now solved by improving our measure of
the timescale of history dependence, the information timescale τR. This quan-
tity is more robust with respect to the data size (see S2 and S3 Figs), while still
resolving the differences in timescale between the data sets (Fig 7). Nonetheless,
it remains challenging to estimate the correct timescale τR if the true timescale
is so large as in the GLIF model neuron, where adaptation effects last up to 22s
into the past (although the underestimation is much less than for the tempo-
ral depth). We added a paragraph in the discussion about this limitation. The
relevant passage reads



Page 14

“Moreover, theremight be caseswhere amodel-free estimation of the true timescale
might be infeasible because of the complexity of past dependencies (S2 Fig, neu-
ron with a 22 seconds past kernel). In this case, only≈ 80% of the true timescale
could be estimated on a 90 minute recording.”

However, to demonstrate that the method can in principle estimate the true
timescale, we replaced the results on the GLIF model with 22s kernel with re-
sults on a truncated version of the adaptation kernel with 1s kernel (Fig 5), and
moved the previous results to Supplementary information (S1 and S2 Figs).

Another drawback of the new optimization methods is that they perform worse on short
recordings: the estimated history dependence is overestimatedwhen applying BBC to record-
ings of 3 minutes (S1 Fig) and the estimated temporal depth is underestimated to half of the
real temporal depth (S2 Fig). This aspect might be discussed in the paper, analyzing possible
limitations on application of optimization techniques to experimental data of short length.

We totally agree with you. Originally, these limitations were only discussed in
the practical guidelines at the end of Methods and Materials section. However,
as these limitations are of key relevance to the embedding optimization and anal-
ysis of history dependence, we added two paragraphs on these limitations in the
discussion. The relevant passages read

“In contrast, the generalized timescale can be directly applied to estimates of
the history dependenceR(T ) to yield the information timescale τR without any
further assumptions or fitting models. However, we found that estimates of τR
can depend strongly on the estimation method and embedding dimension (S12
Fig) and the size of the data set (S2 and S3 Figs). The dependence on data size
is not so strong for the practical approach of optimizing up to dmax = 5 past
bins, but still we recommend to use data sets of similar length when aiming for
comparability across experiments.”

and

“Another downside of quantifying the history dependence R(T ) is that its esti-
mation requires more data than fitting the autocorrelation time τC . Tomake best
use of the limited data, we here devised the embedding optimization approach
that allows to find the most efficient representation of past spiking for the esti-
mation of history dependence. Even so, we found empirically that a minimum
of 10 minutes of recorded spiking activity are advisable to achieve a meaningful
quantification of history dependence and its timescale (S2 and S3 Figs). In addi-
tion, for shorter recordings, the analysis can lead to mild overestimation due to
over-optimizing embedding parameters on noisy estimates (S1 Fig). This over-
estimation can, however, be avoided by cross-validation, which we find to be
particularly relevant for the Bayesian bias criterion (BBC) estimator.”
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Regarding the underestimation of the temporal depth, we would like to point
out that the information timescale that we introduce in the revised version is
more robust to underestimation (new S2 Fig).

Some minor suggestions:
- Line 60: Could you comment on why the time bin of current spiking is chosen to be 5 ms?

This is an important question, andwe have added a part to theMethods summary
that explains how we chose the time bin, which we also support by a compari-
son of the experimental results for different choices of time bins (S16 Fig). The
relevant passage reads
“Finally, all the above measures can depend on the size of the time bin∆t, which
discretizes the current spiking activity in time. Too small a time bin holds the
risk that noise in the spike emission reduces the overall predictability or his-
tory dependence, whereas an overly large time bin holds the risk of destroying
coding relevant time information in the neuron’s spike train. Thus, we chose
the smallest time bin ∆t = 5ms that does not yet show a decrease in history
dependence (S16 Fig).”

- Fig. 1 it is included in the Methods summary but is not well described in the text. Either
move it to Methods, or further explain it here. In the figure caption, please provide more
details of the figure, e.g., explain what is ML, NSB and BBC.

Thank you. We moved the figure to the Methods (now Figure 10), and expanded
the figure caption.

- Fig S1 and paragraph between lines 272 and 286: how is each half of the data selected for
cross-validation? Are multiple rounds of cross-validation performed using different parti-
tions (in this case different halves) of the data?

We chose the most simple solution and literally take the first half of the data for
the optimization of embedding parameters, and the second half for the optimiza-
tion. Only one round of cross-validation is performed. What matters is that the
set of embedding parameters is optimized on a different data set than the data
set that is used to estimateR(T ). We edited the results paragraph and the figure
caption to make this point more clear.

- Fig 4C: why BBC is computed with d = 20, and shuffling with d = 5?

We agree that this selection of estimates might be confusing, and have added
Shuffling with dmax = 20 to Fig 6C (old Fig 4C). Now, all estimates from Fig 6B,D
that allow exponential embedding are shown.

- Fig S4 is not referenced in the text.

Thank you for pointing this out, S4 and S5 Figs are now referenced in the results
section on the benchmark model in lines 350 and 424.
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- Typo: “errorbars” instead of “error bars” (for example, in line 262).

Thank you, this was fixed.

- The publication year is missing in references.

Thank you for your attention, the issue is fixed in the current version of the
manuscript.

Methods are written in an appropriate and informative way

The paper is well written and concepts are provided in a correct, clear and suitable way.
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Abstract

Information processing can leave distinct footprints on the statistics of neural spiking.
For example, efficient coding minimizes the statistical dependencies on the spiking
history, while temporal integration of information may require the maintenance of
information over different timescales. To investigate these footprints, we developed a
novel approach to quantify history dependence within the spiking of a single neuron,
using the mutual information between the entire past and current spiking. This measure
captures how much past information is necessary to predict current spiking. In contrast,
classical time-lagged measures of temporal dependence like the autocorrelation capture
how long—potentially redundant—past information can still be read out. Strikingly, we
find for model neurons that our method disentangles the strength and timescale of
history dependence, whereas the two are mixed in classical approaches. When applying
the method to experimental data, which are necessarily of limited size, a reliable
estimation of mutual information is only possible for a coarse temporal binning of past
spiking, a so called past embedding. To still account for the vastly different spiking
statistics and potentially long history dependence of living neurons, we developed an
embedding-optimization approach that does not only vary the number and size, but also
an exponential stretching of past bins. For extra-cellular spike recordings, we found that
the strength and timescale of history dependence indeed can vary independently across
experimental preparations. While hippocampus indicated strong and long history
dependence, in visual cortex it was weak and short, while in vitro the history
dependence was strong but short. This work enables an information theoretic
characterization of history dependence in recorded spike trains, which captures a
footprint of information processing that is beyond time-lagged measures of temporal
dependence. To facilitate the application of the method, we provide practical guidelines
and a toolbox.

Author summary

Even with exciting advances in recording techniques of neural spiking activity,
experiments only provide a comparably short glimpse into the activity of only a tiny
subset of all neurons. How can we learn from these experiments about the organization
of information processing in the brain? To that end, we exploit that different properties
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of information processing leave distinct footprints on the firing statistics of individual
spiking neurons. In our work, we focus on a particular statistical footprint: How much
does a single neuron’s spiking depend on its own preceding activity, which we call
history dependence. By quantifying history dependence in neural spike recordings, one
can, in turn, infer some of the properties of information processing. Because recording
lengths are limited in practice, a direct estimation of history dependence from
experiments is challenging. The embedding optimization approach that we present in
this paper aims at extracting a maximum of history dependence within the limits set by
a reliable estimation. The approach is highly adaptive and thereby enables a meaningful
comparison of history dependence between neurons with vastly different spiking
statistics, which we exemplify on a diversity of spike recordings. In conjunction with
recent, highly parallel spike recording techniques, the approach could yield valuable
insights on how hierarchical processing is organized in the brain.

Introduction 1

How is information processing organized in the brain, and what are the principles that 2

govern neural coding? Fortunately, footprints of different information processing and 3

neural coding strategies can be found in the firing statistics of individual neurons, and 4

in particular in the history dependence, the statistical dependence of a single neuron’s 5

spiking on its preceding activity. 6

In classical, noise-less efficient coding, history dependence should be low to minimize 7

redundancy and optimize efficiency of neural information transmission [1–3]. In 8

contrast, in the presence of noise, history dependence and thus redundancy could be 9

higher to increase the signal-to-noise ratio for a robust code [4]. Moreover, history 10

dependence can be harnessed for active information storage, i.e. maintaining past input 11

information to combine it with present input for temporal processing [5–7] and 12

associative learning [8]. In addition to its magnitude, the timescale of history 13

dependence provides an important footprint of processing at different processing stages 14

in the brain [9–11]. This is because higher-level processing requires integrating 15

information on longer timescales than lower-level processing [12]. Therefore, history 16

dependence in neural spiking should reach further into the past for neurons involved in 17

higher level processing [9, 13]. Quantifying history dependence and its timescale could 18

probe these different footprints and thus yield valuable insights on how neural coding 19

and information processing is organized in the brain. 20

Often, history dependence is characterized by how much spiking is correlated with 21

spiking with a certain time lag [14,15]. From the decay time of this lagged correlation, 22

one obtains an intrinsic timescale of how long past information can still be read 23

out [9–11,16]. However, to quantify not only a timescale of statistical dependence, but 24

also its strength, one has to quantify how much of a neuron’s spiking depends on its 25

entire past. Here, this is done with the mutual information between the spiking of a 26

neuron and its own past [17], also called active information storage [5–7], or predictive 27

information [18,19]. 28

Estimating this mutual information directly from spike recordings, however, is 29

notoriously difficult. The reason is that statistical dependencies may reside in precise 30

spike times, extend far into the past and contain higher-order dependencies. This makes 31

it hard to find a parametric model, e.g. from the family of generalized linear 32

models [20,21], that is flexible enough to account for the variety of spiking statistics 33

encountered in experiments. Therefore, one typically infers mutual information directly 34

from observed spike trains [22–26]. The downside is that this requires a lot of data, 35

otherwise estimates can be severely biased [27,28]. A lot of work has been devoted to 36

finding less biased estimates, either by correcting bias [28–31], or by using Bayesian 37

March 9, 2021 2/50

Highlight

Sticky Note
It's more like the higher-level neurons integrate more temporal information than the lower-level.  They may not have more history dependence... not the same thing.

Highlight

Sticky Note
Active information storage is usually what I think of as b_{\mu}, which is actually the mutual information between present and future conditioned on the past.  It's slightly different than predictive information.



inference [32–34]. Although these estimators alleviate to some extent the problem of 38

bias, a reliable estimation is only possible for a much reduced representation of past 39

spiking, also called past embedding [35]. For example, many studies infer history 40

dependence and transfer entropy by embedding the past spiking using a single 41

bin [26,36]. 42

While previously most attention was devoted to a robust estimation given a 43

(potentially limited) embedding, we argue that a careful embedding of past activity is 44

crucial. In particular, a past embedding should be well adapted to the spiking statistics 45

of a neuron, but also be low dimensional enough such that reliable estimation is possible. 46

To that end, we here devise an embedding optimization scheme that selects the 47

embedding that maximizes the estimated history dependence, while reliable estimation 48

is ensured by two independent regularization methods. 49

In this paper, we first provide a methods summary where we introduce the measure 50

of history dependence and the information timescale, as well as the embedding 51

optimization method employed to estimate history dependence in neural spike trains. A 52

glossary of all the abbreviations and symbols used in this paper can be found at the 53

beginning of the Materials and methods section. In the Results, we first compare the 54

measure of history dependence with classical time-lagged measures of temporal 55

dependence on different models of neural spiking activity. Second, we test the 56

embedding optimization approach on a tractable benchmark model, and also compare it 57

to existing estimation methods on a variety of experimental spike recordings. Finally, we 58

demonstrate that the approach reveals interesting differences between neural systems, 59

both in terms of the total history dependence, as well as the information timescale. For 60

the reader interested in applying the method, we provide practical guidelines in Fig 9 61

and in the end of the Materials and methods section. The method is readily applicable 62

to highly parallel spike recordings, and a toolbox for Python3 is available online [37]. 63

Methods summary 64

Definition of history dependence. First, we define history dependence R(T ) in 65

the spiking of a single neuron. We quantify history dependence based on the mutual 66

information 67

I(spiking; past(T )) = H(spiking)−H(spiking|past(T )) (1)

between current spiking in a time bin [t, t+ ∆t) and its own past in a past range 68

[t− T, t) (Fig 1B). Here, we assume stationarity and ergodicity, such that the measure is 69

an average over all times t. This mutual information is also called active information 70

storage [5], and is related to the predictive information [18,19]. It quantifies how much 71

of the current spiking information H(spiking) can be predicted from past spiking. The 72

spiking information is given by the Shannon entropy [38] 73

H(spiking) = −p(spike) log2 p(spike)− (1− p(spike)) log2(1− p(spike)), (2)

where p(spike) = r∆t is the probability to spike within the time bin ∆t for a neuron 74

with average firing rate r. The Shannon entropy H(spiking) quantifies the average 75

information that a spiking neuron could transmit within one bin, assuming no statistical 76

dependencies on its own past. In contrast, the conditional entropy H(spiking|past(T )) 77

(see Materials and methods) quantifies the average spiking information (in the sense of 78

entropy) that remains when dependencies on past spiking are taken into account. Note 79

that past dependencies can only reduce the average spiking information, i.e. 80

H(spiking|past(T )) ≤ H(spiking). The difference between the two then gives the 81

amount of spiking information that is redundant or entirely predictable from the past. 82
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To transform this measure of information into a measure of statistical dependence, we 83

normalize the mutual information by the entropy H(spiking) and define history 84

dependence R(T ) as 85

R(T ) ≡ I(spiking; past(T ))

H(spiking)
= 1− H(spiking|past(T ))

H(spiking)
∈ [0, 1]. (3)

While the mutual information quantifies the amount of predictable information, R(T ) 86

gives the proportion of spiking information that is predictable or redundant with past 87

spiking. As such, it interpolates between the following intuitive extreme cases: 88

R(T ) = 0 corresponds to independent and R(T ) = 1 to entirely predictable spiking. 89

Moreover, while the entropy and thus the mutual information I(spiking; past(T )) 90

increases with the firing rate (see S13 Fig for an example on real data), the normalized 91

R(T ) is comparable across recordings of neurons with very different firing rates. Finally, 92

all the above measures can depend on the size of the time bin ∆t, which discretizes the 93

current spiking activity in time. Too small a time bin holds the risk that noise in the 94

spike emission reduces the overall predictability or history dependence, whereas an 95

overly large time bin holds the risk of destroying coding relevant time information in the 96

neuron’s spike train. Thus, we chose the smallest time bin ∆t = 5 ms that does not yet 97

show a decrease in history dependence (S16 Fig). 98

Fig 1. Illustration of history dependence and related measures in a neural
spike train. (A) For the analysis, spiking is represented by 0 or 1 in a small time bin
∆t (grey box). Autocorrelation C(T ) or the lagged mutual information L(T ) quantify
the statistical dependence of spiking on past spiking in a single past bin with time lag
Ti (green box). (B) In contrast, history dependence R(Ti) quantifies the dependence of
spiking on the entire spiking history in a past range Ti. The gain in history dependence
∆R(Ti) = R(Ti)−R(Ti−1) quantifies the increase in history dependence by increasing
the past range from Ti−1 to Ti, and is defined in analogy to the lagged measures. (C)
Autocorrelation C(T ) and lagged mutual information L(T ) for a typical example neuron
(mouse, primary visual cortex). Both measures decay with increasing T , where L(T )
decays slightly faster due to the non-linearity of the mutual information. Timescales τC
and τL (vertical dashed lines) can be computed either by fitting an exponential decay
(autocorrelation) or by using the generalized timescale (lagged mutual information). (D)
In contrast, history dependence R(T ) increases monotonically for systematically
increasing past range T , until it saturates at the total history dependence Rtot. From
R(T ), the gain ∆R(Ti) can be computed between increasing past ranges Ti−1 and Ti
(grey dashed lines). The gain ∆R(T ) decays to zero like the time-lagged measures, with
information timescale τR (dashed line).

Total history dependence and the information timescale. Here, we introduce 99

measures to quantify the strength and the timescale of history dependence 100

independently. First, note that the history dependence R(T ) monotonically increases 101

with the past range T (Fig 1D), until it converges to the total history dependence 102

Rtot ≡ lim
T→∞

R(T ). (4)

The total history dependence Rtot quantifies the proportion of predictable spiking 103

information once the entire past is taken into account. 104

While the history dependence R(T ) is monotonously increasing, the gain in history 105

dependence ∆R(Ti) ≡ R(Ti)−R(Ti−1) between two past ranges Ti > Ti−1 tends to 106

decrease, and eventually decreases to zero for Ti, Ti−1 →∞ (Fig 1D). This is in analogy 107
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to time-lagged measures of temporal dependence such as the autocorrelation C(T ) or 108

lagged mutual information L(T ) (Fig 1A,C). Moreover, because R(T ) is monotonically 109

increasing, the gain cannot be negative, i.e. ∆R(T ) ≥ 0. From ∆R(Ti), we quantify a 110

characteristic timescale τR of history dependence similar to an autocorrelation time. In 111

analogy to the integrated autocorrelation time [39], we define the generalized timescale 112

τR ≡
n∑
i=1

T̄i
∆R(Ti)∑n
j=1 ∆R(Tj)

− T0. (5)

as the average of past ranges T̄i = (Ti + Ti−1)/2, weighted with their gain 113

∆R(Ti) = R(Ti)−R(Ti−1). Here, steps between two past ranges Ti−1 and Ti should be 114

chosen small enough, and summing the middle points T̄i of the steps further reduces the 115

error of discretization. T0 is the starting point, i.e. is the first past range for which 116

R(T ) is computed, and was set to T0 = 10 ms to exclude short-term past dependencies 117

like refractoriness (see Materials and methods for details). Moreover, the last past range 118

Tn has to be high enough such that R(Tn) has converged, i.e. R(Tn) = Rtot. Here, we 119

set Tn = 5 s unless stated otherwise. 120

To illustrate the analogy to the autocorrelation time, we note that if the gain decays 121

exponentially, i.e. ∆R(Ti) ∝ exp
(
− Ti
τauto

)
with decay constant τauto, then τR = τauto 122

for n→∞ and sufficiently small steps Ti − Ti−1. The advantage of τR is that it also 123

generalizes to cases where the decay is not exponential. Furthermore, it can be applied 124

to any other measure of temporal dependence (e.g. the lagged mutual information) as 125

long as the sum in Eq (5) remains finite, and the coefficients are non-negative. Note 126

that estimates of ∆R(Ti) can also be negative, so we included corrections to allow a 127

sensible estimation of τR (Materials and methods). Finally, since τR quantifies the 128

timescale over which unique predictive information is accumulated, we refer to it as the 129

information timescale. 130

Binary past embedding of spiking activity. In practice, estimating history 131

dependence R from spike recordings is extremely challenging. In fact, if data is limited, 132

a reliable estimation of history dependence is only possible for a reduced representation 133

of past spiking, also called past embedding [35]. Here, we outline how we embed past 134

spiking activity to estimate history dependence from neural spike recordings. 135

First, we choose a past range T , which defines the time span of the past embedding. 136

For each point in time t, we partition the immediate past window [t− T, t) into d bins 137

and count the number of spikes in each bin. The number of bins d sets the temporal 138

resolution of the embedding. In addition, we let bin sizes scale exponentially with the 139

bin index j = 1, ..., d as τj = τ110(j−1)κ (Fig 2A). A scaling exponent of κ = 0 translates 140

into equal bin sizes, whereas for κ > 0 bin sizes increase. For fixed d, this allows to 141

obtain a higher temporal resolution on recent past spikes by decreasing the resolution 142

on distant past spikes. 143

The past window [t− T, t) of the embedding is slided forward in steps of ∆t through 144

the whole recording with recording length Trec, starting at t = T . This gives rise to 145

N = (Trec − T )/∆t measurements of current spiking in [t, t+ ∆t), and of the number of 146

spikes in each of the d past bins (Fig 2B). We chose to use only binary sequences of 147

spike counts to estimate history dependence. To that end, a count of 1 was chosen for a 148

spike count larger than the median spike count over the N measurements in the 149

respective past bin. A binary representation drastically reduces the number of possible 150

past sequences for given number of bins d, such that history dependence can be 151

estimated even from short recordings. 152
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Fig 2. Illustration of embedding optimization to estimate history
dependence and the information timescale. (A) History dependence R is
estimated from the observed joint statistics of current spiking in a small time bin
[t+ ∆t] (dark grey) and the embedded past, i.e. a binary sequence representing past
spiking in a past window [t− T, t). We systematically vary the number of bins d and
bin sizes for fixed past range T . Bin sizes scale exponentially with bin index and a
scaling exponent κ to reduce resolution for spikes farther into the past. (B) The joint
statistics of current and past spiking are obtained by shifting the past range in steps of
∆t and counting the resulting binary sequences. (C) Finding a good choice of
embedding parameters (e.g. embedding dimension d) is challenging: When d is chosen
too small, the true history dependence R(T ) (dashed line) is not captured appropriately
(insufficient embedding) and underestimated by estimates R̂(T, d) (blue solid line).
When d is chosen too high, estimates R̂(T, d) are severely biased and R(T, d), as well as
R(T ), are overestimated (biased regime). Past-embedding optimization finds the
optimal embedding parameter d∗ that maximizes the estimated history dependence
R̂(T, d) subject to regularization. This yields a best estimate R̂(T ) of R(T ) (blue
diamond). (D) Estimation of history dependence R(T ) as a function of past range T .
For each past range T , embedding parameters d and κ are optimized to yield an
embedding-optimized estimate R̂(T ). From estimates R̂(T ), we obtain estimates τ̂R and
R̂tot of the information timescale τR and total history dependence Rtot (vertical and
horizontal dashed lines). To compute R̂tot we average estimates R̂(T ) in an interval
[TD, Tmax], for which estimates R̂(T ) reach a plateau (vertical blue bars, see Materials
and methods). For high past ranges T , estimates R̂(T ) may decrease because a reliable
estimation requires past embeddings with reduced temporal resolution.

Estimation of history dependence with binary past embeddings. To 153

estimate history dependence R, one has to estimate the probability of a spike occurring 154

together with different past sequences. The probabilities πi of these different joint 155

events i can be directly inferred from the frequencies ni with which the events occurred 156

during the recording. Without any additional assumptions, the simplest way to estimate 157

the probabilities is to compute the relative frequencies π̂i = ni/N , where N is the total 158

number of observed joint events. This estimate is the maximum likelihood (ML) 159

estimate of joint probabilities πi for a multinomial likelihood, and the corresponding 160

estimate of history dependence will also be denoted by ML. This direct estimate of 161

history dependence is known to be strongly biased when data is too limited [28,30]. The 162

bias is typically positive, because, under limited data, probabilities of observed joint 163

events are given too much weight. Therefore, statistical dependencies are overestimated. 164

Even worse, the overestimation becomes more severe the higher the number of possible 165

past sequences K. Since K increases exponentially with the dimension of the past 166

embedding d, i.e. K = 2d for binary spike sequences, history dependence is severely 167

overestimated for high d (Fig 2C). The potential overestimation makes it hard to choose 168

embeddings that represent past spiking sufficiently well. In the following, we outline 169

how one can optimally choose embeddings if appropriate regularization is applied. 170

Estimating history dependence with past-embedding optimization. Due to 171

systematic overestimation, high-dimensional past embeddings are prohibitive for a 172

reliable estimation of history dependence from limited data. Yet, high-dimensional past 173

embeddings might be required to capture all history dependence. The reason is that 174

history dependence may reside in precise spike times, but also may extend far into the 175

past. 176

To illustrate this trade-off, we consider a discrete past embedding of spiking activity 177

in a past range T , where the past spikes are assigned to d equally large bins (κ = 0). 178
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We would like to obtain an estimate R̂(T ) of the maximum possible history dependence 179

R(T ) for the given past range T , with R(T ) ≡ R(T, d→∞) (Fig 2C). The number of 180

bins d can go to infinity only in theory, though. In practice, we have estimates R̂(T, d) 181

of the history dependence R(T, d) for finite d. On the one hand, one would like to choose 182

a high number of bins d, such that R(T, d) approximates R(T ) well for the given past 183

range T . Too few bins d otherwise reduce the temporal resolution, such that R(T, d) is 184

substantially less than R(T ) (Fig 2C). On the other hand, one would like to choose d 185

not too large in order to enable a reliable estimation from limited data. If d is too high, 186

estimates R̂(T, d) strongly overestimate the true history dependence R(T, d) (Fig 2C). 187

Therefore, if the past embedding is not chosen carefully, history dependence is either 188

overestimated due to strong estimation bias, or underestimated because the chosen past 189

embedding was too simple. 190

Here, we thus propose the following past-embedding optimization approach: For a 191

given past range T , select embedding parameters d∗, κ∗ that maximize the estimated 192

history dependence R̂(T, d, κ), while overestimation is avoided by an appropriate 193

regularization. This yields an embedding-optimized estimate R̂(T ) = R̂(T, d∗, κ∗) of the 194

true history dependence R(T ). In terms of the above example, past-embedding 195

optimization selects the optimal embedding dimension d∗, which provides the best lower 196

bound R̂(T ) = R̂(T, d∗) to R(T ) (Fig 2C). 197

Since we can anyways provide only a lower bound, regularization only has to ensure 198

that estimates R̂(T, d, κ) are either unbiased, or a lower bound to the observable history 199

dependence R(T, d, κ). For that purpose, in this paper we introduce a Bayesian bias 200

criterion (BBC) that selects only unbiased estimates. In addition, we use an established 201

bias correction, the so called Shuffling estimator [31] that, within leading order of the 202

sample size, is guaranteed to provide a lower bound to the observable history 203

dependence (see Materials and methods for details). 204

Together with these regularization methods, the embedding optimization approach 205

enables complex embeddings of past activity while minimizing the risk of overestimation. 206

See Materials and methods for details on how we used embedding optimized estimates 207

R̂(T ) to compute estimates R̂tot and τ̂R of the total history dependence and 208

information timescale (Fig 2, blue dashed lines). 209

Results 210

In the first part, we demonstrate the differences between history dependence and 211

classical measures of temporal dependence for several models of neural spiking activity. 212

We then benchmark the estimation of history dependence using embedding optimization 213

on a tractable neuron model with long-lasting spike adaptation. Moreover, we compare 214

the embedding optimization approach to existing estimation methods on a variety of 215

extra-cellular spike recordings. In the last part, we apply this to analyze history 216

dependence for a variety of recorded systems, and compare the results to the 217

autocorrelation and other statistical measures on the data. 218

Differences between history dependence and time-lagged 219

measures of temporal dependence 220

The history dependence R(T ) quantifies how predictable neural spiking is, given activity 221

in a certain past range T . In contrast, time-lagged measures of temporal dependence 222

like the autocorrelation C(T ) [40] or lagged mutual information L(T ) [41,42] quantify 223

the dependence of spiking on activity in a single past bin with delay T (Fig 1A,C; 224

Materials and methods). In the following, we showcase the main differences between the 225

two approaches. 226
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History dependence disentangles the effects of input activation, 227

reactivation and temporal depth of a binary autoregressive process. To 228

show the behavior of the measures in a well controlled setup, we analyzed a simple 229

binary autoregressive process with varying temporal depth l (Fig 3). The process 230

evolves in discrete time steps, and has an active (1) or inactive (0) state (Fig 3A). 231

Active states are evoked either by external input with probability h, or by internal 232

reactivations that are triggered by activity within the past l steps. Each past activation 233

increases the reactivation probability by m, which regulates the strength of history 234

dependence in the process. In the following, we describe how the measures behave as we 235

vary each of the different model parameters, and then summarize the key difference 236

between the measures. 237

Fig 3. History dependence disentangles the effects of input activation,
reactivation and temporal depth of a binary autoregressive process. (A) In
the binary autoregressive process, the state of the next time step (grey box) is active
(one) either because of an input activation with probability h, or because of an internal
reactivation. The internal activation is triggered by activity in the past l time steps
(green), where each active state increases the activation probability by m. (B) Increasing
the input activation probability h increases the total mutual information, although
input activations are random and therefore not predictable. Normalizing the total
mutual information by the entropy yields the total history dependence, which decreases
mildly with h. (C) Autocorrelation C(T ), lagged mutual information L(T ) and gain in
history dependence ∆R(T ) decay differently with the delay T . For l = 1 and m = 0.8
(top), autocorrelation C(T ) decays exponentially with autocorrelation time τC , whereas
L(T ) decays faster due to the non-linearity of the mutual information. ∆R(T ) is
non-zero only for delays shorter or equal to the temporal depth of the process, with
much shorter timescale τR. For l = 5, C(T ) and L(T ) plateau over the temporal depth,
and then decay much slower than for l = 1. Again, ∆R(T ) is non-zero only within the
temporal depth of the process. Parameters m and h were adapted to match the firing
rate and total history dependence between l = 1 and l = 5. (D) When increasing the
reactivation probability m for l = 1, timescales of time-lagged measures τC and τL
increase. For history dependence, the information timescale τR remains constant, but
the total history Rtot increases. (E) When varying the temporal depth l, all timescales
increased. Parameters h and m were adapted to hold the firing rate and Rtot constant.

The input strength h increases the firing rate and thus the spiking entropy 238

H(spiking). This leads to a strong increase in the total mutual information 239

Itot ≡ lim
T→∞

I(spiking; past(T )), whereas the total history dependence Rtot is 240

normalized by the entropy and does slightly decrease (Fig 3B). This slight decrease is 241

expected from a sensible measure of history dependence, because the input is random 242

and has no temporal dependence. In addition, input activations may fall together with 243

internal activations, which slightly reduces the total history dependence. 244

In contrast, the total history dependence Rtot increases with the reactivation 245

probability m, as expected (Fig 3D). For the autocorrelation, the reactivation 246

probability m not only influences the magnitude of the correlation coefficients, but also 247

the decay of the coefficients. For autoregressive processes (and l = 1), autocorrelation 248

coefficients C(T ) decay exponentially [14] (Fig 3C), where the autocorrelation time 249

τC = −∆t/ log(m) increases with m and diverges as m→ 1 (Fig 3D). The lagged 250

mutual information L(T ) is a non-linear measure of time-lagged dependence, and has a 251

very similar behavior as the autocorrelation, with a slightly faster decay and thus 252

smaller generalized timescale τL (Fig 3C,D). Note that we normalized L(T ) by the 253

spiking entropy H to make it directly comparable to ∆R(T ). In contrast to the 254
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time-lagged measures, the gain in history dependence ∆R(T ) is only non-zero for T 255

smaller or equal to the true temporal depth l of the process (Fig 3C). As a consequence, 256

the information timescale τR does not increase with m for fixed l (Fig 3D). 257

Finally, the temporal depth l controls how far into the past activations depend on 258

their preceding activity. Indeed, we find that the information timescale τR increases 259

with l as expected (Fig 3C,E). Similarly, the timescales of the time-lagged measures τC 260

and τL increase with the temporal depth l. Note that parameters m and h were adapted 261

for each l to keep the firing rate and total history dependence Rtot constant, such that 262

differences in the timescale can be unambiguously attributed to the increase in l. 263

To conclude, history dependence disentangles the effects of input activation, 264

reactivation and temporal depth, which provides a comprehensive characterization of 265

past dependencies in the autoregressive model. This is different from the total mutual 266

information, which lacks the entropy normalization and is sensitive to the firing rate. 267

This is also different from time-lagged measures, whose timescales are sensitive to both, 268

the reactivation probability m and the temporal depth l. The confusion of effects in the 269

timescales is rooted in the time-lagged nature of the measures—by quantifying past 270

dependencies out of context, C(T ) and L(T ) also capture indirect, redundant 271

dependencies onto past events. Indirect, redundant dependencies arise from unique 272

dependencies, because past states that are uniquely predictive of future activities were 273

in turn uniquely dependent on their own past. The stronger the unique dependence, the 274

longer the indirect dependencies reach into the past, which increases the timescale of 275

time-lagged measures. In contrast, indirect dependencies do not contribute to the 276

history dependence, because they add no predictive information once more-recent past 277

is taken into account. 278

History dependence dismisses redundant past dependencies and captures 279

synergistic effects. A key property of history dependence is that it evaluates past 280

dependencies in the light of more recent past. This allows the measure to dismiss 281

indirect, redundant past dependencies and to capture synergistic effects. In three 282

common models of neural spiking activity, we demonstrate how this leads to a 283

substantially different characterization of past dependencies compared to time-lagged 284

measures of temporal dependence. 285

First, we simulated a subsampled branching process [14], which is a minimal model 286

for activity propagation in neural networks and captures key properties of spiking 287

dynamics in cortex [15]. Similar to the binary autoregressive process, active neurons 288

activate neurons in the next time step with probability m, the so called branching 289

parameter, and are activated externally with some probability h. The process was 290

simulated in time steps of ∆t = 4 ms with a population activity of 500 Hz, which was 291

subsampled to obtain a single spike train with a firing rate of 5 Hz (Fig 4A). Similar to 292

the binary autoregressive process, the autocorrelation decays exponentially with 293

autocorrelation time τC = −∆t/ log(m) = 198 ms, and the lagged mutual information 294

decays slightly faster (Fig 4B). In comparison, the gain in history dependence ∆R 295

decays much faster. When increasing the branching parameter m (for fixed firing rate), 296

the total history dependence increased, as in the autoregressive process (S11 Fig). 297

Strikingly, the timescale τR remained constant or even decreased for larger m > 0.967 298

and thus higher autocorrelation time τC > 120ms (S11 Fig), which is different from the 299

binary autoregressive process. The reason is that the branching process evolves at the 300

population level, whereas history dependence is quantified at the single neuron level. 301

Thereby, history dependence also captures indirect dependencies, because the own 302

spiking history reflects the population activity. The higher the branching parameter m, 303

the more informative past spikes are about the population activity, and the shorter is 304

the timescale τR over which all the relevant information about the population activity 305
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Fig 4. History dependence dismisses redundant past dependencies and
captures synergistic effects (A,B) Analysis of a subsampled branching process. (A)
The population activity was simulated as a branching process (m = 0.98) and
subsampled to yield the spike train of a single neuron (Materials and methods). (B)
Autocorrelation C(T ) and lagged mutual information L(T ) include redundant
dependencies and decay much slower than the gain ∆R(T ), with much longer timescales
(vertical dashed lines). (C,D) Analysis of an Izhikevich neuron in chattering mode with
constant input and small voltage fluctuations. The neuron fires in regular bursts of
activity. (D) Time-lagged measures C(T ) and L(T ) measure both, intra- (T < 10 ms)
and inter-burst (T > 10 ms) dependencies, which decay very slowly due to regularity of
the firing. The gain ∆R(T ) reflects that most spiking can already be predicted from
intra-burst dependencies, whereas inter-burst dependencies are highly redundant. In
this case, only ∆R(T ) yields a sensible time scale (blue dashed line). (E,F) Analysis of
a generalized leaky integrate and fire neuron with long-lasting adaptation filter ξ [3, 43]
and constant input. Figure adapted from [44]. (F) Here, ∆R(T ) decays slower to zero
than the autocorrelation C(T ), and is higher than L(T ) for long delays T . Therefore,
the dependence on past spikes is stronger when taking more recent past spikes into
account (∆R(T )), as when considering them independently (L(T )). Due to these
synergistic past dependencies, ∆R(T ) is the only measure that captures the long-range
nature of the spike adaptation.

can be collected. Thus, for the branching process, the total history dependence Rtot 306

captures the influence of the branching parameter, whereas the information timescale 307

τR behaves very differently from the timescales of time-lagged measures. 308

Second, we demonstrate the difference of history dependence to time-lagged 309

measures on an Izhikevich neuron, which is a flexible model that can produce different 310

neural firing patterns similar to those observed for real neurons [45]. Here, parameters 311

were chosen according to the ”chattering mode” [45], with constant input and small 312

voltage fluctuations (Materials and methods). The neuron fires in regular bursts of 313

activity, with consistent timing between spikes within and between bursts (Fig 4C). 314

While time-lagged measures capture all the regularities in spiking and oscillate with the 315

bursts of activity, history dependence correctly captures that spiking can almost be 316

entirely predicted from intra-burst dependencies alone (Fig 4D). History dependence 317

dismisses the redundant inter-burst dependencies and thereby yields a sensible measure 318

of a timescale (blue dashed line). 319

Finally, we analyzed a generalized leaky integrate-and-fire neuron with long-range 320

spike adaptation (22 seconds) (Fig 4E), which reproduces spike-frequency adaptation as 321

observed for real layer 2/3 pyramidal neurons [3, 43]. For this model, time-lagged 322

measures C(T ) and L(T ) actually decay to zero much faster than the gain in history 323

dependence ∆R(T ), which is the only measure that captures the long-range adaptation 324

effects of the model (Fig 4F). This shows that past dependencies in this model include 325

synergistic effects, where the dependence is stronger in the context of more recent spikes. 326

This is most likely due to the non-linearity of the model, where past spikes cause a 327

different adaptation when taken together as when considered as the sum of their 328

contributions. 329

Thus, due to its ability to dismiss redundant past dependencies and to capture 330

synergistic effects, history dependence really provides a complementary characterization 331

of past dependencies compared to time-lagged measures. Importantly, because the 332

approach better disentangles the effects of timescale and total history dependence, the 333

results remain interpretable for very different models, and provide a more 334

comprehensive view on past dependencies. 335
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Embedding optimization captures history dependence for a 336

neuron model with long-lasting spike adaptation 337

On a benchmark spiking neuron model, we first demonstrate that without optimization 338

and proper regularization, past embeddings are likely to capture much less history 339

dependence, or lead to estimates that severely overestimate the true history dependence. 340

Readers that are familiar with the bias problem of mutual information estimation might 341

want to jump to the next part, where we validate that embedding-optimized estimates 342

indeed capture the model’s true history dependence, while being robust to systematic 343

overestimation. As a model we chose a generalized leaky integrate-and-fire (GLIF) 344

model with spike frequency adaptation, whose parameters were fitted to experimental 345

data [3, 43]. The model was chosen, because it is equipped with a long-lasting spike 346

adaptation mechanism, and its total history dependence Rtot can be directly computed 347

from sufficiently long simulations (Materials and methods). For demonstration, we show 348

results on a variant of the model where adaptation reaches one second into the past, 349

and show results on the original model with a 22 second kernel in S1, S2 and S5 Figs. 350

For simulation, the neuron was driven with a constant input current to achieve an 351

average firing rate of 4 Hz. In the following, estimates R̂(T ) are shown for a simulated 352

recording of 90 minutes, whereas the true values R(T ) were computed on a 900 minute 353

recording (Materials and methods). 354

Without regularization, history dependence is severely overestimated for 355

high-dimensional embeddings. For demonstration, we estimated the history 356

dependence R(τ, d) for varying numbers of bins d and a constant bin size τ = 20 ms (i.e. 357

κ = 0 and T = d · τ). We compared estimates R̂(τ, d) obtained by maximum likelihood 358

(ML) estimation [28], or Bayesian estimation using the NSB estimator [33], with the 359

model’s true R(τ, d) (Fig 5A). Both estimators accurately estimate R(τ, d) for up to 360

d ≈ 20 past bins. As expected, the NSB estimator starts to be biased at higher d than 361

the ML estimator. For embedding dimensions d > 30, both estimators severely 362

overestimate R(τ, d). Note that ± two standard deviations are plotted as shaded areas, 363

but are too small to be visible. Therefore, any deviation of estimates from the model’s 364

true history dependence R(τ, d) can be attributed to positive estimation bias, i.e. a 365

systematic overestimation of the true history dependence due to limited data. 366

The aim is now to identify the largest embedding dimension d∗ for which the 367

estimate of R(τ, d) is not yet biased. A biased estimate is expected as soon as the two 368

estimates ML and NSB start to differ significantly from each other (Fig 5A, red 369

diamond), which is formalized by the Bayesian bias criterion (BBC) (Materials and 370

methods). According to the BBC, all NSB estimates R̂(τ, d) with d lower or equal to d∗ 371

are unbiased (solid red line). We find that indeed all BBC estimates agree well with the 372

true R(τ, d) (grey line), but d∗ yields the largest unbiased estimate. 373

The problem of estimation bias has also been addressed previously by the so-called 374

Shuffling estimator [31]. The Shuffling estimator is based on the ML estimator and 375

applies a bias correction term (Fig 5B). In detail, one approximates the estimation bias 376

using surrogate data, which are obtained by shuffling of the embedded spiking history. 377

The surrogate estimation bias (yellow dashed line) is proven to be larger than the actual 378

estimation bias (difference between grey solid and blue dashed line). Therefore, 379

Shuffling estimates R̂(τ, d) provide lower bounds to the true history dependence R(τ, d). 380

As with the BBC, one can safely maximize Shuffling estimates R̂(τ, d) over d to find the 381

embedding dimension d∗ that provides the largest lower bound to the model’s total 382

history dependence Rtot (Fig 5B, blue diamond). 383

Thus, using a model neuron, we illustrated that history dependence can be severely 384

overestimated if the embedding is chosen too complex. Only when overestimation is 385

tamed by one of the two regularization methods, BBC or Shuffling, embedding 386
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Fig 5. Embedding optimization captures history dependence for a neuron
model with long-lasting spike adaptation. Results are shown for a generalized
leaky integrate-and-fire (GLIF) model with long-lasting spike frequency
adaptation [3,43] with a temporal depth of one second (Methods and material). (A) For
illustration, history dependence R(τ, d) was estimated on a simulated 90 minute
recording for different embedding dimensions d and a fixed bin width τ = 20 ms.
Maximum likelihood (ML) [28] and Bayesian (NSB) [33] estimators display the
insufficient embedding versus estimation bias trade-off: For small embedding dimensions
d, the estimated history dependence is much smaller, but agrees well with the true
history dependence R(τ, d) for the given embedding. For larger d, the estimated history
dependence R̂(τ, d) increases, but when d is too high (d > 20), it severely overestimates
the true R(τ, d). The Bayesian bias criterion (BBC) selects NSB estimates R̂(τ, d) for
which the difference between ML and NSB estimate is small (red solid line). All selected
estimates are unbiased and agree well with the true R(τ, d) (grey line). Thus,
embedding optimization selects the highest, yet unbiased estimate (red diamond). (B)
The Shuffling estimator (blue solid line) subtracts estimation bias on surrogate data
(yellow dashed line) from the ML estimator (blue dashed line). Since the surrogate bias
is higher than the systematic overestimation in the ML estimator (difference between
grey and blue dashed lines), the Shuffling estimator is a lower bound to R(τ, d).
Embedding optimization selects the highest estimate, which is still a lower bound (blue
diamond). For A and B, shaded areas indicate 2 standard deviations obtained from 50
repeated simulations, which are very small and thus hardly visible. (C) Embedding
optimized BBC estimates R̂(T ) (red line) yield accurate estimates of the model neuron’s
true history dependence R(T ), total history dependence Rtot and information timescale
τR (horizontal and vertical dashed lines). The zoom-in (right panel) shows robustness of
both regularization methods: For all T the model neuron’s R(T, d∗, κ∗) lies within
errorbars (BBC), or consistently above the Shuffling estimator that provides a lower
bound. Here, the model’s R(T, d∗, κ∗) was computed for the optimized embedding
parameters d∗, κ∗ that were selected via BBC or Shuffling, respectively (dashed lines).
Shaded areas indicate ± two standard deviations obtained by bootstrapping, and
colored vertical bars indicate past ranges over which estimates R̂(T ) were averaged to
compute R̂tot (Materials and methods).

parameters can be safely optimized to yield better estimates of history dependence. 387

Optimized embeddings capture the model’s true history dependence. In 388

the previous part, we demonstrated how embedding parameters are optimized for the 389

example of fixed κ and τ . Now, we optimize all embedding parameters for fixed past 390

range T to obtain embedding-optimized estimates R̂(T ) of R(T ). We find that 391

embedding-optimized BBC estimates R̂(T ) agree well with the true R(T ), such that the 392

model’s total history dependence Rtot and information timescale τR are well estimated 393

(Fig 5C, vertical and horizontal dashed lines). In contrast, the Shuffling estimator 394

underestimates the true R(T ) for past ranges T > 200 ms, such that the model’s Rtot 395

and τR are underestimated (blue dashed lines). For large past ranges T > 1000 ms, 396

estimates R̂(T ) of both estimators decrease again, because no additional history 397

dependence is uncovered, whereas the constraint of an unbiased estimation decreases 398

the temporal resolution of the embedding. 399

Embedding-optimized estimates are robust to overestimation despite 400

maximization over complex embeddings. In the previous part, we investigated 401

how much of the true history dependence for different past ranges T (grey solid line) we 402
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miss by embedding the spiking history. An additional source of error is the estimation 403

of history dependence from limited data. In particular, estimates are prone to 404

overestimate history dependence systematically (Fig 5A,B). 405

To test explicitly for overestimation, we computed the true history dependence 406

R(T, d∗, κ∗) for exactly the same sets of embedding parameters T, d∗, κ∗ that were 407

found during embedding optimization with BBC (grey dash-dotted line), and the 408

Shuffling estimator (grey dotted line, Fig 5C, zoom-in). We expect that BBC estimates 409

are unbiased, i.e. the true history dependence should lie within errorbars of the BBC 410

estimates (red shaded area) for a given T . In contrast, Shuffling estimates are a lower 411

bound, i.e. estimates should lie below the true history dependence (given the same 412

T, d∗, κ∗). We find that this is indeed the case for all T . Note that this is a strong 413

result, because it requires that the regularization methods work reliably for every single 414

set of embedding parameters used for optimization—otherwise, parameters that cause 415

overestimation would be selected. 416

Thus, we can confirm that the embedding-optimized estimates do not systematically 417

overestimate the model neuron’s history dependence, and are on average lower bounds 418

to the true history dependence. This is important for the interpretation of the results. 419

Mild overfitting can occur during embedding optimization on short 420

recordings, but can be overcome with cross-validation. We also tested 421

whether the recording length affects the reliability of embedding-optimized estimates, 422

and found very mild overestimation (1–3%) of history dependence for BBC for 423

recordings as short as 3 minutes (S1 and S4 Figs). The overestimation is a consequence 424

of overfitting during embedding optimization: variance in the estimates increases for 425

shorter recordings, such that maximizing over estimates selects embedding parameters 426

that have high history dependence by chance. Therefore, the overestimation can be 427

overcome by cross-validation, e.g. by optimizing embedding parameters on the first half, 428

and computing estimates on the second half of the data (S1 Fig). In contrast, we found 429

that for the model neuron, Shuffling estimates do not overestimate the true history 430

dependence even for recordings as short as 3 minutes (S1 Fig). This is because the 431

effect of overfitting was small compared to the systematic underestimation of Shuffling 432

estimates. Here, all experimental recordings where we apply BBC are long enough 433

(≈ 90 minutes), such that no cross-validation was applied on the experimental data. 434

Estimates of the information timescale are sensitive to the recording 435

length. Finally, we also tested the impact of the recording length on estimates R̂tot of 436

the total history dependence as well as estimates τ̂R of the information timescale. While 437

on recordings of 3 minutes embedding optimization still estimated ≈ 95 % of the true 438

Rtot, estimates τ̂R were only ≈ 75 % of the true τR (S2 Fig). Thus, estimates of the 439

information timescale τR are more sensitive to the recording length, because they 440

depend on the small additional contributions to R(T ) for high past ranges T , which are 441

hard to estimate for short recordings. Therefore, we advice to analyze recordings of 442

similar length to make results on τR comparable across experiments. In the following, 443

we explicitly shorten some recordings such that all recordings have approximately the 444

same recording length. 445

In conclusion, embedding optimization accurately estimated the model neuron’s true 446

history dependence. Moreover, for all past ranges, embedding-optimized estimates were 447

robust to systematic overestimation. Embedding optimization is thus a promising 448

approach to quantify history dependence and the information timescale in experimental 449

spike recordings. 450
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Embedding optimization is key to estimate long-lasting history 451

dependence in extra-cellular spike recordings 452

Here, we apply embedding optimization to long spike recordings (≈ 90 minutes) from rat 453

dorsal hippocampus layer CA1 [46,47], salamander retina [48,49] and in vitro recordings 454

of rat cortical culture [50]. In particular, we compare embedding optimization to other 455

popular estimation approaches, and demonstrate that an exponential past embedding is 456

necessary to estimate history dependence for long past ranges. 457

Embedding optimization reveals history dependence that is not captured 458

by a generalized linear model or a single past bin. We use embedding 459

optimization to estimate history dependence R(T ) as a function of the past range T (see 460

Fig 6B for an example single unit from hippocampus layer CA1, and S6, S7 and S8 Figs 461

for all analyzed sorted units). In this example, BBC and Shuffling with a maximum of 462

dmax = 20 past bins led to very similar estimates for all T . Notably, embedding 463

optimization with both regularization methods estimated high total history dependence 464

of almost Rtot ≈ 40% with a temporal depth of almost a second, and an information 465

timescale of τR ≈ 100 ms (Fig 6B). This indicates that embedding-optimized estimates 466

capture a substantial part of history dependence also in experimental spike recordings. 467

Fig 6. Embedding optimization is key to estimate long-lasting history
dependence in extra-cellular spike recordings. (A) Example of recorded spiking
activity in rat dorsal hippocampus layer CA1. (B) Estimates of history dependence
R(T ) for various estimators, as well as estimates of the total history dependence Rtot

and information timescale τR (dashed lines) (example single unit from CA1).
Embedding optimization with BBC (red) and Shuffling (blue) for dmax = 20 yields
consistent estimates. Embedding-optimized Shuffling estimates with a maximum of
dmax = 5 past bins (green) are very similar to estimates obtained with dmax = 20 (blue).
In contrast, using a single past bin (dmax = 1, yellow), or fitting a GLM for the
temporal depth found with BBC (violet dot), estimates much lower total history
dependence. Shaded areas indicate ± two standard deviations obtained by
bootstrapping, and small vertical bars indicate past ranges over which estimates of R(T )
were averaged to estimate Rtot (Materials and methods). (C) An exponential past
embedding is crucial to capture history dependence for high past ranges T . For
T > 100 ms, uniform embeddings strongly underestimate history dependence. Shown is
the median of embedding-optimized estimates of R(T ) with uniform embeddings,
relative to estimates obtained by optimizing exponential embeddings, for BBC with
dmax = 20 (red) and Shuffling with dmax = 20 (blue) and dmax = 5 (green). Shaded
areas show 95 % percentiles. Median and percentiles were computed over analyzed
sorted units in CA1 (n = 28). (D) Comparison of total history dependence Rtot for
different estimation and embedding techniques for three different experimental
recordings. For each sorted unit (grey dots), estimates are plotted relative to
embedding-optimized estimates for BBC and dmax = 20. Embedding optimization with
Shuffling and dmax = 20 yields consistent but slightly higher estimates than BBC.
Strikingly, Shuffling estimates for as little as dmax = 5 past bins (green) capture more
than 95 % of the estimates for dmax = 20 (BBC). In contrast, Shuffling estimates
obtained by optimizing a single past bin, or fitting a GLM, are considerably lower. Bars
indicate the median and lines indicate 95 % bootstrapping confidence intervals on the
median over analyzed sorted units (CA1: n = 28; retina: n = 111; culture: n = 48).

Importantly, other common estimation approaches fail to capture the same amount 468

of history dependence (Fig 6B,D). To compare how well the different estimation 469

approaches could capture the total history dependence, we plotted for each so the 470
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different estimates of Rtot relative to the corresponding BBC estimate (Fig 6D). 471

Embedding optimization with Shuffling yields estimates that agree well with BBC 472

estimates. The Shuffling estimator even yields slightly higher values on the 473

experimental data. Interestingly, embedding optimization with the Shuffling estimator 474

and as little as dmax = 5 past bins captures almost the same history dependence as 475

BBC with dmax = 20, with a median above 95 % for all recorded systems. In contrast, 476

we find that a single past bin only accounts for 70% to 80% of the total history 477

dependence. A GLM bears little additional advantage with a slightly higher median of 478

≈ 85%. To save computation time, GLM estimates were only computed for the 479

temporal depth that was estimated using BBC (Fig 6B, violet square). The remaining 480

embedding parameters d and κ of the GLM’s history kernel were separately optimized 481

using the Bayesian information criterion (Materials and methods). Since parameters 482

were optimized, we argue that the GLM underestimates history dependence because of 483

its specific model assumptions, i.e. no interactions between past spikes. Moreover, we 484

found that the GLM performs worse than embedding optimization with only five past 485

bins. Therefore, we conclude that for typical experimental spike trains, interactions 486

between past spikes are important, but do not require very high temporal resolution. In 487

the remainder of this paper we use the reduced approach (Shuffling dmax = 5) to 488

compare history dependence among different recorded systems. 489

Increasing bin sizes exponentially is crucial to estimate long-lasting history 490

dependence. To demonstrate this, we plotted embedding-optimized BBC estimates 491

of R(T ) using a uniform embedding, i.e. equal bin sizes, relative to estimates obtained 492

with exponential embedding (Fig 6C), both for BBC with dmax = 20 (red) and Shuffling 493

with dmax = 20 (blue) or dmax = 5 (green). For past ranges T > 100 ms, estimates using 494

a uniform embedding miss considerable history dependence, which becomes more severe 495

the longer the past range. In the case of dmax = 5, a uniform embedding captures 496

around 80 % for T = 1 s, and only around 60 % for T = 5 s (median over analyzed sorted 497

units in CA1). Therefore, we argue that an exponential embedding is crucial for 498

estimating long-lasting history dependence. 499

Together, total history dependence and its timescale show clear 500

differences between recorded systems and individual sorted 501

units 502

Finally, we present results from diverse extracellular spike recordings that show 503

interesting differences in history dependence between sorted units of different recorded 504

systems. In addition to recordings from rat dorsal hippocampus layer CA1, salamander 505

retina and rat cortical culture, we analyzed sorted units in a recording of mouse primary 506

visual cortex using the novel Neuropixels probe [51]. Recordings from primary visual 507

cortex were approximately 40 minutes long. Thus, to make results comparable, we 508

analyzed only the first 40 minutes of all recordings. 509

We find clear differences between the recorded systems, both in terms of the total 510

history dependence, as well as the information timescale (Fig 7A). Sorted units in 511

cortical culture and hippocampus layer CA1 have high total history dependence Rtot 512

with median over sorted units of ≈ 24 % and ≈ 25 %, whereas sorted units in retina and 513

primary visual cortex have typically low Rtot of ≈ 11 % and ≈ 8 %. In terms of the 514

information timescale τR, sorted units in hippocampus layer CA1 display much higher 515

τR with a median of ≈ 96 ms than units in cortical culture with median τR of ≈ 12 ms. 516

Similarly, sorted units in primary visual cortex have higher τR with median of ≈ 37 ms 517

than units in retina with median of ≈ 23 ms. These differences could reflect differences 518

between early visual processing (retina, primary visual cortex) and high level processing 519
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and memory formation in hippocampus, or likewise, between neural networks that are 520

mainly input driven (retina) or exclusively driven by recurrent input (culture). Notably, 521

total history dependence and the information timescale varied independently among 522

recorded systems, and studying them in isolation would miss differences between 523

recorded systems, whereas considering them jointly allows to distinguish the different 524

systems. Moreover, no clear differentiation between cortical culture, retina and primary 525

visual cortex is possible using the autocorrelation time τC (Fig 7B), with medians 526

τC ≈ 68 ms (culture), τC ≈ 60 ms (retina) and τC ≈ 80 ms (primary visual cortex), 527

respectively. 528

Fig 7. Together, total history dependence and its timescale show clear
differences between recorded systems. (A) Embedding-optimized Shuffling
estimates (dmax = 5) of the total history dependence Rtot are plotted against the
information timescale τR for individual sorted units (dots) from four different recorded
systems (raster plots show spike trains of different sorted units). No clear relationship
between the two quantities is visible. The analysis shows systematic differences between
the recorded systems: sorted units in rat cortical culture (n = 48) and rat dorsal
hippocampus layer CA1 (n = 28) have higher median total history dependence than
units in salamander retina (n = 111) and mouse primary visual cortex (n = 142). At
the same time, sorted units in cortical culture and retina show smaller timescale than
units in primary visual cortex, and much smaller timescale than units in hippocampus
layer CA1. Overall, recorded systems are clearly distinguishable when jointly
considering the total history dependence and information timescale. (B) Total history
dependence Rtot versus the autocorrelation time τC shows no clear relation between the
two quantities, similar to the information timescale τR. Also, the autocorrelation time
gives the same relation in timescale between retina, primary visual cortex and CA1,
whereas the cortical culture has a higher timescale (different order of medians on the
x-axis). In general, recorded systems are harder to differentiate in terms of the
autocorrelation time τC as compared to τR. Errorbars indicate median over sorted units
and 95 % bootstrapping confidence intervals on the median.

To better understand how other well-established statistical measures relate to the 529

total history dependence Rtot and the information timescale τR, we show Rtot and τR 530

versus the median interspike inteval (ISI), the coefficient of variation CV = σISI/µISI of 531

the ISI distribution, and the autocorrelation time τC in S14 Fig. Estimates of the total 532

history dependence Rtot tend to decrease with the median ISI, and to increase with the 533

coefficient of variation CV . This result is expected for a measure of history dependence, 534

because a shorter median ISI indicates that spikes tend to occur together, and a higher 535

CV indicates a deviation from independent Poisson spiking. In contrast, the information 536

timescale τR tends to increase with the autocorrelation time, as expected, with no clear 537

relation to the median ISI or the coefficient of variation CV . However, the correlation 538

between the measures depends on the recorded system. For example in retina (n = 111), 539

Rtot is significantly anti-correlated with the median ISI (Pearson correlation coefficient: 540

r = −0.69, p < 10−5) and strongly correlated with the coefficient of variation CV 541

(r = 0.90, p < 10−5), and τR is significantly correlated with the autocorrelation time τC 542

(r = 0.75, p < 10−5). In contrast, for mouse primary visual cortex (n = 142), we found 543

no significant correlations between any of these measures. Thus, the relation between 544

Rtot or τR and the established measures is not systematic, and therefore one cannot 545

replace the history dependence by any of them. 546

In addition to differences between recorded systems, we also find strong heterogeneity 547

of history dependence within a single recorded system. Here, we demonstrate this for 548

three different sorted units in primary visual cortex (Fig 8, see S9 Fig for all analyzed 549

sorted units in primary visual cortex). In particular, sorted units display different 550
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signatures of history dependence R(T ) as a function of the past range T . For some 551

units, history dependence builds up on short past ranges T (e.g. Fig 8A), for some it 552

only shows for higher T (e.g. Fig 8B), and for some it already saturates for very short T 553

(e.g. Fig 8C). A similar behavior is captured by the autocorrelation C(T ) (Fig 8, second 554

row). The rapid saturation in Fig 8C indicates history dependence due to bursty firing, 555

which can also be seen by strong positive correlation with past spikes for short delays T 556

(Fig 8C, bottom). To exclude the effects of different firing modes or refractoriness on 557

the information timescale, we only considered past ranges T > T0 = 10 ms when 558

estimating τR, or delays T > T0 = 10 ms when fitting an exponential decay to C(T ) to 559

estimate τC . The reason is that differences in the integration of past information are 560

expected to show for larger T . This agrees with the observation that timescales among 561

recorded systems were much more similar if one instead sets T0 = 0 ms, whereas they 562

showed clear differences for T0 = 10 ms or T0 = 20 ms (S15 Fig). 563

Fig 8. Distinct signatures of history dependence for different sorted units
within mouse primary visual cortex. (Top) Embedding-optimized estimates of
R(T ) reveal distinct signatures of history dependence for three different sorted units
(A,B,C) within a single recorded system (mouse primary visual cortex). In particular,
sorted units have similar total history dependence Rtot, but differ vastly in the
information timescale τR (horizontal and vertical dashed lines). Note that for unit C,
τR is smaller than 5 ms and thus doesn’t appear in the plot. Shaded areas indicate ±
two standard deviations obtained by bootstrapping, and vertical bars indicate the
interval over which estimates of R(T ) were averaged to estimate Rtot (Materials and
methods). Estimates were computed with the Shuffling estimator and dmax = 5.
(Bottom) Autocorrelograms for the same sorted units (A,B, and C, respectively) roughly
show an exponential decay, which was fitted (solid grey line) to estimate the
autocorrelation time τC (grey dashed line). Similar to the information timescale τR,
only coefficients for delays larger than T0 = 10 ms were considered during fitting.

We also observed that history dependence can build up on all timescales up to 564

seconds, and that it shows characteristic increases at particular past ranges, e.g. 565

T ≈ 100 ms and T ≈ 200 ms in CA1 (Fig 6B), possibly reflecting phase information in 566

the theta cycles [46,47]. Thus, the analysis does not only serve to investigate differences 567

in history dependence between recorded systems, but also resolves clear differences 568

between sorted units. This could be used to investigate differences in information 569

processing between different cortical layers, different neuron types or neurons with 570

different receptive field properties. 571

Overall, our results demonstrate that embedding optimization is powerful enough to 572

reveal clear differences in history dependence between sorted units of different recorded 573

systems, but also between units within the same system. Even more importantly, 574

because units are so different, ad hoc embedding schemes with a fixed number of bins or 575

fixed bin width will miss considerable history dependence. 576

Discussion 577

To estimate history dependence in experimental data, we developed a method where the 578

embedding of past spiking is optimized for each individual spike train. Thereby, it can 579

estimate a maximum of history dependence, given what is possible for the limited 580

amount of data. We found that embedding optimization is a robust and flexible tool to 581

estimate history dependence in neural spike trains with vastly different spiking 582

statistics, where ad hoc embedding strategies would estimate substantially less history 583

dependence. Based on our results, we arrived at practical guidelines that are 584
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summarized in Fig 9. In the following, we contrast history dependence R(T ) with 585

time-lagged measures such as the autocorrelation in more detail, clearly discussing the 586

advantages—but also the limitations of the approach. We then discuss how one can 587

relate estimated history dependence to neural coding and information processing based 588

on the example data sets analyzed in this paper. 589

1) Embedding optimization: The embedding of past-spiking activity should be
individually optimized to each spike train, in order to account for very different spiking
statistics. This also applies to other information metrics like transfer entropy [52].
2) Regularization: Estimates have to be reliable lower bounds, otherwise one cannot
interpret the results (apply Bayesian bias criterion or Shuffling correction).
3) Exponential embedding: Given the limitations on the number of bins, a non-uniform
embedding is required to capture long-lasting dependencies. An exponential embedding
with max. 5 bins is typically a good compromise between accuracy and computation speed,
and enables embedding optimization for large, highly parallel spike recordings.
4) Data requirements: For practical purpose, spike recordings should be sufficiently long
(at least 10 minutes). If several recordings are to be analyzed, these should be of similar
length to allow for a meaningful comparison of history dependence and its timescale
between recordings.
Fig 9. Practical guidelines for the estimation of history dependence in
single neuron spiking activity. More details regarding the individual points can be
found at the end of Materials and methods.

Advantages and limitations of history dependence in comparison to the 590

autocorrelation and lagged mutual information. A key difference between 591

history dependence R(T ) and the autocorrelation or lagged mutual information is that 592

R(T ) quantifies statistical dependencies between current spiking and the entire past 593

spiking in a past range T (Fig 1B). This has the following advantages as a measure of 594

statistical dependence, and as a footprint of information processing in single neuron 595

spiking. First, R(T ) allows to compute the total history dependence, which, from a 596

coding perspective, represents the redundancy of neural spiking with all past spikes; or 597

how much of the past information is also represented when emitting a spike. Second, 598

because past spikes are considered jointly, R(T ) captures synergistic effects and 599

dismisses redundant past information (Fig 4). Finally, we found that this enables R(T ) 600

to disentangle the strength and timescale of history dependence for the binary 601

autoregressive process. (Fig 3). In contrast, autocorrelation C(T ) or lagged mutual 602

information L(T ) quantify the statistical dependence of neural spiking on a single past 603

bin with delay T , without considering any of the other bins (Fig 1A). Thereby, they 604

miss synergistic effects; and they quantify redundant past dependencies that vanish 605

once spiking activity in more recent past is taken into account (Fig 4). As a 606

consequence, the timescales of these measures reflect both, the strength and the 607

temporal depth of history dependence in the binary autoregressive process (Fig 3). 608

Moreover, technically, the autocorrelation time τC depends on fitting exponential 609

decay to coefficients C(T ). Computing the autocorrelation time with the generalized 610

timescale is difficult, because coefficients C(T ) can be negative, and are too noisy for 611

large delays T . While model fitting is in general more data efficient than the model-free 612

estimation presented here, it can also produce biased and unreliable estimates [16]. 613

Furthermore, when the coefficients do not decay exponentially, a more complex model 614

has to be fitted [53], or the analysis simply cannot be applied. In contrast, the 615

generalized timescale can be directly applied to estimates of the history dependence 616
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R(T ) to yield the information timescale τR without any further assumptions or fitting 617

models. However, we found that estimates of τR can depend strongly on the estimation 618

method and embedding dimension (S12 Fig) and the size of the data set (S2 and S3 619

Figs). The dependence on data size is not so strong for the practical approach of 620

optimizing up to dmax = 5 past bins, but still we recommend to use data sets of similar 621

length when aiming for comparability across experiments. Moreover, there might be 622

cases where a model-free estimation of the true timescale might be infeasible because of 623

the complexity of past dependencies (S2 Fig, neuron with a 22 seconds past kernel). In 624

this case, only ≈ 80 % of the true timescale could be estimated on a 90 minute recording. 625

Another downside of quantifying the history dependence R(T ) is that its estimation 626

requires more data than fitting the autocorrelation time τC . To make best use of the 627

limited data, we here devised the embedding optimization approach that allows to find 628

the most efficient representation of past spiking for the estimation of history 629

dependence. Even so, we found empirically that a minimum of 10 minutes of recorded 630

spiking activity are advisable to achieve a meaningful quantification of history 631

dependence and its timescale (S2 and S3 Figs). In addition, for shorter recordings, the 632

analysis can lead to mild overestimation due to over-optimizing embedding parameters 633

on noisy estimates (S2 Fig). This overestimation can, however, be avoided by 634

cross-validation, which we find to be particularly relevant for the Bayesian bias criterion 635

(BBC) estimator. Finally, our approach uses an embedding model that ranges from 636

uniform embedding to an embedding with exponentially stretching past bins—assuming 637

that past information farther into the past requires less temporal resolution. This 638

embedding model might be inappropriate if for example spiking depends on the exact 639

timing of distant past spikes, with gaps in time where past spikes are irrelevant. In such 640

a case, embedding optimization could be used to optimize more complex embedding 641

models that can also account for this kind of spiking statistics. 642

Differences in total history dependence and information timescale between 643

data sets agree with ideas from neural coding and hierarchical information 644

processing. First, we found that the total history dependence Rtot clearly differs 645

among the experimental data sets. Notably, Rtot was low for recordings of early visual 646

processing areas such as retina and primary visual cortex, which is in line with the 647

theory of efficient coding [1, 54] and neural adaptation for temporal whitening as 648

observed in experiments [3, 55]. In contrast, Rtot was high for neurons in dorsal 649

hippocampus (layer CA1) and cortical culture. In CA1, the original study [47] found 650

that the temporal structure of neural activity within the temporal windows set by the 651

theta cycles was beyond of what one would expect from integration of feed-forward 652

excitatory inputs. The authors concluded that this could be due to local circuit 653

computations. The high values of Rtot support this idea, and suggest that local circuit 654

computations could serve the integration of past information, either for the formation of 655

a path integration–based neural map [56], or to recognize statistical structure for 656

associative learning [8]. In cortical culture, neurons are exclusively driven by recurrent 657

input and exhibit strong bursts in the population activity [57]. This leads to strong 658

history dependence also at the single neuron level. 659

To summarize, history dependence was low for early sensory processing and high for 660

high level processing or past dependencies that are induced by strong recurrent feedback 661

in a neural network. We thus conclude that estimated total history dependence Rtot 662

does indeed provide a footprint of neural coding and information processing. 663

Second, we observed that the information timescale τR increases from retina 664

(≈ 23 ms) to primary visual cortex (≈ 37 ms) to CA1 (≈ 96 ms), in agreement with the 665

idea of a temporal hierarchy in neural information processing [12]. These results 666

qualitatively agree with similar results obtained for the autocorrelation time of 667
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spontaneous activity [9], although the information timescales are overall much smaller 668

than the autocorrelation times. Our results suggest that the hierarchy of intrinsic 669

timescales could also show in the history dependence of single neurons measured by the 670

mutual information. 671

Conclusion. Embedding optimization enables to estimate history dependence in a 672

diversity of spiking neural systems, both in terms of its strength, as well as its timescale. 673

The approach could be used in future experimental studies to quantify history 674

dependence across a diversity of brain areas, e.g. using the novel Neuropixels probe [58], 675

or even across cortical layers within a single area. To this end we provide a toolbox for 676

Python3 [37]. These analyses might yield a more complete picture of hierarchical 677

processing in terms of the timescale and a footprint of information processing and 678

coding principles, i.e. information integration versus redundancy reduction. 679

Materials and methods 680

In this section, we provide all mathematical details required to reproduce the results of 681

this paper. We first provide the basic definitions of history dependence, the past 682

embedding as well as the total history dependence and the information timescale. We 683

then describe the embedding optimization approach that is used to estimate history 684

dependence from neural spike recordings, and provide a description of the workflow. 685

Next, we delineate the estimators of history dependence considered in this paper, and 686

present the novel Bayesian bias criterion. Finally, we provide details on the benchmark 687

model and how we approximated its history dependence for given past range and 688

embedding parameters. All code for Python3 that was used to analyze the data and to 689

generate the figures is available online at 690

https://github.com/Priesemann-Group/historydependence. 691

Glossary 692

Terms 693

• Past embedding : discrete, reduced representation of past spiking through temporal 694

binning 695

• Past-embedding optimization: Optimization of temporal binning for better estimation of 696

history dependence 697

• Embedding-optimized estimate: Estimate of history dependence for optimized embedding 698

Abbreviations 699

• GLM : generalized linear model 700

• ML: Maximum likelihood 701

• BBC : Bayesian bias criterion 702

• Shuffling : Shuffling estimator based on a bias correction for the ML estimator 703

Symbols 704

• ∆t: bin size of the time bin for current spiking 705

• T : past range of the past embedding 706

• [t− T, t): embedded past window 707

• d: embedding dimension or number of bins 708

• κ: scaling exponent for exponential embedding 709

• Trec: recording length 710
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• N = (Trec − T )/∆t: number of measurements, i.e. number of observed joint events of 711

current and past spiking 712

• X: random variable with binary outcomes x ∈ [0, 1], which indicate the presence of a 713

spike in a time bin ∆t 714

• X−T : random variable whose outcomes are binary sequences x−T ∈ {0, 1}d, which 715

represent past spiking activity in a past range T 716

Information theoretic quantities 717

• H(spiking) ≡ H(X): average spiking information 718

• H(spiking|past) ≡ H(X|X−T ): average spiking information for given past spiking in a 719

past range T 720

• I(spiking; past) ≡ I(X;X−T ): mutual information between current spiking and past 721

spiking in a past range T 722

• R(T ) ≡ I(X;X−T )/H(X): history dependence for given past range T 723

• R(T, d, κ) ≡ I(X;X−Td,κ )/H(X): history dependence for given past range T and past 724

embedding d, κ 725

• Rtot ≡ lim
T→∞

R(T ): total history dependence 726

• ∆R(Ti) ≡ R(Ti)−R(Ti−1): gain in history dependence 727

• τR: information timescale or generalized timescale of history dependence R(T ) 728

• L(T ) ≡ I(X;X−T ): lagged mutual information with time lag T 729

• τL: generalized timescale of lagged mutual information L(T ) 730

Estimated quantities 731

• R̂(T, d, κ): estimated history dependence for given past range T and past embedding d, κ 732

• R̂(T ): embedding-optimized estimate of R(T ) for optimal embedding parameters d∗, κ∗ 733

• R̂tot: estimated total history dependence, i.e. average R̂(T ) for T ∈ [TD, Tmax], with 734

interval of saturated estimates [TD, Tmax] 735

• τ̂R: estimated information timescale 736

Basic definitions 737

Definition of history dependence. We quantify history dependence R(T ) as the 738

mutual information I(X,X−T ) between present and past spiking X and X−T , 739

normalized by the binary Shannon information of spiking H(X), i.e. 740

R(T ) ≡ I(X,X−T )

H(X)
= 1− H(X|X−T )

H(X)
. (6) 741

Under the assumption of stationarity and ergodicity the mutual information can be 742

computed either as the average over the stationary distribution p(x,x−T ), or the time 743

average [21,59], i.e. 744

I(X,X−T ) = H(X)−H(X|X−T ) (7) 745

=
∑

x∈{0,1}

p(x) log2

1

p(x)
−

∑
x−T∈{0,1}d

p(x,x−T ) log2

1

p(x|x−T )
(8) 746

=
∑

x∈{0,1}

∑
x−T∈{0,1}d

p(x,x−T ) log2

p(x|x−T )

p(x)
(9) 747

= lim
N→∞

1

N

N∑
n=1

log2

p(xtn |x−Ttn )

p(xtn)
. (10) 748

Here, xtn ∈ {0, 1} indicates the presence of a spike in a small interval [tn, tn + ∆t) with 749

∆t = 5 ms throughout the paper, and x−Ttn encodes the spiking history in a time window 750

[tn − T, tn) at times tn = n∆t that are shifted by ∆t. 751
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Definition of lagged mutual information. The lagged mutual information 752

L(T ) [41] for a stationary neural spike trains is defined as the mutual information 753

between present spiking X and past spiking X−T with delay T , i.e. 754

L(T ) ≡ I(X;X−T ) (11) 755

=
∑

x∈{0,1}

∑
x−T∈{0,1}

p(x, x−T ) log2

p(x|x−T )

p(x)
(12) 756

= lim
N→∞

1

N

N∑
n=1

log2

p(xtn |xtn−T )

p(xtn)
. (13) 757

Here, xtn ∈ {0, 1} indicates the presence of a spike in a time bin [tn, tn + ∆t) and 758

xtn−T ∈ {0, 1} the presence of a spike in a single past bin [tn − T, tn − T + ∆t) at times 759

tn = n∆t that are shifted by ∆t. In analogy to R(T ), one can apply the generalized 760

timescale to the lagged mutual information to obtain a timescale τL with 761

τL ≡
n∑
i=1

T̄i
L(Ti)∑n
i=j L(Tj)

− T0. (14)

Definition of autocorrelation. The autocorrelation C(T ) for a stationary neural 762

spike trains is defined as 763

C(T ) =
Cov[xtn , xtn−T ]

Var[xtn ]
=
〈xtnxtn−T 〉 − 〈xtn〉2

〈x2
tn〉 − 〈xtn〉2

(15)

with delay T and xtn and xtn−T as above. For an exponentially decaying 764

autocorrelation C(T ) ∝ exp
(
− T
τC

)
, τC is called autocorrelation time. 765

Past embedding. Here, we encode the spiking history in a finite time window 766

[t− T, t) as a binary sequence x−Tt = (x−Tt,i )di=1 of binary spike counts x−Tt,i ∈ {0, 1} in d 767

past bins (Fig 2). When more than one spike can occur in a single bin, x−Tt,i = 1 is 768

chosen for spike counts larger than the median activity in the ith bin. This type of 769

temporal binning is more generally referred to as past embedding. It is formally defined 770

as a mapping 771

ΓT (θ) : FT → Sd (16) 772

from the set of all possible spiking histories FT = σ(Xτ : τ ∈ [t− T, t)), i.e. the sigma 773

algebra generated by the point process X (neural spiking) in the time interval [t− T, t), 774

to the set of d-dimensional binary sequences Sd. We can drop the dependence on the 775

time t because we assume stationarity of the point process. Here, T is the embedded 776

past range, d the embedding dimension, and θ denotes all the embedding parameters 777

that govern the mapping, i.e. θ = (d, ...). The resulting binary sequence at time t for 778

given embedding θ and past range T will be denoted by x−Tt,θ . In this paper, we consider 779

the following two embeddings for the estimation of history dependence. 780

Uniform embedding. If all bins have the same bin width τ = T/d, the embedding 781

is called uniform. The main drawback of the uniform embedding is that higher past 782

ranges T enforce a uniform decrease in resolution τ when d is fixed. 783

Exponential embedding. One can generalize the uniform embedding by letting bin 784

widths increase exponentially with bin index j = 1, ..., d according to τj = τ110(j−1)κ. 785

Here, τ1 gives the bin size of the first past bin, and is uniquely determined when T , d 786
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and κ are specified. Note that κ = 0 yields a uniform embedding, whereas κ > 0 787

decreases resolution on distant past spikes. For fixed embedding dimension d and past 788

range T , this allows to retain a higher resolution on spikes in the more recent past. 789

Sufficient embedding. Ideally, the past embedding preserves all the information 790

that the spiking history in the past range T has about the present spiking dynamics. In 791

that case, no additional past information has an influence on the probability for xt once 792

the embedded spiking history x−Tt,θ is given, i.e. 793

p(xt|x−Tt,θ ,x
−T
t,ν ) = p(xt|x−Tt,θ ) (17) 794

for any other past embedding x−Tt,ν . If Eq (17) holds for all times t, the embedding 795

ΓT (θ) is called a sufficient embedding. For the remainder of this paper, the sequences 796

of sufficient embeddings are denoted by x−Tt . 797

Insufficient embeddings cause underestimation of history dependence. The 798

past embedding is essential when inferring history dependence from recordings, because 799

an insufficient embedding causes underestimation of history dependence. To show this, 800

we note that for any embedding parameters θ and past range T the Kullback-Leibler 801

divergence between the spiking probability for the sufficient embedding p(xt|x−Tt ) and 802

p(xt|x−Tt,θ ) cannot be negative [60], i.e. 803

DKL

[
p(xt|x−Tt )||p(xt|x−Tt,θ )

]
=

∑
xt∈{0,1}

p(xt|x−Tt ) log2

p(xt|x−Tt )

p(xt|x−Tt,θ )
≥ 0, (18) 804

with equality iff p(xt|x−Tt,θ ) = p(xt|x−Tt ). By taking the average over all times tn, we 805

arrive at 806

0 ≤ lim
N→∞

1

N

N∑
n=1

∑
xtn∈{0,1}

p(xtn |x−Ttn ) log2

p(xtn |x−Ttn )

p(xtn |x−Ttn,θ)
(19) 807

= lim
N→∞

1

N

N∑
n=1

∑
xtn∈{0,1}

p(xtn |x−Ttn ,x−Ttn,θ) log2

1

p(xtn |x−Ttn,θ)
(20) 808

− lim
N→∞

1

N

N∑
n=1

∑
xtn∈{0,1}

p(xtn |x−Ttn ) log2

1

p(xtn |x−Ttn )
(21) 809

=H(X|X−Tθ )−H(X|X−T ), (22) 810

where the last step follows from stationarity and ergodicity and marginalizing out x−Ttn 811

in the first term. From here, it follows that one always underestimates the history 812

dependence in neural spiking, as long as the embedding is not sufficient, i.e. 813

R(T, θ) ≡ 1− H(X|X−Tθ )

H(X)
≤ 1− H(X|X−T )

H(X)
= R(T ). (23) 814

Estimation of history dependence using past-embedding 815

optimization 816

The past embedding is crucial in determining how much history dependence we can 817

capture, since an insufficient embedding θ leads to an underestimation of the history 818

dependence R(T ) ≥ R(T, θ). In order to capture as much history dependence as 819
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possible, the embedding θ should be chosen to maximize the estimated history 820

dependence R(T, θ). Since the history dependence has to be estimated from data, we 821

formulate the following embedding optimization procedure in terms of the estimated 822

history dependence R̂(T, θ). 823

Embedding optimization. For given T , find the optimal embedding θ∗ that 824

maximizes the estimated history dependence 825

θ∗ = arg max
θ

R̂(T, θ). (24) 826

This yields an embedding-optimized estimate R̂(T ) = R̂(T, θ∗) of the true history 827

dependence R(T ). 828

Requirements. Embedding optimization can only give sensible results if the 829

optimized estimates R̂(T, θ) are guaranteed to be unbiased or a lower bound to the true 830

R(T, θ). Otherwise, embeddings will be chosen that strongly overestimate history 831

dependence. In this paper, we therefore use two estimators, BBC and Shuffling, the 832

former of which is designed to be unbiased, and the latter a lower bound to the true 833

R(T, θ) (see below). In addition, embedding optimization works only if the estimation 834

variance is sufficiently small. Otherwise, maximizing over variable estimates can lead to 835

a mild overestimation. We found for a benchmark model that this overestimation was 836

negligibly small for a recording length of 90 minutes for a model neuron with a 4 Hz 837

average firing rate (S1 Fig). For smaller recording lengths, potential overfitting can be 838

avoided by cross-validation, i.e. optimizing embeddings on one half of the recording and 839

computing embedding-optimized estimates on the other half. 840

Implementation. For the optimization, we compute estimates R̂(T, d, κ) for a range 841

of embedding dimensions d ∈ [1, 2, ..., dmax] and scaling parameter κ = [0, ..., κmax]. For 842

each T , we then choose the optimal parameter combination d∗, κ∗ for each T that 843

maximizes the estimated history dependence R̂(T, d, κ), and use R̂(T, d∗, κ∗) as the best 844

estimate of R(T ). 845

Estimation of total history dependence and the information timescale. 846

When estimating history dependence R(T ) from data, there are some adjustments 847

required to estimate the total history dependence Rtot and the information timescale τR. 848

First, estimates R̂(T ) are not guaranteed to converge for large past ranges T , but 849

might decrease due to a reduced resolution of embeddings for higher T (Fig 2D). Thus, 850

we estimated an interval [TD, Tmax] for which estimates have converged. Here, the 851

temporal depth TD and the upper bound Tmax are the first and the last past ranges T 852

for which estimates R̂(T ) are within one standard deviation of the highest estimate 853

R̂max, i.e. R̂(T ) ≥ R̂max − σR̂max
(Fig 2D, vertical blue bars). The standard deviation 854

was estimated by bootstrapping (see Bootstrap confidence intervals). From this interval, 855

an estimate of the total history dependence R̂tot is obtained by averaging R̂(T ) over 856

past ranges T ∈ [TD, Tmax] (Fig 2D, vertical dashed blue line). 857

Second, noisy estimates R̂(T ) are not guaranteed to be monotonously increasing, 858

such that increments ∆R̂(T ) can be negative. Moreover, noisy estimates can lead to 859

positive ∆R̂(T ) even though the true R(T ) has already converged to Rtot. This can 860

have a huge effect on the estimated information timescale τ̂R if one simply uses these 861

estimates in Eq (5). To avoid this, we use knowledge about the behavior of the true 862

R(T ) when estimating ∆R(T ). In particular, we set estimates R̂(T ) equal to the largest 863

previous estimate R̂(T ′) for T ′ < T if they fall below it, and equal to R̂tot if they are 864
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larger than R̂tot. This enforces that the estimated gain ∆R̂(T ) ≥ 0 is non-negative, and 865

excludes spurious gain for high T due to noisy estimates. 866

Finally, the information timescale τR can crucially depend on the choice of the 867

minimum past range T0 in the sum in Eq (5). A T0 > 0 larger than zero allows to 868

ignore short term effects on the history dependence such as the refractory period or 869

different firing modes, which we found beneficial for resolving differences in the 870

timescale among different recorded systems (S15 Fig). In contrast, if the decay is truly 871

exponential, than τR is independent of T0. In this paper, we chose T0 = 10 ms to 872

exclude short term effects, while also not excluding too much past information. 873

Workflow. The estimation workflow using embedding optimization is summarized in 874

(Fig 10). 875

Fig 10. Workflow of past-embedding optimization to estimate history
dependence and its temporal depth. 1) Define a set of embedding parameters d, κ
for fixed past range T . 2) For each embedding d, κ, record sequences of current and
past spiking xtn ,x

−T
tn,θ

for all time steps tn in the recording. 3) Use the frequencies of
the recorded sequences to estimate history dependence for each embedding, either using
maximum likelihood (ML), or fully Bayesian estimation (NSB). 4) Apply regularization,
i.e. the Bayesian bias criterion (BBC) or Shuffling bias correction, such that all
estimates are unbiased or lower bounds to the true history dependence. 5) Select the
optimal embedding to obtain an embedding-optimized estimate of R(T ). 6) Repeat the
estimation for a set of past ranges T to compute estimates of the information timescale
τR and the total history dependence Rtot.

Different estimators of history dependence 876

To estimate R(T, θ), one has to estimate the binary entropy of spiking H(X) in a small 877

time bin ∆t, and the conditional entropy H(X|X−Tθ ) from data. The estimation of the 878

binary entropy only requires the average firing probability p(x=1) = r∆t with 879

Ĥ(X) = −r∆t log2 r∆t− (1− r∆t) log2(1− r∆t), (25) 880

which can be estimated with high accuracy from the estimated average firing rate r 881

even for short recordings. The conditional entropy H(X|X−Tθ ), on the other hand, is 882

much more difficult to estimate. In this paper, we focus on a non-parametric approach 883

that estimates 884

H(X|X−Tθ ) = H(X,X−Tθ )−H(X−Tθ ) (26) 885

by a non-parametric estimation of the entropies H(X−Tθ ) and H(X,X−Tθ ). 886

The estimation of entropy from data is a well-established problem, and we can make 887

use of previously developed entropy estimation techniques for the estimation of history 888

dependence. We here write out the estimation of the entropy term for joint sequences of 889

present and past spiking H(X,X−Tθ ), which is the highest dimensional term and thus 890

the hardest to estimate. Estimation for the marginal entropy H(X−Tθ ) is completely 891

analogous. 892

Computing the entropy requires knowing the statistical uncertainty and thus the 893

probabilities for all possible joint sequences. In the following we will write probabilities 894

as a vector π = (πk)Kk=1, where πk ≡ p
(
(x,x−Tθ )=ak

)
are the probabilities for the 895

K = 2d+1 possible joint spike patterns ak ∈ {0, 1}d+1. The entropy H(X,X−Tθ ) then 896

reads 897

H(X,X−Tθ ) = H(π) = −
K∑
k=1

πk log2 πk. (27) 898
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Once we are able to estimate the probability distribution π, we are able to estimate the 899

entropy. In a non-parametric approach, the probabilities π = (πk)Kk=1 are directly 900

inferred from counts n = (nk)Kk=1 of different spike sequences ak within the spike 901

recording. Each time step [tn, tn + ∆t) provides a sample of present spiking xtn and its 902

history x−Ttn,θ, such that a recording of length Trec provides N = (Trec − T )/∆t data 903

points. 904

Maximum likelihood estimation. Most commonly, probabilities of spike sequences 905

ak are then estimated as the relative frequencies π̂k = nk/N of their occurrence in the 906

observed data. It is the maximum likelihood (ML) estimator of π for the multinomial 907

likelihood 908

p(n|π) ∝
K∏
k=1

πnkk . (28) 909

Plugging the estimates π̂k into the definition of entropy results in the ML estimator of 910

the entropy 911

ĤML(X,X−Tθ ) = −
K∑
k=1

nk
N

log2

nk
N

(29) 912

or history dependence 913

R̂ML(T, θ) = 1− ĤML(X,X−Tθ )− ĤML(X−Tθ )

Ĥ(X)
. (30) 914

The ML estimator has the right asymptotic properties [28,61], but is known to 915

underestimate the entropy severely when data is limited [28,62]. This is because all 916

probability mass is assumed to be concentrated on the observed outcomes. A more 917

concentrated probability distribution results in a smaller entropy, in particular if many 918

outcomes have not been observed. This results in a systematic underestimation or 919

negative bias 920

Bias
[
ĤML(X,X−Tθ )

]
≤ 0. (31) 921

The negative bias in the entropy, which is largest for the highest-dimensional joint 922

entropy ĤML(X,X−Tθ ), then typically leads to severe overestimation of the mutual 923

information and history dependence [27,63]. Because of this severe overestimation, we 924

cannot use the ML estimator for embedding optimization. 925

Bayesian Nemenman-Shafee-Bialek (NSB) estimator. In a Bayesian 926

framework, the entropy is estimated as the posterior mean or minimum mean square 927

error (MMSE) 928

ĤMMSE(n) =

∫
dπH(π)p(π|n) =

∫
dπH(π)

p(n|π)p(π)∫
dπ′p(n|π′)p(π′)

. (32) 929

The posterior mean is the mean of the entropy with respect to the posterior distribution 930

on the probability vector π given the observed frequencies of spike sequences n 931

p(π|n) =
p(n|π)p(π)∫
dπ′p(n|π′)p(π′)

. (33) 932

The probability for i.i.d. observations n from an underlying distribution π is given by 933

the multinomial distribution in Eq (28). 934
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If the prior p(π) is a conjugate prior to the multinomial likelihood, then the high 935

dimensional integral of Eq (32) can be evaluated analytically [32]. This is true for a 936

class of priors called Dirichlet priors, and in particular for symmetric Dirichlet priors 937

p(π|β) ∝
K∏
k=1

πβ−1
k . (34) 938

The prior p(π|β) gives every outcome the same a priori weight, but controls the weight 939

β > 0 of uniform prior pseudo-counts. A β = 1 corresponds to a flat prior on all 940

probability distributions π, whereas β → 0 gives maximum likelihood estimation (no 941

prior pseudo-count). 942

It has been shown that the choice of β is highly informative with respect to the 943

entropy, in particular when the number of outcomes K becomes large [64]. This is 944

because the a priori variance of the entropy vanishes for K →∞, such that for any 945

π ∼ p(π|β) the entropy H(π) is very close to the a priori expected entropy 946

ξ(β) =

∫
dπH(π)p(π|β) = ψ0(Kβ + 1)− ψ0(β + 1), (35) 947

where ψm(z) = ∂m+1
z log Γ(z) are the polygamma functions. In addition, a lot of data is 948

required to counter-balance this a priori expectation. The reason is the prior adds 949

pseudo-counts on every outcome, i.e. it assumes that every outcome has been observed β 950

times prior to inference. In order to influence a prior that constitutes K pseudo-counts, 951

one needs at least N > K samples, with more data required the sparser the true 952

underlying distribution. Therefore, an estimator of the entropy for little data and fixed 953

concentration parameter β is highly biased towards the a priori expected entropy ξ(β). 954

Nemenman et al. [33] exploited the tight link between concentration parameter β 955

and the a priori expected entropy to derive a mixture prior 956

pNSB(π) ∝
∫
dβ

∣∣∣∣ ∂ξ∂β
∣∣∣∣ p(π|β), (36) 957

∂ξ

∂β
= Kψ1(Kβ + 1)− ψ1(β + 1), (37) 958

that weights Dirichlet priors to be flat with respect to the expected entropy ξ(β). Since 959

the variance of this expectation vanishes for K � 1 [64], for high K the prior is also 960

approximately flat with respect to the entropy, i.e. H(π) ∼ U(0, log2K) for 961

π ∼ pNSB(π). The resulting MMSE estimator for the entropy is referred to as the NSB 962

estimator 963

ĤNSB(n) =

∫
dπH(π)

p(n|π)pNSB(π)∫
dπ′p(n|π′)pNSB(π′)

(38) 964

=

∫
dβ dξdβ (β)Ĥ(β)ρ(β,n)∫
dβ′ dξdβ (β′)ρ(β′,n)

. (39) 965

Here, ρ(β,n) is proportional to the evidence for given concentration parameter 966

ρ(β,n) :=
Γ(Kβ)

Γ(N +Kβ)

K∏
i=1

Γ(ni + β)

Γ(β)
(40) 967

∝
∫
dπ p(n|π) p(π|β) = p(n|β), (41) 968
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where Γ(x) is the gamma function. The posterior mean of the entropy for given 969

concentration parameter is 970

Ĥ(β) =

K∑
i=1

ni + β

N +Kβ
[ψ0(N +Kβ + 1)− ψ0(ni + β + 1)]. (42) 971

From the Bayesian entropy estimate, we obtain an NSB estimator for history 972

dependence 973

R̂NSB(T, θ) = 1− ĤNSB(X,X−Tθ )− ĤNSB(X−Tθ )

Ĥ(X)
. (43) 974

where the marginal and joint entropies are estimated individually using the NSB 975

method. 976

To compute the NSB entropy estimator, one has to perform a one-dimensional 977

integral over all possible concentration parameters β. This is crucial to be unbiased 978

with respect to the entropy. An implementation of the NSB estimator for Python3 is 979

published alongside the paper with our toolbox [37]. To compute the integral, we use a 980

Gaussian approximation around the maximum a posteriori β∗ to define sensible 981

integration bounds when the likelihood is highly peaked, as proposed in [34]. 982

Bayesian bias criterion. The goal of the Bayesian bias criterion (BBC) is to 983

indicate when estimates of history dependence are potentially biased. It might indicate 984

bias even when estimates are unbiased, but the opposite should never be true. 985

To indicate a potential estimation bias, the BBC compares ML and BBC estimates 986

of the history dependence. ML estimates are biased when too few joint sequences have 987

been observed, such that the probability for unobserved or undersampled joint outcomes 988

is underestimated. To counterbalance this effect, the NSB estimate adds β 989

pseudo-counts to every outcome, and then infers β with an uninformative prior. For the 990

BBC, we turn the idea around: when the assumption of no pseudo-counts (ML) versus a 991

posterior belief on non-zero pseudo-counts (NSB) yield different estimates of history 992

dependence, then too few sequences have been observed and estimates are potentially 993

biased. This motivates the following definition of the BBC. 994

The NSB estimator RNSB(T, θ) is biased with tolerance p > 0, if 995

|R̂NSB(T, θ)− R̂ML(T, θ)| > p · R̂NSB(T, θ). (44) 996

Similarly, we define the BBC estimator 997

R̂BBC(T, θ) ≡

{
R̂NSB(T, θ) if R̂NSB(T, θ)− R̂ML(T, θ) ≤ p · R̂NSB(T, θ),

0 otherwise.
(45) 998

This estimator is designed to be unbiased, and can thus can be used for embedding 999

optimization in Eq (24). We use the NSB estimator for R(T, θ) instead of the ML 1000

estimator, because it is generally less biased. A tolerance p > 0 accounts for this, and 1001

accepts NSB estimates when there is only a small difference between the estimates. The 1002

bound for the difference is multiplied by R̂NSB(T, θ), because this provides the scale on 1003

which one should be sensitive to estimation bias. We found that a tolerance of p = 0.05 1004

was small enough to avoid overestimation by BBC estimates on the benchmark model 1005

(Fig 5 and S2 Fig). 1006

Shuffling estimator. The Shuffling estimator was originally proposed in [31] to 1007

reduce the sampling bias of the ML mutual information estimator. It has the desirable 1008

property that it is negatively biased in leading order of the inverse number of samples. 1009
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Because of this property, Shuffling estimates can safely be maximized during embedding 1010

optimization without the risk of overestimation. Here, we therefore propose to use the 1011

Shuffling estimator for embedding-optimized estimation of history dependence. 1012

The idea behind the Shuffling estimator is to rewrite the ML estimator of history 1013

dependence as 1014

R̂ML(T, θ) =
1

Ĥ(X)

(
ĤML(X−Tθ )− ĤML(X−Tθ |X)

)
(46) 1015

and to correct for bias in the entropy estimate ĤML(X−Tθ |X). Since X is well sampled 1016

and thus Ĥ(X) is unbiased, and the bias of the ML entropy estimator is always 1017

negative [28,62], we know that 1018

Bias[R̂ML(T, θ)] = Bias[ĤML(X−Tθ )]− Bias[ĤML(X−Tθ |X)] (47) 1019

≤ −Bias[ĤML(X−Tθ |X)]. (48) 1020

Therefore, if we find a correction term of the magnitude of Bias[ĤML(X−Tθ |X)], we can 1021

turn the bias in the estimate of the history dependence from positive to negative, thus 1022

obtaining an estimator that is a lower bound of the true history dependence. This can 1023

be achieved by subtracting a lower bound of the estimation bias Bias[ĤML(X−Tθ |X)] 1024

from ĤML(X−Tθ |X). 1025

In the following, we describe how [31] obtain a lower bound of the bias in the 1026

conditional entropy ĤML(X−Tθ |X) by computing the estimation bias for shuffled 1027

surrogate data. 1028

Surrogate data are created by shuffling recorded spike sequences such that statistical 1029

dependencies between past bins are eliminated. This is achieved by taking all past 1030

sequences that were followed by a spike, and permuting past observations of the same 1031

bin index j. The same is repeated for all past sequences that were followed by no spike. 1032

The underlying probability distribution can then be computed as 1033

psh(x−Tθ |x) =

d∏
j=1

p(x−Tθ,j |x), (49) 1034

and the corresponding entropy is 1035

H(X−Tθ,sh|X) =

d∑
j=1

H(X−Tθ,j |X). (50) 1036

The pairwise probabilities p(x−Tθ,j |x) are well sampled, and thus each conditional entropy 1037

in the sum can be estimated with high precision. This way, the true conditional entropy 1038

H(X−Tθ,sh|X) for the shuffled surrogate data can be computed and compared to the ML 1039

estimate ĤML(X−Tθ,sh|X) on the shuffled data. The difference between the two 1040

∆ĤML(X−Tθ,sh|X)] ≡ ĤML(X−Tθ,sh|X)−H(X−Tθ,sh|X) (51) 1041

yields a correction term that is on average equal to the bias of the ML estimator on the 1042

shuffled data. 1043

Importantly, the bias of the ML estimator on the shuffled data is in leading order 1044

more negative than on the original data. To see this, we consider an expansion of the 1045

bias on the conditional entropy in inverse powers of the sample size N [27, 63] 1046

Bias[ĤML(X−Tθ |X)] = − 1

2N ln 2

∑
x∈{0,1}

(
K̃(x)− 1

)
+O

(
1

N2

)
. (52) 1047
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Here, K̃(x) denotes the number of past sequences with nonzero probability 1048

p(x−Tθ =ak|x) > 0 of being observed when followed by a spike (x = 1) or no spike 1049

(x = 0), respectively. Notably, the bias is negative in leading order, and depends only on 1050

the number of possible sequences K̃(x). For the shuffled surrogate data, we know that 1051

psh(x−Tθ =ak|x) = 0 implies p(x−Tθ =ak|x) = 0, but Shuffling may lead to novel 1052

sequences that have zero probability otherwise. Hence the number of possible sequences 1053

under Shuffling can only increase, i.e. K̃sh(x) ≥ K̃(x), and thus the bias of the ML 1054

estimator under Shuffling to first order is always more negative than for the original 1055

data 1056

Bias[ĤML(X−Tθ,sh|X)] . Bias[ĤML(X−Tθ |X)]. (53) 1057

Terms that could render it higher are of order O(N−2) and higher and are assumed to 1058

have no practical relevance. 1059

This motivates the following definition of the Shuffling estimator: Compute the 1060

difference between the ML estimator on the shuffled and original data to yield a 1061

bias-corrected Shuffling estimate 1062

ĤML,sh(X−Tθ |X) ≡ ĤML(X−Tθ |X)−∆ĤML(X−Tθ,sh|X), (54) 1063

and use this to estimate history dependence 1064

R̂Shuffling(T, θ) ≡ 1

Ĥ(X)

(
ĤML(X−Tθ )− ĤML,sh(X−Tθ |X)

)
. (55) 1065

Because of Eq (48) and Eq (53), we know that this estimator is negatively biased in 1066

leading order 1067

R̂Shuffling(T, θ) . 0 (56) 1068

and can safely be used for embedding optimization. 1069

Estimation of history dependence by fitting a generalized linear model 1070

(GLM). Another approach to the estimation history dependence is to model the 1071

dependence of neural spiking onto past spikes explicitly, and to fit model parameters to 1072

maximize the likelihood of the observed spiking activity [21]. For a given probability 1073

distribution p(xt|x−Tt , ν) of the model with parameters parameters ν, the conditional 1074

entropy can be estimated as 1075

Ĥ(X|X−T , ν) =
1

N

N∑
n=1

log2 p(xtn |x−Ttn , ν)−1 (57) 1076

which one can plug into Eq (6) to obtain an estimate of the history dependence. The 1077

strong law of large numbers [59] ensures that if the model is correct, i.e. 1078

p(xt|x−Tt , ν) = p(xt|x−Tt ) for all t, this estimator converges to the entropy H(X|X−T ) 1079

for N →∞. However, any deviations from the true distribution due to an incorrect 1080

model will lead to an underestimation of history dependence, similar to choosing an 1081

insufficient embedding. Therefore, model parameters should be chosen to maximize the 1082

history dependence, or to maximize the likelihood 1083

ν∗ = arg max
ν

N∑
n=1

log2 p(xtn |x−Ttn , ν). (58) 1084

We here consider a generalized linear model (GLM) with exponential link function that 1085

has successfully been applied to make predictions in neural spiking data [20] and can be 1086

used for the estimation of directed, causal information [21]. In a GLM with past 1087
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dependencies, the spiking probability at time t is described by the instantaneous rate or 1088

conditional intensity function 1089

λ(t|x−Tt , ν) = lim
δt→0

p(t̂ ∈ [t, t+ δt]|x−Tt , ν)

δt
. (59) 1090

Since we discretize spiking activity in time as spiking or non-spiking in a small time 1091

window ∆t, the spiking probability is given by the binomial probability 1092

p(xt=1|x−Tt , ν) =
λ(t|x−Tt , ν)∆t

1 + λ(t|x−Tt , ν)∆t
. (60) 1093

The idea of the GLM is that past events contribute independently to the probability of 1094

spiking, such that the conditional intensity function factorizes over their contributions. 1095

Hence, it can be written as 1096

λ(t|x−Tt , µ,h) = exp

µ+

d∑
j=1

hjx
−T
t,j

 , (61) 1097

where hj gives the contribution of past activity x−Tt,j in past time bin j to the firing rate, 1098

and µ is an offset that is adapted to match the average firing rate. 1099

Although fitting GLM parameters is more data-efficient than computing 1100

non-parametric estimates, overfitting may occur for limited data and high embedding 1101

dimensions d, such that d cannot be chosen arbitrarily high. In order to estimate a 1102

maximum of history dependence for limited d, we apply the same type of binary past 1103

embedding as we use for the other estimators, and optimize the embedding parameters 1104

by minimizing the Bayesian information criterion [65]. In particular, for given past 1105

range T , we choose embedding parameters d∗, κ∗ that minimize 1106

BIC(d, κ) = (d+ 1) log2N − 2L∗(d, κ), (62) 1107

where N is the number of samples and 1108

L∗(d, κ) =

N∑
n=1

log2 p(xtn |x−Ttn,d,κ, µ
∗,h∗) (63) 1109

is the maximized log-likelihood of the recorded spike sequences (xtn ,x
−T
tn,d,κ

)Nn=1 for 1110

optimal model parameters µ∗,h∗. We then use the optimized embedding parameters to 1111

estimate the conditional entropy according to 1112

ĤGLM(X|X−Td∗,κ∗) = − 1

N
L∗(d∗, κ∗), (64) 1113

which results in the GLM estimator of history dependence 1114

R̂GLM(T ) = 1−
ĤGLM(X|X−Td∗,κ∗)

Ĥ(X)
. (65) 1115

Bootstrap confidence intervals. In order to estimate confidence intervals of 1116

estimates R̂(T, θ) for given past embeddings, we apply the blocks of blocks 1117

bootstrapping method [66]. To obtain bootstrap samples, we first compute all the 1118

binary sequences (xtn ,x
−T
tn,θ

) for n = 1, ..., N that result from discretizing the spike 1119

recording in N time steps ∆t and applying the past embedding. We then randomly 1120

draw N/l blocks of length l of the recorded binary sequences such that the total number 1121
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of redrawn sequences is the same as the in the original data. We choose l to be the 1122

average interspike interval (ISI) in units of time steps ∆t, i.e. l = 1/(r∆t) with average 1123

firing rate r. Sampling successive sequences over the typical ISI ensures that 1124

bootstrapping samples are representative of the original data, while also providing a 1125

high number of distinct blocks that can be drawn. 1126

The different estimators (but not the bias criterion) are then applied to each 1127

bootstrapping sample to obtain confidence intervals of the estimators. Instead of 1128

computing the 95% confidence interval via the 2.5 and 97.5 percentiles of the 1129

bootstrapped estimates, we assumed a Gaussian distribution and approximated the 1130

interval via [R̂(T, θ)− 2σ̂R(T, θ), R̂(T, θ) + 2σ̂R(T, θ)], where σ̂R(T, θ) is the standard 1131

deviation over the bootstrapped estimates. 1132

We found that the true standard deviation of estimates for the model neuron was 1133

well estimated by the bootstrapping procedure, irrespective of the recording length (S10 1134

Fig). Furthermore, we simulated 100 recordings of the same recording length, and for 1135

each computed confidence interval for the past range T with the highest estimated 1136

history dependence R(T ). By measuring how often the model’s true value for the same 1137

embedding was included in these intervals, we found that the Gaussian confidence 1138

intervals are indeed close to the claimed confidence level (S10 Fig). This indicates that 1139

the bootstrap confidence intervals approximate well the uncertainty associated with 1140

estimates of history dependence. 1141

Cross-validation. For small recording lengths, embedding optimization may cause 1142

overfitting through the maximization of variable estimates (S1 Fig). To avoid this type 1143

of overestimation, we apply one round of cross-validation, i.e. we optimize embeddings 1144

over the first half of the recording, and evaluate estimates for the optimal past 1145

embedding on the second half. We chose this separation of training and evaluation data 1146

sets, because it allows the fastest computation of binary sequences (xtn ,x
−T
tn,θ

) for the 1147

different embeddings during optimization. We found that none of the cross-validated 1148

embedding-optimized estimates were systematically overestimating the true history 1149

dependence for the benchmark model for recordings as short as three minutes (S1 Fig). 1150

Therefore, cross-validation allows to apply embedding optimization to estimate history 1151

dependence even for very short recordings. 1152

Benchmark neuron model 1153

Generalized leaky integrate-and-fire neuron with spike-frequency 1154

adaptation. As a benchmark model, we chose a generalized leaky integrate-and-fire 1155

model (GLIF) with an additional adaptation filter ξ (GLIF-ξ) that captures 1156

spike-frequency adaptation over 20 seconds [43]. 1157

For a standard leaky integrate-and-fire neuron, the neuron’s membrane is formalized 1158

as an RC circuit, where the cell’s lipid membrane is modeled as a capacitance C, and 1159

the ion channels as a resistance that admits a leak current with effective conductance 1160

gL. Hence, the temporal evolution of the membrane’s voltage V is governed by 1161

CV̇ = −gL(V − VR) + Iext(t). (66) 1162

Here, VR denotes the resting potential and Iext(t) external currents that are induced by 1163

some external drive. The neuron emits an action potential (spike) once the neuron 1164

crosses a voltage threshold VT , where a spike is described as a delta pulse at the time of 1165

emission t̂. After spike emission, the neuron returns to a reset potential V0. Here, we do 1166

not incorporate an explicit refractory period, because interspike intervals in the 1167

simulation were all larger than 10ms. For constant input current Iext, integrating Eq 1168

March 9, 2021 32/50



(66) yields the membrane potential between two spiking events 1169

V (t) = V∞ + (V0 − V∞)e−γ(t−t̂0), (67) 1170

where t̂0 is the time of the most recent spike, γ = gL/C the inverse membrane timescale 1171

and V∞ = VR + Iext/γ the equilibrium potential. 1172

In contrast to the LIF, the GLIF models the spike emission with a soft spiking 1173

threshold. To do that, spiking is described by an inhomogeneous Poisson process, where 1174

the spiking probability in a time window of width δt� 1 is given by 1175

p(t̂ ∈ [t, t+ δt]) = 1− exp

(∫ t+δt

t

λ(s)ds

)
≈ λ(t)δt. (68) 1176

Here, the spiking probability is governed by the time dependent firing rate 1177

λ(t) = λ0 exp

(
V (t)− VT (t)

∆V

)
. (69) 1178

The idea is that once the membrane potential V (t) approaches the firing threshold 1179

VT (t), the firing probability increases exponentially, where the exponential increase is 1180

modulated by 1/∆V . For ∆V → 0, we recover the deterministic LIF, while for larger 1181

∆V the emission becomes increasingly random. 1182

In the GLIF-ξ, the otherwise constant threshold V ∗T is modulated by the neuron’s 1183

own past activity according to 1184

VT (t) = V ∗T +
∑
t̂j<t

ξ(t− t̂j). (70) 1185

Thus, depending on their spike times t̂j , emitted action potentials increase or decrease 1186

the threshold additively and independently according to an adaptation filter ξ(t). 1187

Thereby ξ(t) = 0 for t < 0 to consider effects of action potentials that were emitted in 1188

the past only. In the experiments conducted in [43], the following functional form for 1189

the adaptation filter was extracted: 1190

ξ(s) =

{
aξ , if 0 < s ≤ Tξ
aξ

(
s
Tξ

)−βξ
, if Tξ < s < 22 s.

(71) 1191

The filter is an effective model not only for the measured increase in firing threshold, 1192

but also for spike-triggered currents that reduce the membrane potential. When 1193

mapped to the effective adaptation filter ξ, it turned out that past spikes lead to a 1194

decrease in firing probability that is approximately constant over a period Tξ = 8.3 ms, 1195

after which it decays like a power-law with exponent βξ = 0.93, until the contributions 1196

are set to zero after 22 s. 1197

Model variant with 1s past kernel. For demonstration, we also simulated a 1198

variant of the above model with a 1s past kernel 1199

ξ1s(s) =

{
a1s
ξ , if 0 < s ≤ Tξ
a1s
ξ

(
s
Tξ

)−βξ
, if Tξ < s < 1 s.

(72) 1200

All parameters are identical apart from the strength of the kernel a1s
ξ = 35.2 mV, which 1201

was adapted to maintain a firing rate of 4 Hz despite the shorter kernel. 1202
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Simulation details. In order to ensure stationarity, we simulated the model neuron 1203

exposed to a constant external current Iext = const. over a total duration of 1204

Trec = 900 min. Thereby, the current Iext was chosen such that the neuron fired with a 1205

realistic average firing rate of 4 Hz. During the simulation, Eq (66) was integrated using 1206

simple Runge-Kutta integration with an integration time step of δt = 0.5 ms. At every 1207

time step, random spiking was modeled as a binary variable with probability as in Eq 1208

(68). After a burning-in time of 100 s, spike times were recorded and used for the 1209

estimation of history dependence. The detailed simulation parameters can be found in 1210

Table 1. 1211

Table 1. Simulation parameters of the GLIF-ξ model.

Term Description Value Units
λ0 Latency 2.0 ms−1

1/γ Membrane timescale 15.3 ms
V∞ Equilibrium potential -45.9 mV
V0 Reset potential -38.8 mV
V ∗T Firing threshold baseline -51.9 mV
∆V Firing threshold sharpness 0.75 mV
αξ Magnitude of the effective adaptation filter ξ 19.3 mV
βξ Scaling exponent of the effective adaptation filter ξ 0.93 -
Tξ Cutoff of the effective adaptation filter ξ 8.3 ms
δt Simulation step 0.5 ms

The parameters were originally extracted from experimental recordings of (n=14) L5
pyramidal neurons [43].

Computation of the total history dependence. In order to determine the total 1212

history dependence in the simulated spiking activity, we computed the conditional 1213

entropy H(X|X−∞) from the conditional spiking probability in Eq (68) that was used 1214

for the simulation. Note that this is only possible because of the constant input current, 1215

otherwise the conditional spiking probability would also capture information about the 1216

external input. 1217

Since the conditional probability of spiking used in the simulation computes the 1218

probability in a simulation step δt = 0.5 ms, we first have to transform this to a 1219

probability of spiking in the analysis time step ∆t = 5 ms. To do so, we compute the 1220

probability of no spike in a time step [t, t+ ∆t) according to 1221

psim(xt=0|x−∞t ) =

∆t/δt∏
j=1

[1− λ̃(t+ (j − 1)δt)δt], (73) 1222

and then compute the probability of at least one spike by 1223

p(xt=1|x−∞t ) = 1− p(xt=0|x−∞t ). Here, the rate ˜λ(t) is computed as λ(t) in Eq (69), 1224

but only with respect to past spikes that are emitted at times t̂ < t. This is because no 1225

spike that occurs within [t, t+ ∆t) must be considered when computing 1226

psim(xt=0|x−∞t ). 1227

For sufficiently long simulations, one can make use of the SLLN to compute the 1228

conditional entropy 1229

Hsim(X|X−∞) = − 1

N

N∑
n=1

log2 psim(xtn |x−∞tn ), (74) 1230
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and thus the total history dependence 1231

Rtot = 1− Hsim(X|X−∞)

Ĥ(X)
, (75) 1232

which gives an upper bound to the history dependence for any past embedding. 1233

Computation of history dependence for given past embedding. To compute 1234

history dependence for given past embedding, we use that the model neuron can be well 1235

approximated by a generalized linear model (GLM) within the parameter regime of our 1236

simulation. We can thus fit a GLM to the simulated data for the given past embedding 1237

T, d, κ to obtain a good approximation of the corresponding true history dependence 1238

R(T, d, κ). Note that this is a specific property if this model and does not hold in 1239

general. For example in experiments, we found that the GLM accounted for less history 1240

dependence than model-free estimates (Fig 6). 1241

To map the model neuron to a GLM, we plug the membrane and threshold dynamics 1242

of Eq (67) and Eq (70) into the equation for the firing rate Eq(69), i.e. 1243

λ(t) = exp

log λ0 + V∞ − V ∗T +
∑
t̂j<t

ξ(t− t̂j) + (V0 − V∞)e−γ(t−t̂0)

 . (76) 1244

For the parameters used in the simulation, the decay time of the reset term V0 − V∞ is 1245

1/γ = 15.3 ms. When compared to the minimum and mean inter-spike intervals of 1246

ISImin = 25,ms and ISI = 248 ms, it is apparent that the probability for two spikes to 1247

occur within the decay time window is negligibly small. Therefore, one can safely 1248

approximate 1249

(V0 − V∞)e−γ(t−t̂0) ≈
∑
t̂j<t

(V0 − V∞)e−γ(t−t̂j), (77) 1250

i.e. describing the potential reset after a spike as independent of other past spikes, 1251

because contributions beyond the last spike (j > 0) are effectively zero. Using the above 1252

approximation, one can formulate the rate as in a generalized linear model with 1253

λ(t) = exp

µ d∑
j=1

hjx
−
t,j

 , (78) 1254

where 1255

µ = log λ0 + V∞ − V ∗T (79) 1256

hj = ξ(jδt) + (V0 − V∞)e−γjδt, (80) 1257

and x−t,j ∈ {0, 1} indicates whether the neuron spiked in [t− jδt, t− (j + 1)δt]. 1258

Therefore, the true spiking probability of the model is well described by a GLM. 1259

We use this relation to approximate the history dependence R(T, d, κ) for any past 1260

embedding T, d, κ with a GLM with the same past embedding. Since in that case the 1261

parameters µ and h are not known, we fitted them to the simulated 900 minute 1262

recording via maximum likelihood (see above) and computed the history dependence 1263

according to 1264

R̂GLM(T, d, κ) = 1−
ĤGLM(X|X−Td,κ )

Ĥ(X)
. (81) 1265
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Computation of history dependence as a function of the past range. To 1266

approximate the model’s true history dependence R(T ), for each T we computed GLM 1267

estimates R̂GLM(T, d, κ) (Eq 81) for a varying number of past bins 1268

d ∈ [25, 50, 75, 100, 125, 150]. For each d, the scaling κ was chosen such that the size of 1269

the first past bin was equal or less than 0.5 ms. To save computation time, and to 1270

reduce the effect of overfitting, the GLM parameters where fitted on 300 minutes of the 1271

simulation, whereas estimates R̂GLM(T, d, κ) were computed on the full 900 minutes of 1272

the simulated recording. For each T , we then chose the highest estimate R̂GLM(T, d, κ) 1273

among the estimates for different d as the best estimate of the true R(T ). 1274

Experimental recordings 1275

We analyzed neural spike trains from in vitro recordings of rat cortical cultures and 1276

salamander retina, as well as in vivo recordings in rat dorsal hippocampus (layer CA1) 1277

and mouse primary visual cortex. Data from salamander retina were recorded in strict 1278

accordance with the recommendations in the Guide for the Care and Use of Laboratory 1279

Animals of the National Institutes of Health, and the protocol was approved by the 1280

Institutional Animal Care and Use Committee (IACUC) of Princeton University 1281

(Protocol Number: 1828). The rat dorsal hippocampus experimental protocols were 1282

approved by the Institutional Animal Care and Use Committee of Rutgers 1283

University [46,47]. Data from mouse primary visual cortex were recorded according to 1284

the UK Animals Scientific Procedures Act (1986). 1285

For all recordings, we only analyzed sorted units with firing rates between 0.5 Hz and 1286

10 Hz to exclude the extremes of either inactive units or units with very high firing rate. 1287

Rat cortical culture. Neurons were extracted from rat cortex (1st day postpartum) 1288

and recorded in vitro on an electrode array 2-3 weeks after plating day. We took data 1289

from five consecutive sessions (L_Prg035_txt_nounstim.txt, 1290

L_Prg036_txt_nounstim.txt, ..., L_Prg039_txt_nounstim.txt) with a total duration 1291

of about Trec ≈ 203 min. However, we only analyzed the first 90 minutes to make the 1292

results comparable to the other recorded systems. We analyzed in total n = 48 sorted 1293

units that satisfied our requirement on the firing rate. More details on the recording 1294

procedure can be found in [67], and details on the data set proper can be found in [50]. 1295

Salamander retina. Spikes from larval tiger salamander retinal ganglion cells were 1296

recorded in vitro by extracting the entire retina on an electrode array [68], while a 1297

non-repeated natural movie (leaves moving in the wind) was projected onto the retina. 1298

The recording had a total length of about Trec ≈ 82 min, and we analyzed in total 1299

n = 111 sorted units that satisfied our requirement on the firing rate. More details on 1300

the recording procedure and the data set can be found in [48,49]. The spike recording 1301

as obtained from the Dryad database [48]. 1302

Rat dorsal hippocampus (layer CA1). We evaluated spike trains from a 1303

multichannel simultaneous recording made from layer CA1 of the right dorsal 1304

hippocampus of a Long-Evans rat during an open field task (data set ec014.277). The 1305

data-set provided sorted spikes from 8 shanks with 64 channels. The recording had a 1306

total length of about Trec ≈ 90 min. We analyzed in total n = 28 sorted units that were 1307

indicated as single units and satisfied our requirement on the firing rate. More details 1308

on the experimental procedure and the data set can be found in [46,47]. The spike 1309

recording was obtained from the NSF-founded CRCNS data sharing website. 1310
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Mouse primary visual cortex. Neurons were recorded in vivo during spontaneous 1311

behavior, while face expressions were monitored. Recordings were obtained by 8 1312

simultaneously implanted Neuropixel probes, and sorted units were located using the 1313

location of the electrode contacts provided in [51], and the Allen Mouse Common 1314

Coordinate Framework [69]. We analyzed in total n = 142 sorted units from the mouse 1315

”Waksman” that belonged to primary visual cortex (irrespective of their layer) and 1316

satisfied our requirement on the firing rate. Second, we only selected units that were 1317

recorded for more than Trec ≈ 40 min (difference between the last and first recorded 1318

spike time). Details on the recording procedure and the data set can be found in [58] 1319

and [51]. 1320

Parameters used for embedding optimization 1321

The embedding dimension or number of bins was varied in a range d ∈ [1, dmax], where 1322

dmax was either dmax = 20, dmax = 5 (max five bins) or dmax = 1 (one bin). During 1323

embedding optimization, we explored Nκ = 10 linearly spaced values of the exponential 1324

scaling κ within a range [0, κmax(d)]. The maximum κmax(d) was chosen for each 1325

number of bins d ∈ [1, dmax] such that the bin size of the first past bin was equal to a 1326

minimum bin size, i.e. τ1 = τ1,min, which we chose to be equal to the time step 1327

τ1,min = ∆t = 5 ms. To save computation time, we did not consider any embeddings 1328

with κ > 0 if the past range T and d were such that τ1(κmax(d)) ≤ ∆t for κ = 0. 1329

Similarly, for given T and each d, we neglected values of κ during embedding 1330

optimization if the difference ∆κ to the previous value of κ was less than ∆κmin = 0.01. 1331

In Table 2 we summarize the relevant parameters that were used for embedding 1332

optimization. 1333

Table 2. Parameters used for embedding optimization.

Symbol Value Settings variable name Description
∆t 0.005 embedding_step_size Time step (in seconds) for the discretiza-

tion of neural spiking activity.
d 1, 2, ..., dmax embedding_number_of_bins_set Set of embedding dimensions.
Nκ 10 number_of_scalings Number of linearly spaced values of the

exponential scaling κ.
τ1,min 0.005 min_first_bin_size Minimum bin size (in seconds) of the

first past bin.
∆κmin 0.01 min_step_for_scaling Minimum required difference between

two values of κ.
p 0.05 bbc_tolerance Tolerance for the acceptance of esti-

mates for BBC.
- False cross_validated_optimization Is cross-validation used for optimization

or not.
- 250 number_of_bootstraps_R_max Number of bootstrap samples used to

estimate σR̂max
.

l 1/r∆t block_length_l Block length used for blocks-of-blocks
bootstrapping.

- all estimation_method Estimators for which embeddings are
optimized (BBC, Shuffling)

To facilitate reproduction, we added the settings variable names of the parameters as they are used in the toolbox [37].

Details to Fig 3. For Fig 3B, the process was considered for l = 1 and an 1334

reactivation probability of m = 0.8. For l = 1, all probabilities can easily be calculated, 1335
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with marginal probability to be active p(xt = 1) = h/(1−m+mh), and conditional 1336

probabilities p(xt = 1|xt−1 = 1) = h+ (1− h)m and p(xt = 1|xt−1 = 0) = h. From 1337

these probabilities, the total mutual information Itot and total history dependence Rtot 1338

could be directly computed. We then plotted these quantities as a function of h, where 1339

values of h were chosen to vary the firing rate between 0.5 and 10 Hz, with a bin size of 1340

∆t = 5ms. For Fig 3C, the binary autoregressive process was simulated for n = 107 time 1341

steps with m = 0.8 (l = 1), whereas for l = 5, m was adapted to yield approximately 1342

the same Rtot as for l = 1. The input activation probability h was chosen to lead to a 1343

fixed probability p(x = 1) ≈ 0.025, corresponding to 5 Hz firing rate with ∆t = 5ms. 1344

Autocorrelation C(T ) was computed using the MR.estimator toolbox [53], and ∆R(T ) 1345

and L(T ) were estimated using plugin estimation. For Fig 3D, the same procedures 1346

were applied as in Fig 3C, but now m was varied between 0.5 and 0.95, and h was 1347

adapted for each m to hold the firing rate fixed at 5 Hz. For Fig 3E, the same 1348

procedures were applied as in Fig 3C, but now l was varied between 1 and 10, and h 1349

and m were adapted for each l to hold the firing rate fixed at 5 Hz and Rtot fixed at the 1350

value for l = 1 and m = 0.8. 1351

Details to Fig 4A,B. The branching process was simulated using the MR.estimator 1352

toolbox, with a time step of ∆t = 4 ms, population rate of 500 Hz and subsampling 1353

probability of 0.01. Thus, the subsampled spike train had a firing rate of ≈ 5 Hz. The 1354

branching parameter was set to m = 0.98 with analytic autocorrelation time 1355

τC(m) = 198 ms. For a long simulation, autocorrelation C(T ) was computed using the 1356

MR.estimator toolbox, L(T ) using plugin estimation, and R(T ) using embedding 1357

optimized Shuffling estimator with dmax = 20. The generalized timescales τR and τL 1358

were computed with T0 = 10 ms. 1359

Details to Fig 4C,D. The Izhikevich model was simulated with the PyNN 1360

toolbox [70], with parameters set to the chattering mode (a = 0.02, b = 0.2, c = −50, 1361

d = 2), simulation time bin dt = 0.01 ms, and noisy input with mean 0.011 and standard 1362

deviation 0.001. For the analysis, a time step of ∆t = 1 ms was chosen. Apart from that, 1363

C(T ) and L(T ) were computed as for Fig 4B. Here, R(T ) was computed with BBC and 1364

dmax = 20, which revealed higher Rtot than Shuffling. To compute τR, we set T0 = 0. 1365

Details to Fig 4E,F. The GLIF model was simulated as described in Benchmark 1366

neuron model (model with 22s past kernel). The analysis time step was ∆t = 5 ms. 1367

Apart from that, C(T ) and L(T ) were computed as for Fig 4B. History dependence 1368

R(T ) was estimated using a GLM as described in Benchmark neuron model. To 1369

compute τR, we set T0 = 10 ms. 1370

Details to Fig 5A,B. In Fig 5A,B, we applied the ML, NSB, BBC and Shuffling 1371

estimators for R(d) to a simulated recording of 90 minutes. Embedding parameters were 1372

T = d · τ and κ = 0, with τ = 20 ms and d ∈ [1, 60]. Since the goal was to show the 1373

properties of the estimators, confidence intervals were estimated from 50 repeated 90 1374

minute simulations instead of bootstrapping samples from the same recording. Each 1375

simulation had a burning in period of 100 seconds. To estimate the true R(d), the GLM 1376

was fitted and evaluated on a 900 minute recording. 1377

Details to Fig 5C. In Fig 5C, history dependence R(T ) was estimated on a 90 1378

minute recording for 57 different values of T in a range T ∈ [10 ms, 3 s]. 1379

Embedding-optimized estimates were computed with up to dmax = 25 past bins, and 1380

95% confidence intervals were computed using the standard deviation over n = 100 1381

bootstrapping samples (see Bootstrap confidence intervals). To estimate the true 1382
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R(T, d∗, κ∗) for the optimized embedding parameters d∗, κ∗ with either BBC or 1383

Shuffling, a GLM was fitted for the same embedding parameters on a 300 minute 1384

recording and evaluated on 900 minutes recording for the estimation of R. See above on 1385

how we computed the best estimate of R(T ). 1386

Details to Fig 6. For Fig 6, history dependence R(T ) was estimated for 61 different 1387

values of T in a range T ∈ [10 ms, 5 s]. For each recording, we only analyzed the first 90 1388

minutes to have a comparable recording length. For embedding optimization, we used 1389

dmax = 20 as a default for BBC and Shuffling, and compared the estimates with the 1390

Shuffling estimator optimized for dmax = 5 (max five bins) and dmax = 1 (one bin). For 1391

the GLM, we only estimated R(TD) for the temporal depth TD that was estimated with 1392

BBC. To optimize the estimate, we computed GLM estimates of R(TD) with the 1393

optimal embedding found by BBC, and for varying embedding dimension 1394

d ∈ [1, 2, 3, .., 20, 25, 30, 35, 40, 45, 50], where for each d we chose κ such that τ1 = ∆t. 1395

We then chose the embedding that minimized the BIC, and took the corresponding 1396

estimate R̂(TD) as a best estimate for Rtot. For Fig 6A, we plotted only spike trains of 1397

channels that were identified as single units. For Fig 6B, 95% confidence intervals were 1398

computed using the standard deviation over n = 100 bootstrapping samples. For Fig 1399

6C, embedding-optimized estimates with uniform embedding (κ = 0) were computed 1400

with dmax = 20 (BBC and Shuffling) or dmax = 5 (Shuffling). Medians were computed 1401

over the n = 28 sorted units in CA1. 1402

Details to Figs 7 and 8. For Figs 7 and 8, history dependence was R(T ) was 1403

estimated for 61 different values of T in a range T ∈ [10 ms, 5 s] using the Shuffling 1404

estimator with dmax = 5. The autocorrelation coefficients C(T ) were computed with the 1405

MR.Estimator toolbox [53], and the autocorrelation time τC was obtained using the 1406

exponential_offset fitting function. For each recording, we only analyzed the first 40 1407

minutes to have a comparable recording length. For Fig 7, medians of τR, τC and Rtot 1408

were computed over all sorted units that were analyzed, and 95% confidence intervals on 1409

the medians were obtained by bootstrapping with n = 10000 resamples of the median. 1410

For Fig 8, 95% confidence intervals were computed using the standard deviation over 1411

n = 100 bootstrapping samples. 1412

Practical guidelines: How to estimate history dependence from 1413

neural spike recordings 1414

Estimating history dependence (or any complex statistical dependency) for neural data 1415

is notoriously difficult. In the following, we address the main requirements for a 1416

practical and meaningful analysis of history dependence, and provide guidelines on how 1417

to fulfill these requirements using embedding optimization. A toolbox for Python3 is 1418

available online [37], together with default parameters that worked best with respect to 1419

the following requirements. It is important that practitioners make sure that their data 1420

fulfill the data requirements (points 4 and 5). 1421

1) The embedding of past spiking activity should be individually optimized 1422

to account for very different spiking statistics. It is crucial to optimize the 1423

embedding for each neuron individually, because history dependence can strongly differ 1424

for neurons from different areas or neural systems (Fig 7), or even among neurons 1425

within a single area (see examples in Fig 8). Individual optimization enables a 1426

meaningful comparison of temporal depth and history dependency R between neurons. 1427
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2) The estimation has to capture any non-linear or higher-order statistical 1428

dependencies. Embedding optimization using both, the BBC or Shuffling estimators, 1429

is based on non-parametric estimation, in which the joint probabilities of current and 1430

past spiking are directly estimated from data. Thereby, it can account for any 1431

higher-order or non-linear dependency among all bins. In contrast, the classical 1432

generalized linear model (GLM) that is commonly used to model statistical dependencies 1433

in neural spiking activity [20,21] does not account for higher-order dependencies. We 1434

found that the GLM recovered consistently less total history dependence Rtot (Fig 6D). 1435

Hence, to capture single-neuron history dependence, higher-order and non-linear 1436

dependencies are important, and thus a non-parametric approach is advantageous. 1437

3) Estimation has to be computationally feasible even for a high number of 1438

recorded neurons. Strikingly, while higher-order and non-linear dependencies are 1439

important, the estimation of history dependence does not require high temporal 1440

resolution. Optimizing up to dmax = 5 past bins with variable exponential scaling κ 1441

could account for most of the total history dependence that was estimated with up to 1442

dmax = 20 bins (Fig 6D). With this reduced setup, embedding optimization is feasible 1443

within reasonable computation time. Computing embedding-optimized estimates of the 1444

history dependence R(T ) for 61 different values of T (for 40 minute recordings, the 1445

approach used for Fig 7 and Fig 8) took around 10 minutes for the Shuffling estimator, 1446

and about 8.5 minutes for the BBC per neuron on a single computing node. Therefore, 1447

we recommend using dmax = 5 past bins when computation time is a constraint. Ideally, 1448

however, one should check for a few recordings if higher choices of dmax lead to different 1449

results, in order to cross-validate the choice of dmax = 5 for the given data set. 1450

4) Estimates have to be reliable lower bounds, otherwise one cannot 1451

interpret the results. It is required that embedding-optimized estimates do not 1452

systematically overestimate history dependence for any given embedding. Otherwise, 1453

one cannot guarantee that on average estimates are lower bounds to the total history 1454

dependence, and that an increase in history dependence for higher past ranges is not 1455

simply caused by overestimation. This guarantee is an important aspect for the 1456

interpretation of the results. 1457

For BBC, we found that embedding-optimized estimates are unbiased if the variance 1458

of estimators is sufficiently small (S1 Fig). The variance was sufficiently small for 1459

recordings of 90 minutes duration. When the variance was too high (short recordings 1460

with 3–45 minutes recording length), maximizing estimates for different embedding 1461

parameters introduced very mild overestimation due to overfitting (1–3%) (S1 Fig). The 1462

overfitting can, however, be avoided by cross-validation, i.e. optimizing the embedding 1463

on one half of the recording and computing estimates on the other half. Using 1464

cross-validation, we found that embedding-optimized BBC estimates were unbiased even 1465

for recordings as short as 3 minutes (S1 Fig). 1466

For Shuffling, we also observed overfitting, but the overestimation was small 1467

compared to the inherent systematic underestimation of Shuffling estimates. Therefore, 1468

we observed no systematic overestimation by embedding-optimized Shuffling estimates 1469

on the model neuron, even for shorter recordings (3 minutes and more). Thus, for the 1470

Shuffling estimator, we advice to apply the estimator without cross-validation as long as 1471

recordings are sufficiently long (10 minutes and more, see next point). 1472

5) Spike recordings must be sufficiently long (at least 10 minutes), and of 1473

similar length, in order to allow for a meaningful comparison of total 1474

history dependence and information timescale across experiments. The 1475

recording length affects estimates of the total history dependence Rtot, and especially of 1476
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the information timescale τR. This is because more data allows more complex 1477

embeddings, such that more history dependence can be captured. Moreover, complex 1478

embeddings are particular relevant for long past ranges T . Therefore, if recordings are 1479

shorter, smaller R(T ) will be estimated for long past ranges T , leading to smaller 1480

estimates of τR. We found that for shorter recordings, estimates of Rtot were roughly the 1481

same as for 90 minutes, but estimates of τR were considerably smaller (S2 and S3 Figs). 1482

To allow for a meaningful comparison of temporal depth between neurons, one thus 1483

has to ensure that recordings are sufficiently long (in our experience at least 10 1484

minutes), otherwise differences in τR may not be well resolved. Below 10 minutes, we 1485

found that estimates of τR could be less than half of the value that was estimated for 90 1486

minutes, and also estimates of Rtot showed a notable decrease. In addition, all 1487

recordings should have comparable length to prevent that differences in history 1488

dependence or timescale are due to different recording lengths. 1489
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Supporting information

S1 Fig. Embedding optimization leads to mild overfitting for short
recordings, which can be avoided by cross-validation. Shown is the relative
bias for two versions of the GLIF model with spike adaption, one with 1s and the other
with 22s past kernel. The relative bias refers to the relative difference between
embedding-optimized estimates R̂(T, d∗, κ∗) and the model’s true history dependence
R(T, d∗, κ∗) for the same optimized embedding parameters d∗, κ∗. The relative bias for
R̂tot was computed by first averaging the relative difference
(R̂(T, d∗, κ∗)−R(T, d∗, κ∗))/R(T, d∗, κ∗) for T ∈ [TD, Tmax], and second averaging
again over 30 different simulations for Trec between 1 and 20 minutes, and 10 different
simulations for 45 and 90 minutes. Embedding parameters were optimized for each
simulation, respectively, using parameters as in Table 2 with dmax = 25. (Left) For
BBC, the relative bias for R̂tot is zero only if recordings are sufficiently long (> 20
minutes for 1s kernel, and ≈ 90 minutes for 22s kernel). When recordings are shorter,
the relative bias increases, and thus estimates are mildly overestimating the model’s
true history dependence for the optimized embedding parameters. For Shuffling,
estimates provide lower bounds to the model’s true history dependence, such that the
relative bias remains negative even in the presence of overfitting. (Right) When one
round of cross-validation is applied, i.e. embedding parameters are optimized on the
first, and estimates are computed on the second half of the data, the bias is
approximately zero for BBC even for short recordings, or more negative for the
Shuffling estimator. Therefore, we conclude that the origin of overfitting is the selection
of embedding parameters on the same data that are used for the estimation of R.
Errorbars show 95 % bootstrapping confidence intervals on the mean over n = 10 (45 or
90 min) or n = 30 (≤ 20 min) different simulations.

S2 Fig. For the simulated neuron model, recording length has little effect
on the estimated total history dependence, but large impact on the
estimated information timescale. (Left) Mean estimated total history dependence
R̂tot for different recording lengths, relative to the true total history dependence Rtot of
the model (GLIF with spike adaption with 1s or 22s past kernel). As the recording
length decreases, so does R̂tot. However, with only 3 minutes, one does still infer about
≈ 95% of the true Rtot. (Right) In contrast, the estimated information timescale τ̂R
decreases strongly with decreasing recording length. With 3 minutes and less, only
≈ 75% of the true τR is estimated on average. Note that for the simpler 1s model (top),
an accurate estimation of the true τR is possible for 90 minute recordings, whereas for
the 22s model (bottom), the estimated τ̂R remains below the true value. Shown are
mean values for 30 different simulations for Trec between 1 and 20 minutes, and 10
different simulations for 45 and 90 minutes, as well as 95% confidence intervals on the
mean based on bootstrapping.

S3 Fig. For experimental data, too, recording length has little effect on
estimated total history dependence, but larger impact on the estimated
information timescale. (Left) Total history dependence Rtot for different recording
lengths, relative to the total history dependence estimated for a 90 minute recording. As
long as recordings are 10 minutes or longer, one does still estimate about ≈ 95% as much
or more of Rtot as for 90 minutes, for all three recordings. For less than 10 minutes, the
estimated total history dependence decreases down to 90% (CA1), or increases again
due to overfitting (retina). (Right) Similar to the GLIF model, the estimated
information timescale τR decreases more strongly with decreasing recording length.
With 10 minutes and more, one estimates around ≈ 75% or more of the τR that is
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estimated on a 90 minute recording. Note that for the experimental data, the estimated
timescale of the BBC estimator depends more strongly on the recording time, whereas
the Shuffling estimator is more robust, especially for dmax = 5. Shown is the median
with 95% bootstrapping confidence intervals over n = 10 randomly chosen sorted units
for each recorded system. Before taking the median over sorted units, for each unit we
averaged estimates over 10 excerpts of the full recording, each with 3 or 5 minutes
duration, and over 8,4 and 2 excerpts with 10, 20 and 45 minutes duration, respectively.

S4 Fig. Example estimation results for the generalized leaky
integrate-and-fire model (GLIF) with 1s past kernel. For each recording length,
we show the embedding-optimized estimates of history dependence R(T ) with and
without cross-validation, for BBC (red) and Shuffling (blue) with dmax = 25, as well as
the ground truth for the same embeddings that were found during optimization (dashed
lines). Dashed lines indicate the estimated information timescale τ̂R and total history
dependence R̂tot. Shaded areas indicate ± two standard deviations obtained by
bootstrapping.

S5 Fig. Example estimation results for the generalized leaky
integrate-and-fire model (GLIF) with 22s past kernel. For each recording
length, we show the embedding-optimized estimates of history dependence R(T ) with
and without cross-validation, for BBC (red) and Shuffling (blue) with dmax = 25, as
well as the ground truth for the same embeddings that were found during optimization
(dashed lines). Dashed lines indicate the estimated information timescale τ̂R and total
history dependence R̂tot. Shaded areas indicate ± two standard deviations obtained by
bootstrapping.

S6 Fig. Estimation results for all sorted units in rat dorsal hippocampus
(layer CA1). For each unit, we show the embedding-optimized estimates of history
dependence R(T ) for BBC with dmax = 20 (red), as well as Shuffling with dmax = 20
(blue), dmax = 5 (green) and dmax = 1 (yellow). Dashed lines indicate estimates of the
information timescale τR and total history dependence Rtot. Also shown is the
embedding-optimized GLM estimate (violet square) with a past range equal to the
temporal depth that was found with the BBC estimator.

S7 Fig. Estimation results for all sorted units in rat cortical culture. For
each unit, we show the embedding-optimized estimates of history dependence R(T ) for
BBC with dmax = 20 (red), as well as Shuffling with dmax = 20 (blue), dmax = 5 (green)
and dmax = 1 (yellow). Dashed lines indicate estimates of the information timescale τR
and total history dependence Rtot. Also shown is the embedding-optimized GLM
estimate (violet square) with a past range equal to the temporal depth that was found
with the BBC estimator.

S8 Fig. Estimation results for all sorted units in salamander retina. For
each unit, we show the embedding-optimized estimates of history dependence R(T ) for
BBC with dmax = 20 (red), as well as Shuffling with dmax = 20 (blue), dmax = 5 (green)
and dmax = 1 (yellow). Dashed lines indicate estimates of the information timescale τR
and total history dependence Rtot. Also shown is the embedding-optimized GLM
estimate (violet square) with a past range equal to the temporal depth that was found
with the BBC estimator.
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S9 Fig. Estimation results for all sorted units in mouse primary visual
cortex. For each unit, we show the embedding-optimized Shuffling estimates of history
dependence R(T ) for dmax = 5. Dashed lines indicate estimates of the information
timescale τR and total history dependence Rtot.

S10 Fig. Bootstrapping yields accurate estimates of standard deviation
and confidence intervals. (Left) Shown is the standard deviation on BBC estimates
(blue) obtained from 250 “blocks of blocks” bootstrap samples on a single recording
(GLIF model with 22s past kernel). It agrees well with the true standard deviation
(black), which we estimated from 100 repeated simulations of the same recording length
and embedding. As expected, the standard deviation decreases substantially for longer
recordings. For each recording length, estimates were computed for typical optimal
embedding parameters d∗, κ∗ and T = TD that were found by embedding optimization.
Errorbars show mean and standard deviation of the estimated σ(R) over the repeated
simulations. (Right) The 95% confidence intervals based on two standard deviations
σ(R) have approximately the claimed confidence level (CI accuracy). Standard
deviation was estimated from 250 “blocks of blocks” bootstrap samples. For each
recording length, we computed estimates R̂ and the bootstrapping confidence intervals
on the 100 simulations. We then computed the confidence level (CI accuracy) by
counting how often the true value of R was contained in the estimated confidence
interval (green line). Estimates and the true value of R were computed for the same
typical embedding parameters d∗, κ∗ and T = TD as before.

S11 Fig. Total history dependence and information timescale for
increasing branching parameter m. Similar to the binary autoregressive process,
increasing the branching parameter m increases the total history dependence Rtot,
whereas the information timescale τR stays constant, or even decreases for high m. For
each m, the input activation probability h was adapted to hold the firing rate fixed at 5
Hz.

S12 Fig. The estimated information timescale varies between estimators.
For each sorted unit (grey dots), estimates of the information timescale τR are plotted
relative to the corresponding BBC estimate for dmax = 20. The BBC estimator tends to
estimate higher timescales than the Shuffling estimator on recordings of CA1 and
cortical culture, whereas for retina the medians of different estimators are more similar.
Although estimates of the timescale are highly variable between estimators, Shuffling
with only dmax = 5 past bins still estimates timescales of at least 80 % of the timescales
that are estimated with BBC. Errorbars indicate median over sorted units and 95 %
bootstrapping confidence intervals on the median.

S13 Fig. Total history dependence and information timescale show no
clear dependence on the firing rate, whereas the total mutual information
tends to increase with the rate. Shown are the same estimates of the total history
dependence Rtot and information timescale τR as in Fig 7 (Shuffling estimator with
dmax = 5) versus the firing rates of sorted units (dots). The total mutual information
Itot is equal to Rtot times the spiking entropy H(spiking) of the respective unit. While
Itot tends to increase with firing rate, no clear relation is visible for Rtot or τR.
Errorbars indicate median over sorted units and 95 % bootstrapping confidence intervals
on the median.

S14 Fig. Relationship between total history dependence or information
timescale and standard statistical measures of neural spike trains. Estimates

March 9, 2021 49/50



of the total history dependence Rtot tend to decrease with the median interspike
interval (ISI), and to increase with the coefficient of variation CV . This result is
expected for a measure of history dependence, because a shorter median ISI indicates
that spikes tend to occur together, and a higher CV indicates a deviation from
independent Poisson spiking. In contrast, the information timescale τR tends to increase
with the autocorrelation time, as expected, with no clear relation to the median ISI or
the coefficient of variation CV . However, the correlation between the measures depends
on the recorded system. For example in retina (n = 111), Rtot is significantly
anti-correlated with the median ISI (Pearson correlation coefficient: r = −0.69,
p < 10−5) and strongly correlated with the coefficient of variation CV (r = 0.90,
p < 10−5), and τR is significantly correlated with the autocorrelation time τC (r = 0.75,
p < 10−5). In contrast, for mouse primary visual cortex (n = 142), we found no
significant correlations between any of these measures. Results are shown for the
Shuffling estimator with dmax = 5, and T0 = 10 ms. Errorbars indicate median over
sorted units and 95 % bootstrapping confidence intervals on the median.

S15 Fig. Excluding short-term contributions helps to differentiate the
timescales for different recorded systems. By only considering gains ∆R(T ) for
past ranges T > T0 when computing the information timescale τR, short-term effects
that are related to the refractory period and different firing modes are excluded. The
higher T0, the higher is the distance in the median τR between systems (especially
between salamander retina and mouse primiary visual cortex). This is because both
timescales τR and τC increase with T0 for CA1 and primary visual cortex, whereas they
decrease for retina. The same holds for the autocorrelation time τC , where only delays
T > T0 were considered when fitting an exponential decay to the autocorrelograms.
Note that if the decay is perfectly exponential, then T0 does not affect the results.
Estimates of Rtot and τR are shown for the Shuffling estimator with dmax = 5.
Errorbars indicate median over sorted units and 95 % bootstrapping confidence intervals
on the median.

S16 Fig. Total history dependence decreases for small time bins ∆t. The
choice of the time bin ∆t of the spiking activity has little effect on the information
timescale τR, whereas the total history dependence Rtot decreases for small time bins
∆t < 5 ms. This is consistent across experiments. The smaller the time bin, the higher
the risk that noise in the spike emission reduces the overall predictability or history
dependence in the spiking, whereas an overly large time bin holds the risk of destroying
coding relevant time information in the spike train. Thus, we chose the smallest time
bin ∆t = 5 ms that does not yet show a substantial decrease in Rtot. We do not plot
results for higher ∆t, because for higher ∆t we observed many instances of multiple
spikes in the same time bin. Results are shown for the Shuffling estimator with
dmax = 5, and T0 = 10 ms. Errorbars indicate median over sorted units and 95 %
bootstrapping confidence intervals on the median.
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Abstract

Information processing can leave distinct footprints on the statistical history
dependence in single neuronspiking. Statistical history dependence can be quantified
using information theory, but its estimation from experimental recordings

::::::::
statistics

::
of

:::::
neural

::::::::
spiking.

::::
For

::::::::
example,

::::::::
efficient

::::::
coding

:::::::::
minimizes

::::
the

:::::::::
statistical

::::::::::::
dependencies

:::
on

:::
the

:::::::
spiking

:::::::
history,

:::::
while

::::::::
temporal

:::::::::::
integration

::
of

:::::::::::
information

::::
may

:::::::
require

:::
the

:::::::::::
maintenance

::
of

:::::::::::
information

::::
over

::::::::
different

::::::::::
timescales.

:::
To

::::::::::
investigate

::::::
these

:::::::::
footprints,

::
we

::::::::::
developed

:
a
:::::
novel

:::::::::
approach

::
to

::::::::
quantify

:::::::
history

:::::::::::
dependence

::::::
within

:::
the

:::::::
spiking

:::
of

:
a

:::::
single

:::::::
neuron,

:::::
using

::::
the

:::::::
mutual

::::::::::
information

::::::::
between

::::
the

:::::
entire

:::::
past

:::
and

:::::::
current

:::::::
spiking.

:::::
This

:::::::
measure

::::::::
captures

:::::
how

:::::
much

::::
past

:::::::::::
information

::
is

:::::::::
necessary

::
to

:::::::
predict

::::::
current

::::::::
spiking.

::
In

:::::::::
contrast,

:::::::
classical

:::::::::::
time-lagged

:::::::::
measures

::
of

:::::::::
temporal

::::::::::
dependence

:::
like

:::
the

::::::::::::::
autocorrelation

::::::::
capture

::::
how

::::::::::::::::
long—potentially

:::::::::::::::
redundant—past

:::::::::::
information

:::
can

::::
still

:::
be

::::
read

::::
out.

::::::::::
Strikingly,

:::
we

::::
find

:::
for

::::::
model

:::::::
neurons

:::::
that

:::
our

::::::::
method

:::::::::::
disentangles

:::
the

::::::::
strength

:::
and

:::::::::
timescale

:
of

:::::::
history

:::::::::::
dependence,

::::::::
whereas

:::
the

::::
two

:::
are

:::::
mixed

:::
in

:::::::
classical

:::::::::::
approaches.

::::::
When

::::::::
applying

::::
the

:::::::
method

:::
to

:::::::::::
experimental

::::::
data,

:::::
which

:::
are

::::::::::
necessarily

:::
of

::::::
limited

:::::
size,

:
a
:::::::
reliable

::::::::::
estimation

:::
of

::::::
mutual

:::::::::::
information

:
is

only possible for a reduced representation
:::::
coarse

:::::::::
temporal

:::::::
binning

:
of past spiking, a so

called past embedding. Here, we present a novel embedding-optimization approach
that optimizes temporal binning of past spiking to capture most history dependence ,
while a reliable estimation is ensured by regularization. The approach

::
To

::::
still

::::::::
account

::
for

::::
the

::::::
vastly

::::::::
different

::::::
spiking

:::::::::
statistics

::::
and

::::::::::
potentially

::::
long

:::::::
history

:::::::::::
dependence

::
of

:::::
living

::::::::
neurons,

:::
we

:::::::::
developed

:::
an

::::::::::::::::::::::
embedding-optimization

::::::::
approach

:::::
that does not only

quantify non-linear and higher-order dependencies
::::
vary

:::
the

:::::::
number

::::
and

::::
size, but also

provides an estimate of the temporal depth that history dependence reaches into the
past . We benchmarked the approach on simulated spike recordings of a leaky
integrate-and-fire neuron with long lasting spike-frequency-adaptation, where it
accurately estimated history dependence over hundreds of milliseconds. In a diversity
of

::
an

:::::::::::
exponential

:::::::::
stretching

:::
of

::::
past

:::::
bins.

::::
For extra-cellular spike recordings, including

highly parallel recordings using a Neuropixel probe, we found some neurons with
surprisingly strong history dependence , which could last up to seconds. Both aspects,
the magnitude and the temporal depth

::
we

::::::
found

::::
that

::::
the

:::::::
strength

::::
and

:::::::::
timescale

::
of

::::::
history

:::::::::::
dependence

::::::
indeed

::::
can

::::
vary

:::::::::::::
independently

::::::
across

::::::::::::
experimental

::::::::::::
preparations.

:::::
While

::::::::::::
hippocampus

:::::::::
indicated

::::::
strong

::::
and

::::
long

:::::::
history

:::::::::::
dependence,

:::
in

::::::
visual

::::::
cortex

::
it

:::
was

:::::
weak

::::
and

::::::
short,

:::::
while

::
in

:::::
vitro

::::
the

::::::
history

:::::::::::
dependence

::::
was

::::::
strong

::::
but

:::::
short.

:::::
This
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::::
work

:::::::
enables

:::
an

:::::::::::
information

::::::::
theoretic

:::::::::::::::
characterization of history dependence , showed

interesting differences between recorded systems, which points at systematic
differences in information processing between these systems. We

::
in

::::::::
recorded

:::::
spike

::::::
trains,

:::::
which

::::::::
captures

::
a
::::::::
footprint

:::
of

::::::::::
information

::::::::::
processing

::::
that

::
is
:::::::
beyond

:::::::::::
time-lagged

::::::::
measures

::
of

:::::::::
temporal

:::::::::::
dependence.

:::
To

::::::::
facilitate

::::
the

::::::::::
application

::
of
::::

the
::::::::
method,

:::
we

provide practical guidelines in this paper and a toolboxfor Python3 at for readers
interested in applying the method to their data.

Author summary

Even with exciting advances in recording techniques of neural spiking activity,
experiments only provide a comparably short glimpse into the activity of only a tiny
subset of all neurons. How can we learn from these experiments about the organization
of information processing in the brain? To that end, we exploit that different properties
of information processing leave distinct footprints on the firing statistics of individual
spiking neurons. In our work, we focus on a particular statistical footprint: How much
does a single neuron’s spiking depend on its own preceding activity, which we call
history dependence. By quantifying history dependence in neural spike recordings, one
can, in turn, infer some of the properties of information processing. Because recording
lengths are limited in practice, a direct estimation of history dependence from
experiments is challenging. The embedding optimization approach that we present in
this paper aims at extracting a maximum of history dependence within the limits set by
a reliable estimation. The approach is highly adaptive and thereby enables a meaningful
comparison of history dependence between neurons with vastly different spiking
statistics, which we exemplify on a diversity of spike recordings. In conjunction with
recent, highly parallel spike recording techniques, the approach could yield valuable
insights on how hierarchical processing is organized in the brain.

Introduction 1

How is information processing organized in the brain, and what are the principles that 2

govern neural coding? Fortunately, footprints of different information processing and 3

neural coding strategies can be found in the firing statistics of individual neurons, and 4

in particular in the history dependence, the statistical dependence of a single neuron’s 5

spiking on its preceding activity. 6

In classical, noise-less efficient coding, history dependence should be low to minimize 7

redundancy and optimize efficiency of neural information transmission [1–3]. In 8

contrast, in the presence of noise, history dependence and thus redundancy could be 9

higher to increase the signal-to-noise ratio for a robust code [4]. Moreover, history 10

dependence can be harnessed for active information storage, i.e. maintaining past input 11

information to combine it with present input for temporal processing [5, 6]
::::::
[5–7] and 12

associative learning [8]. In addition to its magnitude, the temporal depth
::::::::
timescale

:
of 13

history dependence provides an important footprint of processing at different processing 14

stages in the brain [9]
:::::
[9–11]. This is because higher-level processing requires 15

integrating information on longer timescales than lower-level processing [12]. Therefore, 16

history dependence in neural spiking should reach further into the past for neurons 17

involved in higher level processing [9, 13]
::::::
[9, 13]. Quantifying history dependence

:::
and 18

::
its

:::::::::
timescale could probe these different footprints and thus yield valuable insights on 19

how neural coding and information processing is organized in the brain. 20

To quantify history dependence in single neuron spiking
:::::
Often,

:::::::
history

:::::::::::
dependence 21

:
is
:::::::::::::
characterized

::
by

::::
how

::::::
much

:::::::
spiking

::
is

:::::::::
correlated

::::
with

:::::::
spiking

:::::
with

:
a
:::::::

certain
:::::
time

:::
lag 22
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:::::::
[14, 15].

::::::
From

:::
the

::::::
decay

::::
time

::
of
::::

this
:::::::
lagged

::::::::::
correlation,

::::
one

:::::::
obtains

:::
an

:::::::
intrinsic 23

::::::::
timescale

::
of

::::
how

:::::
long

::::
past

:::::::::::
information

::::
can

::::
still

::
be

:::::
read

:::
out

::::::::::
[9–11,16].

:::::::::
However,

::
to 24

:::::::
quantify

::::
not

::::
only

::
a
:::::::::
timescale

::
of

:::::::::
statistical

:::::::::::
dependence,

::::
but

::::
also

:::
its

::::::::
strength, one has 25

to compute
:::::::
quantify

::::
how

:::::
much

:::
of

:
a
::::::::
neuron’s

:::::::
spiking

::::::::
depends

:::
on

::
its

::::::
entire

::::
past

:
.
:::::
Here, 26

:::
this

::
is
:::::
done

:::::
with the mutual information between the spiking of a neuron and its own 27

past [5, 6, 17].
::::
[17]

:
,
::::
also

:::::
called

::::::
active

:::::::::::
information

:::::::
storage

:::::
[5–7]

:
,
::
or

:::::::::
predictive 28

::::::::::
information

:::::::
[18, 19]

:
.
:

29

Estimating this mutual information directly from spike recordings, however, is 30

notoriously difficult. The reason is that statistical dependencies may reside in precise 31

spike times, extend far into the past and contain higher-order dependencies. This makes 32

it hard to find a parametric model, e.g. from the family of generalized linear 33

models [20,21], that is flexible enough to account for the variety of spiking statistics 34

encountered in experiments. Therefore, one typically infers mutual information directly 35

from observed spike trains [22–26]. The downside is that this requires a lot of data, 36

otherwise estimates can be severely biased [27,28]. A lot of work has been devoted to 37

finding less biased estimates, either by correcting bias [28–31], or by using Bayesian 38

inference [32–34]. Although these estimators alleviate to some extent the problem of 39

bias, a reliable estimation is only possible for a much reduced representation of past 40

spiking, also called past embedding [35]. For example, many studies infer history 41

dependence and transfer entropy by embedding the past spiking using a single 42

bin [26,36]. 43

While previously most attention was devoted to a robust estimation given a 44

(potentially limited) embedding, we argue that a careful embedding of past activity is 45

crucial. In particular, a past embedding should be well adapted to the spiking statistics 46

of a neuron, but also be low dimensional enough such that reliable estimation is possible. 47

To that end, we here devise an embedding optimization scheme that selects the 48

embedding that maximizes the estimated history dependence, while reliable estimation 49

is ensured by two independent regularization methods. 50

In this paper, we first provide a short summary of the
:::::::
methods

:::::::::
summary

::::::
where

:::
we 51

::::::::
introduce

::::
the

:::::::
measure

:::
of

::::::
history

:::::::::::
dependence

::::
and

::::
the

::::::::::
information

::::::::::
timescale,

::
as

::::
well

:::
as 52

:::
the

::::::::::
embedding

::::::::::::
optimization method employed to estimate history dependence in neural 53

spike trains. A glossary of all the abbreviations and symbols used in this paper can be 54

found at the beginning of the Materials and methods section. In the Results, we
::::
first 55

:::::::
compare

::::
the

::::::::
measure

::
of

:::::::
history

::::::::::
dependence

:::::
with

::::::::
classical

::::::::::
time-lagged

:::::::::
measures

::
of 56

::::::::
temporal

:::::::::::
dependence

::
on

::::::::
different

:::::::
models

::
of

::::::
neural

:::::::
spiking

::::::::
activity.

:::::::
Second,

:::
we

:
test 57

the embedding optimization approach on a tractable benchmark model, and also 58

compare it to existing estimation methods on a variety of experimental spike recordings. 59

Finally, we demonstrate that the approach reveals interesting differences between neural 60

systems, both in terms of the total history dependence, as well as its temporal depth
:::
the 61

::::::::::
information

:::::::::
timescale. For the reader interested in applying the method, we provide 62

practical guidelines in
:::
Fig

:
9
::::
and

:::
in the end of the Materials and methods section. The 63

method is readily applicable to highly parallel spike recordings, and a toolbox for 64

Python3 is available online [37]. 65

Methods summary 66

Definition of history dependence. First, we define the history dependence R 67

::::::
history

:::::::::::
dependence

:::::
R(T )

:
in the spiking of a single neuron. We quantify history 68

dependence R based on the mutual information I(spiking; past) between the current 69

spiking 70

I(spiking; past(T )) = H(spiking)−H(spiking|past(T ))
:::::::::::::::::::::::::::::::::::::::::::::::

(1)
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:::::::
between

:::::::
current

:::::::
spiking

::
in

::
a
::::
time

::::
bin

:::::::::
[t, t+ ∆t)

:
and its own past , 71

R ≡ I(spiking; past)

H(spiking)
= 1− H(spiking|past)

H(spiking)
∈[0, 1],

and normalize it with the Shannon entropy of current spiking H(spiking). Current 72

spiking refers to the firing of a spike in a small time bin ∆t = 5 ms, which discretizes 73

the spiking activity in time. Thus
::
in

::
a

::::
past

:::::
range

:::::::::
[t− T, t)

::::
(Fig

::::
1B).

::::::
Here,

::
we

:::::::
assume 74

::::::::::
stationarity

::::
and

::::::::::
ergodicity,

::::
such

:::::
that

:::
the

::::::::
measure

::
is

:::
an

:::::::
average

::::
over

:::
all

:::::
times

::
t.
:::::
This 75

::::::
mutual

:::::::::::
information

::
is

::::
also

::::::
called

:::::
active

:::::::::::
information

:::::::
storage

::::
[5],

::::
and

::
is

:::::::
related

::
to

::::
the 76

:::::::::
predictive

::::::::::
information

::::::::
[18, 19].

:::
It

:::::::::
quantifies

::::
how

:::::
much

::
of
::::

the
:::::::
current

:::::::
spiking 77

::::::::::
information

::::::::::
H(spiking)

::::
can

:::
be

::::::::
predicted

:::::
from

:::::
past

:::::::
spiking.

::::
The

:::::::
spiking

:::::::::::
information

::
is 78

:::::
given

::
by

:
the Shannon entropy [38] for current spiking reads 79

H(spiking) = −p(spike) log2 p(spike)− (1− p(spike)) log2(1− p(spike)), (2)

where p(spike) = r∆t is the probability to spike within the time bin ∆t for a neuron 80

with average firing rate r. The Shannon entropy H(spiking) quantifies the average 81

information that a spiking neuron could transmit within one bin, assuming no statistical 82

dependencies on its own past. In contrast, the conditional entropy H(spiking|past) (see 83

Materials and methods
:::::::::::::::::
H(spiking|past(T ))

::::
(see

:
Materials and methods) quantifies the 84

average spiking information (in the sense of entropy) that would be transmitted when 85

history dependence
:::::::
remains

:::::
when

:::::::::::::
dependencies on past spiking is

:::
are

:
taken into 86

account. Note that history dependence
:::
past

:::::::::::::
dependencies can only reduce the average 87

spiking information, i.e. H(spiking|past) ≤ H(spiking). 88

The history dependence R accounts for all linear and non-linear as well as 89

higher-order statistical dependencies between current spiking and its own 90

::::::::::::::::::::::::::::::
H(spiking|past(T )) ≤ H(spiking).

::::
The

:::::::::
difference

::::::::
between

:::
the

::::
two

::::
then

:::::
gives

::::
the 91

:::::::
amount

::
of

:::::::
spiking

:::::::::::
information

::::
that

::
is

::::::::::
redundant

::
or

:::::::
entirely

:::::::::::
predictable

::::
from

::::
the past. 92

To quantify history dependenceR, we chose the normalized mutual information 93

:::::::::
transform

:::
this

::::::::
measure

::
of
:::::::::::

information
::::
into

::
a
::::::::
measure

::
of

:::::::::
statistical

:::::::::::
dependence, 94

because it can easily be compared across recordings of neurons with very different 95

firing rates. Moreover
::
we

:::::::::
normalize

::::
the

:::::::
mutual

:::::::::::
information

::
by

::::
the

:::::::
entropy

::::::::::
H(spiking) 96

:::
and

::::::
define

:::::::
history

:::::::::::
dependence

:::::
R(T )

::
as

:
97

R(T ) ≡ I(spiking; past(T ))

H(spiking)
= 1− H(spiking|past(T ))

H(spiking)
∈

:::::::::::::::::::::::::::::::::::::::::::::::::

[0, 1
::

]. (3)

:::::
While

::::
the

::::::
mutual

:::::::::::
information

:::::::::
quantifies

::::
the

:::::::
amount

:
of

:::::::::::
predictable

:::::::::::
information,

:::::
R(T ) 98

::::
gives

::::
the

:::::::::
proportion

::
of

::::::
spiking

:::::::::::
information

:::::
that

::
is

::::::::::
predictable

::
or

::::::::::
redundant

:::::
with

::::
past 99

:::::::
spiking.

:::
As

::::
such, it interpolates between the following intuitive extreme cases: R = 0 100

::::::::
R(T ) = 0

:
corresponds to independent and R = 1

:::::::::
R(T ) = 1 to entirely predictable 101

spiking.
::::::::
Moreover,

::::::
while

:::
the

:::::::
entropy

::::
and

:::::
thus

:::
the

:::::::
mutual

:::::::::::
information 102

::::::::::::::::
I(spiking; past(T ))

:::::::::
increases

::::
with

::::
the

:::::
firing

::::
rate

::::
(see

::::
S13

::::
Fig.

::
for

:::
an

::::::::
example

:::
on

::::
real 103

:::::
data),

::::
the

::::::::::
normalized

:::::
R(T )

::
is

:::::::::::
comparable

::::::
across

:::::::::
recordings

:::
of

:::::::
neurons

:::::
with

::::
very 104

:::::::
different

::::::
firing

:::::
rates.

:::::::
Finally,

:::
all

::::
the

:::::
above

:::::::::
measures

::::
can

:::::::
depend

::
on

::::
the

::::
size

::
of

:::
the 105

::::
time

:::
bin

::::
∆t,

::::::
which

:::::::::
discretizes

::::
the

:::::::
current

::::::
spiking

::::::::
activity

::
in

:::::
time.

::::
Too

::::::
small

:
a
:::::
time 106

:::
bin

:::::
holds

:::
the

::::
risk

:::::
that

:::::
noise

::
in

:::
the

:::::
spike

::::::::
emission

::::::::
reduces

:::
the

::::::
overall

:::::::::::::
predictability

::
or 107

::::::
history

:::::::::::
dependence,

::::::::
whereas

:::
an

::::::
overly

::::
large

:::::
time

:::
bin

::::::
holds

:::
the

::::
risk

::
of

::::::::::
destroying 108

::::::
coding

:::::::
relevant

:::::
time

:::::::::::
information

::
in

:::
the

::::::::
neuron’s

:::::
spike

::::::
train.

::::::
Thus,

:::
we

:::::
chose

:::
the 109

:::::::
smallest

:::::
time

:::
bin

::::::::::
∆t = 5 ms

::::
that

::::
does

::::
not

:::
yet

:::::
show

::
a
::::::::
decrease

::
in

:::::::
history

:::::::::::
dependence 110

:
(
:::
S16

::::
Fig.

:
).
:

111

In the following, we summarize the past-embedding approach to estimate history 112

dependence for neural data. The workflow of the approach is illustrated in Fig 10. 113
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Workflow of past-embedding optimization to estimate history dependence
and its temporal depth.
Fig 1.

:::::::::::
Illustration

:::
of

:::::::
history

:::::::::::::
dependence

::::
and

::::::::
related

::::::::::
measures

:::
in

::
a

:::::::
neural

:::::
spike

::::::
train.

:::
(A)

::::
For

:::
the

::::::::
analysis,

:::::::
spiking

::
is
:::::::::::
represented

:::
by

:
0
:::
or

:
1
:::
in

:
a
::::::
small

::::
time

::::
bin

::
∆t

::::::
(grey

:::::
box).

::::::::::::::
Autocorrelation

::::::
C(T )

::
or

::::
the

::::::
lagged

:::::::
mutual

::::::::::
information

:::::
L(T )

::::::::
quantify

:::
the

:::::::::
statistical

:::::::::::
dependence

::
of

:::::::
spiking

:::
on

::::
past

:::::::
spiking

::
in

::
a

:::::
single

:::::
past

:::
bin

:::::
with

::::
time

:::
lag

::
Ti::::::

(green
:::::
box).

::::
(B)

::
In

:::::::::
contrast,

:::::::
history

::::::::::
dependence

::::::
R(Ti):::::::::

quantifies
:::
the

:::::::::::
dependence

::
of

::::::
spiking

:::
on

::::
the

:::::
entire

:::::::
spiking

:::::::
history

::
in

::
a
::::
past

::::::
range

:::
Ti.::::

The
::::
gain

:::
in

::::::
history

::::::::::
dependence

::::::::::::::::::::::::
∆R(Ti) = R(Ti)−R(Ti−1)

:::::::::
quantifies

::::
the

:::::::
increase

:::
in

::::::
history

:::::::::::
dependence

::
by

:::::::::
increasing

::::
the

::::
past

::::::
range

::::
from

:::::
Ti−1::

to
:::
Ti,::::

and
::
is
:::::::
defined

:::
in

:::::::
analogy

::
to

::::
the

::::::
lagged

::::::::
measures.

::::
(C)

:::::::::::::::
Autocorrelation

:::::
C(T )

::::
and

::::::
lagged

:::::::
mutual

:::::::::::
information

:::::
L(T )

:::
for

:
a
:::::::
typical

:::::::
example

:::::::
neuron

:::::::
(mouse,

::::::::
primary

::::::
visual

:::::::
cortex).

:::::
Both

:::::::::
measures

:::::
decay

:::::
with

:::::::::
increasing

::
T ,

::::::
where

:::::
L(T )

::::::
decays

:::::::
slightly

::::::
faster

:::
due

:::
to

:::
the

::::::::::::
non-linearity

::
of
::::
the

:::::::
mutual

:::::::::::
information.

::::::::::
Timescales

:::
τC::::

and
:::
τL :::::::

(vertical
:::::::

dashed
::::::
lines)

:::
can

:::
be

:::::::::
computed

::::::
either

:::
by

:::::
fitting

:::
an

:::::::::::
exponential

:::::
decay

::::::::::::::::
(autocorrelation)

::
or

:::
by

:::::
using

::::
the

::::::::::
generalized

:::::::::
timescale

::::::
(lagged

:::::::
mutual

::::::::::::
information).

::::
(D)

:::
In

::::::::
contrast,

:::::::
history

:::::::::::
dependence

:::::
R(T )

::::::::
increases

::::::::::::
monotonically

:::
for

:::::::::::::
systematically

::::::::::
increasing

::::
past

:::::
range

:::
T ,

:::::
until

::
it

::::::::
saturates

:::
at

:::
the

:::::
total

::::::
history

:::::::::::
dependence

:::::
Rtot. :::::

From
::::::
R(T ),

:::
the

:::::
gain

:::::::
∆R(Ti)::::

can
::
be

::::::::::
computed

:::::::
between

:::::::::
increasing

::::
past

::::::
ranges

:::::
Ti−1 ::::

and
::
Ti:::::

(grey
:::::::
dashed

::::::
lines).

::::
The

:::::
gain

::::::
∆R(T )

:::::::
decays

::
to

::::
zero

:::
like

::::
the

::::::::::
time-lagged

::::::::::
measures,

::::
with

:::::::::::
information

:::::::::
timescale

:::
τR :::::::

(dashed
:::::
line).

:

:::::
Total

::::::::
history

::::::::::::
dependence

:::::
and

::::
the

::::::::::::
information

:::::::::::
timescale.

:::::
Here,

:::
we

::::::::
introduce 114

::::::::
measures

::
to

::::::::
quantify

::::
the

::::::::
strength

:::
and

::::
the

:::::::::
timescale

::
of

:::::::
history

::::::::::
dependence 115

:::::::::::::
independently.

:::::
First,

:::::
note

::::
that

::::
the

::::::
history

:::::::::::
dependence

:::::
R(T )

:::::::::::::
monotonically

:::::::::
increases 116

::::
with

:::
the

:::::
past

:::::
range

::
T

:::::
(Fig

::::
1D),

:::::
until

::
it

:::::::::
converges

::
to

::::
the

::::
total

:::::::
history

::::::::::
dependence 117

Rtot ≡ lim
T→∞

R(T ).
:::::::::::::::

(4)

:::
The

:::::
total

:::::::
history

:::::::::::
dependence

::::
Rtot:::::::::

quantifies
::::
the

:::::::::
proportion

:::
of

::::::::::
predictable

:::::::
spiking 118

::::::::::
information

:::::
once

:::
the

::::::
entire

::::
past

::
is
::::::
taken

::::
into

::::::::
account. 119

:::::
While

:::
the

:::::::
history

:::::::::::
dependence

:::::
R(T )

::
is

:::::::::::::
monotonously

::::::::::
increasing,

:::
the

:::::
gain

::
in

:::::::
history 120

::::::::::
dependence

::::::::::::::::::::::::
∆R(Ti) ≡ R(Ti)−R(Ti−1)

::::::::
between

::::
two

::::
past

::::::
ranges

:::::::::
Ti > Ti−1::::::

tends
::
to 121

::::::::
decrease,

::::
and

:::::::::
eventually

:::::::::
decreases

::
to

:::::
zero

:::
for

::::::::::::
Ti, Ti−1 →∞::::

(Fig
:::::
1D).

::::
This

::
is
:::

in 122

:::::::
analogy

::
to

:::::::::::
time-lagged

:::::::::
measures

::
of

::::::::
temporal

:::::::::::
dependence

:::::
such

::
as

:::
the

::::::::::::::
autocorrelation 123

:::::
C(T )

::
or

::::::
lagged

:::::::
mutual

:::::::::::
information

:::::
L(T )

::::
(Fig

:::::::
1A,C).

:::::::::
Moreover,

:::::::
because

::::::
R(T )

::
is 124

::::::::::::
monotonically

::::::::::
increasing,

::::
the

::::
gain

:::::::
cannot

::
be

:::::::::
negative,

:::
i.e.

:::::::::::
∆R(T ) ≥ 0.

::::::
From

::::::::
∆R(Ti), 125

::
we

::::::::
quantify

::
a
::::::::::::
characteristic

:::::::::
timescale

:::
τR ::

of
:::::::
history

::::::::::
dependence

:::::::
similar

::
to

:::
an 126

:::::::::::::
autocorrelation

:::::
time.

:::
In

:::::::
analogy

:::
to

:::
the

::::::::::
integrated

::::::::::::::
autocorrelation

::::
time

:::::
[39],

:::
we

::::::
define 127

:::
the

::::::::::
generalized

:::::::::
timescale 128

τR ≡
n∑
i=1

T̄i
∆R(Ti)∑n
j=1 ∆R(Tj)

− T0.

:::::::::::::::::::::::::::

(5)

::
as

:::
the

:::::::
average

:::
of

::::
past

::::::
ranges

::::::::::::::::::
T̄i = (Ti + Ti−1)/2,

::::::::
weighted

:::::
with

::::
their

:::::
gain 129

::::::::::::::::::::::::
∆R(Ti) = R(Ti)−R(Ti−1).

::::::
Here,

:::::
steps

:::::::
between

::::
two

:::::
past

::::::
ranges

::::
Ti−1::::

and
:::
Ti ::::::

should 130

::
be

::::::
chosen

::::::
small

:::::::
enough,

::::
and

:::::::::
summing

:::
the

:::::::
middle

::::::
points

::
T̄i::

of
::::
the

:::::
steps

:::::::
further 131

::::::
reduces

::::
the

:::::
error

::
of

:::::::::::::
discretization.

:::
T0::

is
:::
the

::::::::
starting

::::::
point,

:::
i.e.

::
is

::::
the

::::
first

::::
past

::::::
range 132

::
for

::::::
which

:::::
R(T )

::
is
::::::::::
computed,

::::
and

::::
was

:::
set

::
to

:::::::::::
T0 = 10 ms

::
to

:::::::
exclude

::::::::::
short-term

::::
past 133

:::::::::::
dependencies

::::
like

::::::::::::
refractoriness

::::
(see

:
Materials and methods

::
for

::::::::
details).

:::::::::
Moreover,

::::
the 134

:::
last

::::
past

::::::
range

:::
Tn:::

has
:::
to

:::
be

::::
high

:::::::
enough

::::
such

:::::
that

::::::
R(Tn)

:::
has

::::::::::
converged,

:::
i.e. 135

::::::::::::
R(Tn) = Rtot.::::::

Here,
:::
we

:::
set

::::::::
Tn = 5 s

:::::
unless

::::::
stated

::::::::::
otherwise.

:
136
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::
To

:::::::::
illustrate

:::
the

:::::::
analogy

:::
to

:::
the

::::::::::::::
autocorrelation

:::::
time,

:::
we

:::::
note

::::
that

::
if

:::
the

:::::
gain 137

::::::
decays

::::::::::::
exponentially,

::::
i.e.

:::::::::::::::::::::
∆R(Ti) ∝ exp

(
− Ti
τauto

)
:::::
with

:::::
decay

::::::::
constant

::::::
τauto,

::::
then 138

:::::::::
τR = τauto:::

for
:::::::
n→∞

::::
and

::::::::::
sufficiently

:::::
small

:::::
steps

::::::::::
Ti − Ti−1.

::::
The

:::::::::
advantage

:::
of

:::
τR ::

is 139

::::
that

::
it

::::
also

::::::::::
generalizes

::
to

:::::
cases

::::::
where

:::
the

::::::
decay

::
is

::::
not

:::::::::::
exponential.

::::::::::::
Furthermore,

::
it 140

:::
can

:::
be

:::::::
applied

::
to

::::
any

:::::
other

::::::::
measure

::
of

:::::::::
temporal

::::::::::
dependence

:::::
(e.g.

::::
the

::::::
lagged

:::::::
mutual 141

:::::::::::
information)

::
as

:::::
long

::
as

::::
the

::::
sum

::
in

:::
Eq

::::
(5)

:::::::
remains

::::::
finite,

::::
and

:::
the

::::::::::
coefficients

::::
are 142

::::::::::::
non-negative.

:::::
Note

::::
that

:::::::::
estimates

::
of

:::::::
∆R(Ti)::::

can
::::
also

:::
be

::::::::
negative,

:::
so

:::
we

::::::::
included 143

:::::::::
corrections

:::
to

:::::
allow

::
a

:::::::
sensible

::::::::::
estimation

::
of

:::
τR:

(Materials and methods
::
).

:::::::
Finally,

:::::
since 144

::
τR:::::::::

quantifies
::::
the

::::::::
timescale

:::::
over

:::::
which

:::::::
unique

:::::::::
predictive

:::::::::::
information

::
is

::::::::::::
accumulated, 145

::
we

:::::
refer

::
to

::
it
:::
as

:::
the

:::::::::::
information

:::::::::
timescale.

:
146

Discrete
:::::::
Binary

:
past embedding of spiking activity. In practice, estimating 147

history dependence R from spike recordings is extremely challenging. In fact, if data is 148

limited, a reliable estimation of history dependence is only possible for a reduced 149

representation of past spiking, also called past embedding [35]. Here, we outline how we 150

embed past spiking activity to estimate history dependence from neural spike recordings. 151

First, we choose a past range T , which defines the time span of the past embedding. 152

For each point in time t, we partition the immediate past window [t− T, t) into d bins 153

and count the number of spikes in each bin. The number of bins d sets the temporal 154

resolution of the embedding. In addition, we let bin sizes scale exponentially with the 155

bin index j = 1, ..., d as τj = τ110(j−1)κ (Fig 2A). A scaling exponent of κ = 0 translates 156

into equal bin sizes, whereas for κ > 0 bin sizes increase. For fixed d, this allows to 157

obtain a higher temporal resolution on recent past spikes by decreasing the resolution 158

on distant past spikes. 159

The past window [t− T, t) of the embedding is slided forward in steps of ∆t through 160

the whole recording with recording length Trec, starting at t = T . This gives rise to 161

N = (Trec − T )/∆t measurements of current spiking in [t, t+ ∆t]
::::::::
[t, t+ ∆t), and of the 162

number of spikes in each of the d past bins (Fig 2B). We chose to use only binary 163

sequences of spike counts to estimate history dependence. To that end, a count of 1 was 164

chosen for a spike count larger than the median spike count over the N measurements 165

in the respective past bin. A binary representation drastically reduces the number of 166

possible past sequences for given number of bins d, such that history dependence can be 167

estimated even from short recordings. 168

Estimation of history dependence for discrete
::::
with

:::::::
binary

:
past embeddings. 169

To estimate history dependence R, one has to estimate the probability of a spike 170

occurring together with different past sequences. The probabilities πi of these different 171

joint events i can be directly inferred from the frequencies ni with which the events 172

occurred during the recording. Without any additional assumptions, the simplest way 173

to estimate the probabilities is to compute the relative frequencies π̂i = ni/N , where N 174

is the total number of observed joint events. This estimate is the maximum likelihood 175

(ML) estimate of joint probabilities πi for a multinomial likelihood, and the 176

corresponding estimate of history dependence will also be denoted by ML. This direct 177

estimate of history dependence is known to be strongly biased when data is too 178

limited [28, 30]. The bias is typically positive, because, under limited data, probabilities 179

of observed joint events are given too much weight. Therefore, statistical dependencies 180

are overestimated. Even worse, the overestimation becomes more severe the higher the 181

number of possible past sequences K. Since K increases exponentially with the 182

dimension of the past embedding d, i.e. K = 2d for binary spike sequences, history 183

dependence is severely overestimated for high d (Fig 2C). The potential overestimation 184

makes it hard to choose embeddings that represent past spiking sufficiently well. In the 185
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Fig 2. Illustration of embedding optimization to estimate history
dependence and its temporal depth.

:::::::::::
Illustration

:::
of

::::::::::::
embedding

:::::::::::::
optimization

::
to

:::::::::
estimate

::::::::
history

:::::::::::::
dependence

::::
and

::::
the

::::::::::::
information

:::::::::::
timescale. (A) History

dependence R is estimated from the observed joint statistics of current spiking in a
small time bin [t+ ∆t] (dark grey) and the embedded past, i.e. a binary sequence
representing past spiking in a past window [t− T, t). We systematically vary the
number of bins d and bin sizes for fixed past range T . Bin sizes scale exponentially with
bin index and a scaling exponent κ to reduce resolution for spikes further

::::::
farther

:
into

the past. (B) The joint statistics of current and past spiking are obtained by shifting
the past range in steps of ∆t and counting the resulting binary sequences. (C) Finding
a good choice of embedding parameters (e.g. embedding dimension d) is challenging:
When d is chosen too small, the true history dependence R(T ) (dashed line) is not
captured appropriately (insufficient embedding) and underestimated by estimates
R̂(T, d) (blue solid line). When d is chosen too high, estimates R̂(T, d) are severely
biased and R(T, d), as well as R(T ), are overestimated (biased regime). Past-embedding
optimization finds the optimal embedding parameter d∗ that maximizes the estimated
history dependence R̂(T, d) subject to regularization. This yields a best estimate R̂(T )
of R(T ) (blue diamond). (D) Estimation of history dependence R(T ) as a function of
past range T . For each past range T , embedding parameters d and κ are optimized to
yield an embedding-optimized estimate R̂(T ). From estimates R̂(T )

:
,
:
we obtain

estimates
::
τ̂R::::

and
::::
R̂tot:

of the temporal depth T̂D, as well as the
::::::::::
information

:::::::::
timescale

::
τR::::

and
:
total history dependence

::::
Rtot ::::::::

(vertical
:::
and

::::::::::
horizontal

:::::::
dashed

:::::
lines).

::::
To

:::::::
compute

:
R̂tot :::

we
:::::::
average

:::::::::
estimates

:::::
R̂(T )

::
in

:::
an

:::::::
interval

::::::::::
[TD, Tmax],

:::
for

::::::
which

:::::::::
estimates

:::::
R̂(T )

:::::
reach

:
a
::::::::

plateau
:::::::
(vertical

:::::
blue

:::::
bars,

:::
see

:
Materials and methods

:
). For high past

ranges T ,
:
estimates R̂(T )

::::
may decrease , because

:
a reliable estimation requires a

::::
past

::::::::::
embeddings

:::::
with reduced temporal resolution.

following, we outline how one can optimally choose embeddings if appropriate 186

regularization is applied. 187

Estimating history dependence with past-embedding optimization. Due to 188

systematic overestimation, high-dimensional past embeddings are prohibitive for a 189

reliable estimation of history dependence from limited data. Yet, high-dimensional past 190

embeddings might be required to capture all history dependence. The reason is that 191

history dependence may reside in precise spike times, but also may extend far into the 192

past. 193

To illustrate this trade-off, we consider a discrete past embedding of spiking activity 194

in a past range T , where the past spikes are assigned to d equally large bins (κ = 0). 195

We would like to obtain an estimate R̂(T ) of the maximum possible history dependence 196

R(T ) for the given past range T , with R(T ) ≡ R(T, d→∞) (Fig 2C). The number of 197

bins d can go to infinity only in theory, though. In practice, we have estimates R̂(T, d) 198

of the history dependence R(T, d) for finite d. On the one hand, one would like to choose 199

a high number of bins d, such that R(T, d) approximates R(T ) well for the given past 200

range T . Too few bins d otherwise reduce the temporal resolution, such that R(T, d) is 201

substantially less than R(T ) (Fig 2C). On the other hand, one would like to choose d 202

not too large in order to enable a reliable estimation from limited data. If d is too high, 203

estimates R̂(T, d) strongly overestimate the true history dependence R(T, d) (Fig 2C). 204

Therefore, if the past embedding is not chosen carefully, history dependence is either 205

overestimated due to strong estimation bias, or underestimated because the chosen past 206

embedding was too simple. 207

Here, we thus propose the following past-embedding optimization approach: For a 208
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given past range T , select embedding parameters d∗, κ∗ that maximize the estimated 209

history dependence R̂(T, d, κ), while overestimation is avoided by an appropriate 210

regularization. This yields an embedding-optimized estimate R̂(T ) = R̂(T, d∗, κ∗) of the 211

true history dependence R(T ). In terms of the above example, past-embedding 212

optimization selects the optimal embedding dimension d∗, which provides the best lower 213

bound R̂(T ) = R̂(T, d∗) to R(T ) (Fig 2C). 214

Since we can anyways provide only a lower bound, regularization only has to ensure 215

that estimates R̂(T, d, κ) are either unbiased, or a lower bound to the observable history 216

dependence R(T, d, κ). For that purpose, in this paper we introduce a Bayesian bias 217

criterion (BBC) that selects only unbiased estimates. In addition, we use an established 218

bias correction, the so called Shuffling estimator [31] that, within leading order of the 219

sample size, is guaranteed to provide a lower bound to the observable history 220

dependence (see Materials and methods Materials and methods for details). 221

Together with these regularization methods, the embedding optimization approach 222

enables complex embeddings of past activity without
:::::
while

::::::::::
minimizing

:
the risk of 223

overestimation.
:::
See

:
Materials and methods

::
for

::::::
details

:::
on

::::
how

:::
we

:::::
used

::::::::::
embedding 224

:::::::::
optimized

::::::::
estimates

::::::
R̂(T )

::
to

::::::::
compute

:::::::::
estimates

::::
R̂tot::::

and
:::
τ̂R::

of
::::
the

::::
total

:::::::
history 225

::::::::::
dependence

::::
and

:::::::::::
information

::::::::
timescale

:::::
(Fig

::
2,

::::
blue

:::::::
dashed

::::::
lines).

:
226

Estimation of temporal depth and total history dependence. In the previous 227

steps, we focused on the estimation of history dependence R(T ) for embeddings with a 228

fixed past range T . Here, we describe how we use these estimates to estimate the 229

temporal depth of history dependence, i.e. the time span over which neural spiking 230

depends on its own history, as well as the total history dependence. The temporal 231

depth TD we defined as the minimal past range for which the total history dependence 232

Rtot ≡ R(T →∞) is captured. The temporal depth thus quantifies how far history 233

dependence in neural spiking reaches into the past. 234

Using the embedding-optimized estimates R̂(T ), the temporal depth was estimated 235

by the past range T̂D for which R̂(T ) saturated within errorbars (Fig 2D). Errorbars 236

were obtained by bootstrapping, and saturation was determined when an estimate 237

R̂(T ) surpassed the overall highest estimate minus the standard deviation 238

R̂max − σR̂max
(Materials and methods). Taking the standard deviation into account 239

makes estimates of the temporal depth more robust to statistical fluctuations in 240

estimates of the history dependence R̂(T ). 241

Based on the estimated temporal depth T̂D, we estimated the total history 242

dependence R̂tot by averaging R̂(T ) over past ranges T ∈ [T̂D, Tmax] that are higher 243

than the temporal depth, but also lower than Tmax. The upper limit at the past range 244

Tmax excludes estimates that are systematically underestimated due to limited 245

resolution for high past ranges (Materials and methods). 246

Results 247

In the first part, we benchmark the approach using a tractable neuron model. In the 248

second part, we compare it to existing estimation methods on a variety of 249

experimental spike recordings, and arrive at a best practice solution. In the last part, 250

we demonstrate that the approach reveals interesting differences in history dependence 251

between experimental systems. 252

::
In

:::
the

::::
first

:::::
part,

:::
we

::::::::::::
demonstrate

:::
the

::::::::::
differences

::::::::
between

::::::
history

:::::::::::
dependence

::::
and 253

:::::::
classical

:::::::::
measures

::
of

::::::::
temporal

:::::::::::
dependence

:::
for

:::::::
several

::::::
models

:::
of

::::::
neural

:::::::
spiking

:::::::
activity. 254

:::
We

::::
then

:::::::::::
benchmark

:::
the

::::::::::
estimation

::
of

:::::::
history

:::::::::::
dependence

:::::
using

::::::::::
embedding 255

:::::::::::
optimization

:::
on

:
a
:::::::::

tractable
:::::::
neuron

::::::
model

::::
with

:::::::::::
long-lasting

:::::
spike

:::::::::::
adaptation. 256

:::::::::
Moreover,

:::
we

::::::::
compare

:::
the

::::::::::
embedding

::::::::::::
optimization

::::::::
approach

:::
to

:::::::
existing

::::::::::
estimation 257
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:::::::
methods

:::
on

::
a
::::::
variety

:::
of

::::::::::::
extra-cellular

:::::
spike

::::::::::
recordings.

:::
In

:::
the

::::
last

:::::
part,

:::
we

:::::
apply

::::
this 258

::
to

:::::::
analyze

:::::::
history

::::::::::
dependence

:::
for

::
a
:::::::
variety

::
of

::::::::
recorded

::::::::
systems,

::::
and

::::::::
compare

:::
the 259

::::::
results

::
to

::::
the

::::::::::::::
autocorrelation

:::
and

::::::
other

:::::::::
statistical

::::::::
measures

:::
on

::::
the

:::::
data.

:
260

:::::::::::::
Differences

:::::::::::
between

:::::::::
history

::::::::::::::
dependence

::::::
and

::::::::::::::
time-lagged 261

:::::::::::
measures

:::
of

:::::::::::
temporal

:::::::::::::::
dependence 262

:::
The

:::::::
history

:::::::::::
dependence

:::::
R(T )

:::::::::
quantifies

::::
how

:::::::::::
predictable

::::::
neural

:::::::
spiking

::
is,

:::::
given 263

:::::::
activity

::
in

::
a

::::::
certain

:::::
past

:::::
range

:::
T .

::
In

:::::::::
contrast,

:::::::::::
time-lagged

::::::::
measures

::
of

:::::::::
temporal 264

::::::::::
dependence

::::
like

:::
the

::::::::::::::
autocorrelation

:::::
C(T )

:::::
[40]

::
or

::::::
lagged

:::::::
mutual

:::::::::::
information

:::::
L(T ) 265

:::::::
[41, 42]

:::::::
quantify

::::
the

:::::::::::
dependence

::
of

:::::::
spiking

:::
on

:::::::
activity

::
in

::
a
:::::
single

:::::
past

:::
bin

:::::
with

:::::
delay 266

:
T
:::::

(Fig
:::::
1A,C;

:
Materials and methods

::
).

::
In

::::
the

:::::::::
following,

:::
we

::::::::
showcase

::::
the

:::::
main 267

:::::::::
differences

::::::::
between

:::
the

::::
two

:::::::::::
approaches.

:
268

::::::::
History

::::::::::::
dependence

:::::::::::::
disentangles

::::
the

:::::::
effects

:::
of

::::::
input

:::::::::::
activation, 269

::::::::::::
reactivation

::::
and

::::::::::
temporal

:::::::
depth

::
of

::
a
:::::::
binary

:::::::::::::::
autoregressive

:::::::::
process.

::
To 270

::::
show

::::
the

::::::::
behavior

::
of

::::
the

::::::::
measures

:::
in

:
a
::::
well

::::::::::
controlled

:::::
setup,

:::
we

:::::::::
analyzed

:
a
:::::::
simple 271

::::::
binary

:::::::::::::
autoregressive

:::::::
process

::::
with

:::::::
varying

:::::::::
temporal

:::::
depth

::
l
::::
(Fig

:::
3).

::::
The

:::::::
process 272

::::::
evolves

::
in

::::::::
discrete

::::
time

::::::
steps,

::::
and

:::
has

:::
an

::::::
active

:::
(1)

:::
or

:::::::
inactive

:::
(0)

:::::
state

::::
(Fig

:::::
3A). 273

::::::
Active

:::::
states

::::
are

::::::
evoked

::::::
either

:::
by

:::::::
external

::::::
input

::::
with

::::::::::
probability

:::
h,

::
or

:::
by

:::::::
internal 274

:::::::::::
reactivations

::::
that

::::
are

::::::::
triggered

:::
by

:::::::
activity

::::::
within

::::
the

::::
past

::
l
:::::
steps.

:::::
Each

:::::
past 275

:::::::::
activation

::::::::
increases

:::
the

:::::::::::
reactivation

:::::::::::
probability

::
by

:::
m,

::::::
which

:::::::::
regulates

:::
the

::::::::
strength

::
of 276

::::::
history

:::::::::::
dependence

::
in

::::
the

:::::::
process.

:::
In

:::
the

:::::::::
following,

:::
we

::::::::
describe

::::
how

::::
the

::::::::
measures 277

::::::
behave

::
as

:::
we

:::::
vary

::::
each

::
of
::::
the

::::::::
different

::::::
model

:::::::::::
parameters,

:::
and

:::::
then

::::::::::
summarize

:::
the

::::
key 278

::::::::
difference

::::::::
between

::::
the

:::::::::
measures.

:
279

Fig 3.
:::::::
History

:::::::::::::
dependence

:::::::::::::
disentangles

::::
the

:::::::
effects

::
of

:::::::
input

:::::::::::
activation,

::::::::::::
reactivation

::::
and

::::::::::
temporal

:::::::
depth

::
of

::
a
:::::::
binary

:::::::::::::::
autoregressive

:::::::::
process.

:::
(A)

:::
In

:::
the

::::::
binary

:::::::::::::
autoregressive

::::::::
process,

:::
the

:::::
state

::
of

::::
the

::::
next

:::::
time

::::
step

:::::
(grey

:::::
box)

::
is

:::::
active

:::::
(one)

:::::
either

::::::::
because

::
of

:::
an

:::::
input

:::::::::
activation

:::::
with

::::::::::
probability

::
h,

:::
or

:::::::
because

:::
of

::
an

:::::::
internal

:::::::::::
reactivation.

:::::
The

:::::::
internal

:::::::::
activation

::
is
:::::::::
triggered

::
by

::::::::
activity

::
in

::::
the

::::
past

:
l
:::::
time

::::
steps

::::::::
(green),

::::::
where

::::
each

::::::
active

:::::
state

::::::::
increases

::::
the

:::::::::
activation

::::::::::
probability

:::
by

:::
m.

::::
(B)

:::::::::
Increasing

:::
the

::::::
input

:::::::::
activation

::::::::::
probability

::
h
::::::::
increases

::::
the

:::::
total

::::::
mutual

::::::::::::
information,

::::::::
although

:::::
input

::::::::::
activations

:::
are

::::::::
random

::::
and

::::::::
therefore

::::
not

::::::::::
predictable.

::::::::::::
Normalizing

:::
the

::::
total

:::::::
mutual

:::::::::::
information

:::
by

:::
the

:::::::
entropy

::::::
yields

:::
the

:::::
total

:::::::
history

:::::::::::
dependence,

::::::
which

::::::::
decreases

::::::
mildly

:::::
with

::
h.

::::
(C)

::::::::::::::
Autocorrelation

::::::
C(T ),

::::::
lagged

:::::::
mutual

:::::::::::
information

:::::
L(T )

:::
and

:::::
gain

::
in

:::::::
history

::::::::::
dependence

:::::::
∆R(T )

::::::
decay

:::::::::
differently

:::::
with

:::
the

::::::
delay

::
T .

::::
For

:::::
l = 1

:::
and

::::::::
m = 0.8

::::::
(top),

:::::::::::::
autocorrelation

::::::
C(T )

::::::
decays

::::::::::::
exponentially

:::::
with

::::::::::::::
autocorrelation

::::
time

:::
τC ,

::::::::
whereas

:::::
L(T )

::::::
decays

::::::
faster

::::
due

::
to

:::
the

::::::::::::
non-linearity

:::
of

:::
the

:::::::
mutual

:::::::::::
information.

:::::::
∆R(T )

::
is

::::::::
non-zero

::::
only

:::
for

::::::
delays

:::::::
shorter

:::
or

:::::
equal

::
to

::::
the

::::::::
temporal

::::::
depth

::
of

:::
the

::::::::
process,

::::
with

:::::
much

:::::::
shorter

:::::::::
timescale

:::
τR.

::::
For

:::::
l = 5,

::::::
C(T )

::::
and

:::::
L(T )

:::::::
plateau

::::
over

:::
the

::::::::
temporal

:::::::
depth,

:::
and

:::::
then

::::::
decay

:::::
much

::::::
slower

:::::
than

:::
for

:::::
l = 1.

:::::::
Again,

:::::::
∆R(T )

::
is

:::::::
non-zero

:::::
only

::::::
within

::::
the

::::::::
temporal

::::::
depth

::
of

:::
the

::::::::
process.

:::::::::::
Parameters

::
m

::::
and

::
h

::::
were

:::::::
adapted

::
to

::::::
match

::::
the

:::::
firing

::::
rate

::::
and

:::::
total

:::::::
history

::::::::::
dependence

::::::::
between

:::::
l = 1

::::
and

:::::
l = 5.

:::
(D)

::::::
When

:::::::::
increasing

::::
the

:::::::::::
reactivation

::::::::::
probability

::
m

:::
for

::::::
l = 1,

:::::::::
timescales

:::
of

::::::::::
time-lagged

:::::::::
measures

:::
τC :::

and
:::
τL::::::::

increase.
::::

For
:::::::
history

:::::::::::
dependence,

::::
the

::::::::::
information

::::::::
timescale

:::
τR:::::::

remains
:::::::::
constant,

::::
but

:::
the

:::::
total

:::::::
history

::::
Rtot:::::::::

increases.
::::
(E)

:::::
When

::::::::
varying

:::
the

::::::::
temporal

::::::
depth

::
l,

:::
all

:::::::::
timescales

:::::::::
increased.

:::::::::::
Parameters

::
h

::::
and

::
m

:::::
were

:::::::
adapted

:::
to

::::
hold

:::
the

::::::
firing

::::
rate

::::
and

::::
Rtot::::::::

constant.
:

:::
The

::::::
input

::::::::
strength

:
h
:::::::::
increases

:::
the

:::::
firing

:::::
rate

:::
and

:::::
thus

:::
the

:::::::
spiking

:::::::
entropy 280

::::::::::
H(spiking).

:::::
This

:::::
leads

::
to

::
a
::::::
strong

::::::::
increase

::
in

::::
the

::::
total

:::::::
mutual

:::::::::::
information 281
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:::::::::::::::::::::::::::
Itot ≡ lim

T→∞
I(spiking; past(T )),

::::::::
whereas

:::
the

:::::
total

:::::::
history

:::::::::::
dependence

::::
Rtot::

is 282

::::::::::
normalized

::
by

::::
the

:::::::
entropy

::::
and

::::
does

:::::::
slightly

::::::::
decrease

:::::
(Fig

::::
3B).

:::::
This

:::::
slight

::::::::
decrease

::
is 283

::::::::
expected

::::
from

::
a
:::::::
sensible

::::::::
measure

::
of
:::::::

history
::::::::::::
dependence,

:::::::
because

:::
the

::::::
input

::
is

:::::::
random 284

:::
and

::::
has

:::
no

::::::::
temporal

:::::::::::
dependence.

:::
In

::::::::
addition,

::::::
input

::::::::::
activations

::::
may

:::
fall

::::::::
together

:::::
with 285

:::::::
internal

::::::::::
activations,

::::::
which

:::::::
slightly

:::::::
reduces

::::
the

::::
total

:::::::
history

:::::::::::
dependence.

:::
In

::::::::
contrast, 286

:::
the

:::::
total

::::::
history

:::::::::::
dependence

::::
Rtot:::::::::

increases
::::
with

::::
the

:::::::::::
reactivation

::::::::::
probability

:::
m,

::
as 287

::::::::
expected

::::
(Fig

:::::
3D).

:::
For

::::
the

::::::::::::::
autocorrelation,

:::
the

:::::::::::
reactivation

:::::::::::
probability

::
m

::::
not

::::
only 288

:::::::::
influences

:::
the

::::::::::
magnitude

::
of

::::
the

::::::::::
correlation

::::::::::
coefficients,

::::
but

::::
also

:::
the

::::::
decay

::
of

::::
the 289

::::::::::
coefficients.

::::
For

:::::::::::::
autoregressive

:::::::::
processes

::::
(and

::::::
l = 1),

::::::::::::::
autocorrelation

:::::::::::
coefficients

:::::
C(T ) 290

:::::
decay

::::::::::::
exponentially

:::::
[14]

::::
(Fig

::::
3C),

::::::
where

::::
the

::::::::::::::
autocorrelation

::::
time

:::::::::::::::::
τC = −∆t/ log(m) 291

::::::::
increases

::::
with

:::
m

::::
and

:::::::
diverges

:::
as

::::::
m→ 1

:::::
(Fig

::::
3D).

::::
The

::::::
lagged

:::::::
mutual

:::::::::::
information 292

::::
L(T )

::
is
::
a
:::::::::
non-linear

::::::::
measure

:::
of

::::::::::
time-lagged

::::::::::::
dependence,

::::
and

:::
has

::
a

::::
very

:::::::
similar 293

::::::::
behavior

::
as

:::
the

:::::::::::::::
autocorrelation,

::::
with

::
a
:::::::
slightly

::::::
faster

:::::
decay

::::
and

:::::
thus

::::::
smaller 294

::::::::::
generalized

::::::::
timescale

:::
τL::::

(Fig
:::::::
3C,D).

:::::
Note

::::
that

:::
we

::::::::::
normalized

:::::
L(T )

:::
by

::::
the

::::::
spiking 295

:::::::
entropy

::
H

:::
to

:::::
make

::
it

:::::::
directly

:::::::::::
comparable

::
to

::::::::
∆R(T ).

::
In

::::::::
contrast

:::
to

:::
the

:::::::::::
time-lagged 296

::::::::
measures,

::::
the

::::
gain

:::
in

::::::
history

:::::::::::
dependence

:::::::
∆R(T )

::
is

::::
only

::::::::
non-zero

:::
for

:::
T

:::::::
smaller

::
or 297

:::::
equal

::
to

::::
the

::::
true

::::::::
temporal

::::::
depth

:
l
::
of
::::

the
:::::::
process

::::
(Fig

:::::
3C).

:::
As

:
a
::::::::::::
consequence,

::::
the 298

::::::::::
information

:::::::::
timescale

:::
τR ::::

does
::::
not

:::::::
increase

:::::
with

::
m

:::
for

:::::
fixed

::
l
::::
(Fig

::::
3D). 299

::::::
Finally,

::::
the

::::::::
temporal

::::::
depth

:
l
::::::::
controls

::::
how

:::
far

::::
into

::::
the

::::
past

::::::::::
activations

:::::::
depend

:::
on 300

::::
their

:::::::::
preceding

::::::::
activity.

:::::::
Indeed,

:::
we

::::
find

::::
that

::::
the

:::::::::::
information

::::::::
timescale

:::
τR:::::::::

increases 301

::::
with

:
l
:::
as

::::::::
expected

::::
(Fig

:::::::
3C,E).

:::::::::
Similarly,

:::
the

:::::::::
timescales

:::
of

:::
the

:::::::::::
time-lagged

:::::::::
measures 302

::
τC::::

and
:::
τL:::::::

increase
:::::
with

:::
the

:::::::::
temporal

::::::
depth

:
l.
::::::

Note
::::
that

::::::::::
parameters

:::
m

::::
and

:
h
:::::
were 303

:::::::
adapted

:::
for

:::::
each

:
l
::
to

:::::
keep

:::
the

::::::
firing

::::
rate

::::
and

::::
total

:::::::
history

:::::::::::
dependence

::::
Rtot:::::::::

constant, 304

::::
such

::::
that

::::::::::
differences

::
in

::::
the

::::::::
timescale

::::
can

:::
be

::::::::::::::
unambiguously

:::::::::
attributed

:::
to

:::
the

::::::::
increase 305

::
in

::
l. 306

::
To

:::::::::
conclude,

:::::::
history

::::::::::
dependence

::::::::::::
disentangles

:::
the

::::::
effects

::
of

::::::
input

::::::::::
activation, 307

::::::::::
reactivation

::::
and

:::::::::
temporal

::::::
depth,

::::::
which

::::::::
provides

:
a
::::::::::::::
comprehensive

::::::::::::::
characterization

::
of 308

::::
past

::::::::::::
dependencies

::
in

::::
the

::::::::::::
autoregressive

:::::::
model.

:::::
This

::
is

::::::::
different

::::
from

::::
the

:::::
total

::::::
mutual 309

:::::::::::
information,

:::::
which

:::::
lacks

::::
the

:::::::
entropy

:::::::::::::
normalization

::::
and

::
is

::::::::
sensitive

::
to

::::
the

:::::
firing

:::::
rate. 310

::::
This

::
is

::::
also

::::::::
different

:::::
from

::::::::::
time-lagged

::::::::::
measures,

:::::
whose

::::::::::
timescales

:::
are

::::::::
sensitive

:::
to 311

:::::
both,

:::
the

:::::::::::
reactivation

::::::::::
probability

:::
m

:::
and

:::
the

::::::::
temporal

::::::
depth

::
l.

::::
The

:::::::::
confusion

::
of 312

:::::
effects

:::
in

:::
the

::::::::::
timescales

::
is

::::::
rooted

::
in

::::
the

:::::::::::
time-lagged

::::::
nature

::
of

::::
the

::::::::::::
measures—by 313

::::::::::
quantifying

::::
past

::::::::::::
dependencies

::::
out

::
of

::::::::
context,

:::::
C(T )

::::
and

:::::
L(T )

::::
also

:::::::
capture

::::::::
indirect, 314

:::::::::
redundant

::::::::::::
dependencies

::::
onto

:::::
past

::::::
events.

::::::::
Indirect,

::::::::::
redundant

::::::::::::
dependencies

:::::
arise

:::::
from 315

::::::
unique

::::::::::::
dependencies,

::::::::
because

::::
past

::::::
states

::::
that

::::
are

::::::::
uniquely

:::::::::
predictive

::
of

::::::
future 316

::::::::
activities

::::
were

:::
in

::::
turn

::::::::
uniquely

::::::::::
dependent

:::
on

:::::
their

::::
own

:::::
past.

::::
The

::::::::
stronger

:::
the

:::::::
unique 317

:::::::::::
dependence,

:::
the

::::::
longer

::::
the

:::::::
indirect

::::::::::::
dependencies

:::::
reach

::::
into

::::
the

:::::
past,

:::::
which

:::::::::
increases 318

:::
the

::::::::
timescale

:::
of

:::::::::::
time-lagged

:::::::::
measures.

::
In

:::::::::
contrast,

:::::::
indirect

::::::::::::
dependencies

:::
do

:::
not 319

:::::::::
contribute

::
to

::::
the

:::::::
history

:::::::::::
dependence,

:::::::
because

:::::
they

::::
add

::
no

::::::::::
predictive

::::::::::
information

:::::
once 320

::::::::::
more-recent

:::::
past

::
is

:::::
taken

::::
into

::::::::
account.

:
321

::::::::
History

::::::::::::
dependence

::::::::::
dismisses

:::::::::::
redundant

:::::
past

::::::::::::::
dependencies

::::
and

::::::::::
captures 322

:::::::::::
synergistic

:::::::
effects.

::
A

::::
key

::::::::
property

::
of

:::::::
history

::::::::::
dependence

::
is
:::::
that

::
it

::::::::
evaluates

:::::
past 323

:::::::::::
dependencies

:::
in

:::
the

:::::
light

::
of

:::::
more

::::::
recent

:::::
past.

:::::
This

::::::
allows

:::
the

::::::::
measure

::
to

:::::::
dismiss 324

:::::::
indirect,

::::::::::
redundant

::::
past

::::::::::::
dependencies

::::
and

:::
to

:::::::
capture

::::::::::
synergistic

::::::
effects.

:::
In

:::::
three 325

:::::::
common

:::::::
models

::
of

::::::
neural

:::::::
spiking

::::::::
activity,

:::
we

:::::::::::
demonstrate

:::::
how

:::
this

:::::
leads

:::
to

::
a 326

:::::::::::
substantially

::::::::
different

:::::::::::::::
characterization

::
of

::::
past

::::::::::::
dependencies

::::::::::
compared

::
to

:::::::::::
time-lagged 327

::::::::
measures

::
of

:::::::::
temporal

::::::::::
dependence. 328

:::::
First,

:::
we

:::::::::
simulated

:
a
:::::::::::
subsampled

:::::::::
branching

:::::::
process

:::::
[14],

::::::
which

::
is

::
a

::::::::
minimal 329

:::::
model

:::
for

::::::::
activity

:::::::::::
propagation

::
in

::::::
neural

:::::::::
networks

:::
and

::::::::
captures

::::
key

::::::::::
properties

::
of 330

::::::
spiking

:::::::::
dynamics

::
in

::::::
cortex

:::::
[15].

::::::::
Similar

::
to

:::
the

:::::::
binary

:::::::::::::
autoregressive

:::::::
process,

::::::
active 331

:::::::
neurons

:::::::
activate

::::::::
neurons

::
in

::::
the

::::
next

:::::
time

::::
step

::::
with

:::::::::::
probability

:::
m,

:::
the

::
so

::::::
called 332
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Fig 4.
:::::::
History

:::::::::::::
dependence

::::::::::
dismisses

:::::::::::
redundant

:::::
past

::::::::::::::
dependencies

::::
and

::::::::
captures

::::::::::::
synergistic

:::::::
effects

:::::
(A,B)

::::::::
Analysis

::
of

::
a

::::::::::
subsampled

::::::::::
branching

:::::::
process.

::::
(A)

:::
The

:::::::::::
population

:::::::
activity

::::
was

:::::::::
simulated

::
as

::
a
:::::::::
branching

:::::::
process

::::::::::
(m = 0.98)

::::
and

::::::::::
subsampled

:::
to

::::
yield

::::
the

:::::
spike

:::::
train

::
of

::
a

:::::
single

:::::::
neuron

:
(Materials and methods

:
).

::::
(B)

::::::::::::::
Autocorrelation

:::::
C(T )

::::
and

::::::
lagged

:::::::
mutual

:::::::::::
information

:::::
L(T )

:::::::
include

:::::::::
redundant

:::::::::::
dependencies

::::
and

::::::
decay

:::::
much

::::::
slower

:::::
than

:::
the

:::::
gain

:::::::
∆R(T ),

:::::
with

:::::
much

::::::
longer

:::::::::
timescales

::::::::
(vertical

::::::
dashed

::::::
lines).

::::::
(C,D)

::::::::
Analysis

::
of

:::
an

:::::::::
Izhikevich

:::::::
neuron

::
in

::::::::::
chattering

:::::
mode

::::
with

::::::::
constant

::::::
input

::::
and

:::::
small

:::::::
voltage

:::::::::::
fluctuations.

:::::
The

::::::
neuron

:::::
fires

::
in

:::::::
regular

:::::
bursts

:::
of

:::::::
activity.

::::
(D)

::::::::::::
Time-lagged

::::::::
measures

::::::
C(T )

:::
and

:::::
L(T )

::::::::
measure

::::::
both,

:::::
intra-

::::::::::
(T < 10 ms)

::::
and

::::::::::
inter-burst

:::::::::::
(T > 10 ms)

:::::::::::::
dependencies,

::::::
which

:::::
decay

:::::
very

::::::
slowly

:::
due

:::
to

::::::::
regularity

:::
of

:::
the

::::::
firing.

::::
The

:::::
gain

:::::::
∆R(T )

::::::
reflects

:::::
that

:::::
most

::::::
spiking

::::
can

:::::::
already

:::
be

::::::::
predicted

:::::
from

::::::::::
intra-burst

:::::::::::::
dependencies,

:::::::
whereas

::::::::::
inter-burst

::::::::::::
dependencies

:::
are

:::::::
highly

::::::::::
redundant.

::
In

::::
this

:::::
case,

::::
only

:::::::
∆R(T )

::::::
yields

:
a
::::::::

sensible
::::
time

:::::
scale

:::::
(blue

:::::::
dashed

:::::
line).

:::::
(E,F)

::::::::
Analysis

::
of

::
a

::::::::::
generalized

:::::
leaky

:::::::::
integrate

::::
and

:::
fire

:::::::
neuron

::::
with

:::::::::::
long-lasting

:::::::::
adaptation

:::::
filter

::
ξ
:::::::

[3, 43]
:::
and

::::::::
constant

::::::
input.

:::::::
Figure

:::::::
adapted

:::::
from

::::
[44]

:
.
::::
(F)

:::::
Here,

::::::
∆R(T )

:::::::
decays

::::::
slower

::
to

::::
zero

:::::
than

:::
the

::::::::::::::
autocorrelation

::::::
C(T ),

::::
and

::
is

::::::
higher

:::::
than

:::::
L(T )

::
for

:::::
long

::::::
delays

::
T .

::::::::::
Therefore,

::::
the

::::::::::
dependence

:::
on

:::::
past

:::::
spikes

::
is
::::::::
stronger

:::::
when

:::::::
taking

::::
more

::::::
recent

:::::
past

:::::
spikes

::::
into

::::::::
account

:::::::::
(∆R(T )),

::
as

::::::
when

::::::::::
considering

:::::
them

::::::::::::
independently

:::::::
(L(T )).

:::::
Due

::
to

:::::
these

::::::::::
synergistic

:::::
past

::::::::::::
dependencies,

:::::::
∆R(T )

::
is

::::
the

::::
only

:::::::
measure

::::
that

::::::::
captures

::::
the

::::::::::
long-range

::::::
nature

::
of

::::
the

:::::
spike

::::::::::
adaptation.

:::::::::
branching

::::::::::
parameter,

::::
and

:::
are

:::::::::
activated

:::::::::
externally

::::
with

:::::
some

:::::::::::
probability

::
h.

::::
The 333

::::::
process

::::
was

:::::::::
simulated

:::
in

::::
time

:::::
steps

::
of

::::::::::
∆t = 4 ms

::::
with

::
a
::::::::::
population

:::::::
activity

:::
of

:::
500

::::
Hz, 334

:::::
which

::::
was

:::::::::::
subsampled

::
to

::::::
obtain

::
a
::::::
single

:::::
spike

:::::
train

::::
with

::
a

:::::
firing

::::
rate

::
of

::
5
:::
Hz 335

::::
(Fig

::::
4A).

:::::::
Similar

::
to

::::
the

::::::
binary

:::::::::::::
autoregressive

::::::::
process,

:::
the

::::::::::::::
autocorrelation

::::::
decays 336

::::::::::::
exponentially

::::
with

::::::::::::::
autocorrelation

:::::
time

:::::::::::::::::::::::::
τC = −∆t/ log(m) = 198 ms,

::::
and

::::
the

::::::
lagged 337

::::::
mutual

:::::::::::
information

::::::
decays

:::::::
slightly

::::::
faster

::::
(Fig

:::::
4B).

::
In

:::::::::::
comparison,

::::
the

::::
gain

::
in

:::::::
history 338

::::::::::
dependence

::::
∆R

::::::
decays

::::::
much

::::::
faster.

::::::
When

:::::::::
increasing

::::
the

:::::::::
branching

:::::::::
parameter

:::
m

::::
(for 339

::::
fixed

::::::
firing

:::::
rate),

:::
the

:::::
total

:::::::
history

:::::::::::
dependence

:::::::::
increased,

::
as

:::
in

:::
the

:::::::::::::
autoregressive 340

::::::
process

::
(
:::
S11

::::
Fig.

:
).
::::::::::

Strikingly,
::::
the

::::::::
timescale

:::
τR:::::::::

remained
::::::::
constant

::
or

:::::
even

:::::::::
decreased 341

::
for

::::::
larger

::::::::::
m > 0.967

::::
and

::::
thus

::::::
higher

::::::::::::::
autocorrelation

:::::
time

:::::::::::
τC > 120ms

:
(
:::
S11

::::
Fig.

::
), 342

:::::
which

::
is

::::::::
different

:::::
from

:::
the

::::::
binary

:::::::::::::
autoregressive

::::::::
process.

::::
The

::::::
reason

:::
is

::::
that

:::
the 343

:::::::::
branching

:::::::
process

::::::
evolves

:::
at

:::
the

::::::::::
population

:::::
level,

::::::::
whereas

:::::::
history

::::::::::
dependence

::
is 344

:::::::::
quantified

::
at

::::
the

:::::
single

:::::::
neuron

:::::
level.

::::::::
Thereby,

:::::::
history

:::::::::::
dependence

::::
also

::::::::
captures 345

:::::::
indirect

::::::::::::
dependencies,

::::::::
because

:::
the

::::
own

:::::::
spiking

:::::::
history

:::::::
reflects

:::
the

::::::::::
population

::::::::
activity. 346

:::
The

:::::::
higher

:::
the

:::::::::
branching

::::::::::
parameter

:::
m,

:::
the

:::::
more

:::::::::::
informative

::::
past

::::::
spikes

:::
are

::::::
about 347

:::
the

::::::::::
population

::::::::
activity,

:::
and

::::
the

:::::::
shorter

::
is

:::
the

:::::::::
timescale

:::
τR ::::

over
::::::
which

::
all

::::
the

:::::::
relevant 348

::::::::::
information

::::::
about

:::
the

::::::::::
population

::::::::
activity

:::
can

:::
be

:::::::::
collected.

::::::
Thus,

:::
for

:::
the

:::::::::
branching 349

:::::::
process,

:::
the

:::::
total

:::::::
history

:::::::::::
dependence

::::
Rtot::::::::

captures
:::
the

:::::::::
influence

::
of

:::
the

::::::::::
branching 350

:::::::::
parameter,

::::::::
whereas

:::
the

:::::::::::
information

:::::::::
timescale

:::
τR:::::::

behaves
:::::
very

:::::::::
differently

:::::
from

:::
the 351

:::::::::
timescales

::
of

:::::::::::
time-lagged

:::::::::
measures.

:
352

:::::::
Second,

::
we

::::::::::::
demonstrate

:::
the

:::::::::
difference

:::
of

::::::
history

:::::::::::
dependence

:::
to

::::::::::
time-lagged 353

::::::::
measures

:::
on

::
an

::::::::::
Izhikevich

:::::::
neuron,

::::::
which

::
is

:
a
:::::::

flexible
::::::
model

:::::
that

:::
can

::::::::
produce

::::::::
different 354

:::::
neural

::::::
firing

::::::::
patterns

::::::
similar

:::
to

:::::
those

::::::::
observed

:::
for

::::
real

::::::::
neurons

::::
[45]

:
.
:::::
Here, 355

::::::::::
parameters

::::
were

:::::::
chosen

:::::::::
according

::
to

::::
the

::::::::::
”chattering

::::::
mode”

:::::
[45],

:::::
with

::::::::
constant

:::::
input 356

:::
and

:::::
small

:::::::
voltage

:::::::::::
fluctuations

::
(Materials and methods

:
).
:::::
The

::::::
neuron

:::::
fires

::
in

:::::::
regular 357

:::::
bursts

:::
of

:::::::
activity,

:::::
with

:::::::::
consistent

::::::
timing

::::::::
between

::::::
spikes

::::::
within

::::
and

::::::::
between

::::::
bursts 358

::::
(Fig

::::
4C).

::::::
While

:::::::::::
time-lagged

::::::::
measures

::::::::
capture

::
all

::::
the

::::::::::
regularities

::
in

:::::::
spiking

::::
and 359

:::::::
oscillate

:::::
with

:::
the

::::::
bursts

::
of

::::::::
activity,

:::::::
history

::::::::::
dependence

:::::::::
correctly

::::::::
captures

::::
that

:::::::
spiking 360

:::
can

::::::
almost

:::
be

:::::::
entirely

:::::::::
predicted

:::::
from

::::::::::
intra-burst

::::::::::::
dependencies

:::::
alone

::::
(Fig

:::::
4D).

:::::::
History 361

::::::::::
dependence

:::::::::
dismisses

:::
the

::::::::::
redundant

::::::::::
inter-burst

::::::::::::
dependencies

::::
and

:::::::
thereby

:::::
yields

::
a 362

:::::::
sensible

:::::::
measure

:::
of

:
a
:::::::::
timescale

:::::
(blue

:::::::
dashed

:::::
line).

:
363
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::::::
Finally,

:::
we

:::::::::
analyzed

:
a
:::::::::::
generalized

:::::
leaky

::::::::::::::::
integrate-and-fire

::::::
neuron

:::::
with

::::::::::
long-range 364

::::
spike

::::::::::
adaptation

::::
(22

::::::::
seconds)

::::
(Fig

:::::
4E),

:::::
which

::::::::::
reproduces

::::::::::::::
spike-frequency

:::::::::::
adaptation 365

::
as

::::::::
observed

:::
for

::::
real

:::::
layer

:::
2/3

::::::::::
pyramidal

:::::::
neurons

:::::::
[3, 43].

::::
For

::::
this

::::::
model,

:::::::::::
time-lagged 366

::::::::
measures

:::::
C(T )

::::
and

:::::
L(T )

::::::::
actually

:::::
decay

:::
to

::::
zero

:::::
much

::::::
faster

::::
than

::::
the

::::
gain

:::
in

::::::
history 367

::::::::::
dependence

:::::::
∆R(T ),

::::::
which

::
is
::::
the

::::
only

::::::::
measure

::::
that

::::::::
captures

::::
the

:::::::::
long-range 368

:::::::::
adaptation

:::::::
effects

::
of

:::
the

::::::
model

:::::
(Fig

::::
4F).

::::
This

::::::
shows

::::
that

:::::
past

::::::::::::
dependencies

::
in

::::
this 369

:::::
model

:::::::
include

::::::::::
synergistic

:::::::
effects,

:::::
where

::::
the

:::::::::::
dependence

::
is

:::::::
stronger

:::
in

:::
the

:::::::
context

:::
of 370

::::
more

::::::
recent

:::::::
spikes.

::::
This

::
is
:::::

most
::::::
likely

:::
due

:::
to

:::
the

::::::::::::
non-linearity

::
of

::::
the

::::::
model,

::::::
where 371

::::
past

:::::
spikes

::::::
cause

:
a
::::::::

different
:::::::::::
adaptation

:::::
when

:::::
taken

::::::::
together

:::
as

:::::
when

::::::::::
considered

::
as 372

:::
the

::::
sum

::
of

:::::
their

:::::::::::::
contributions.

:
373

:::::
Thus,

::::
due

::
to

:::
its

::::::
ability

::
to

:::::::
dismiss

::::::::::
redundant

::::
past

::::::::::::
dependencies

::::
and

:::
to

:::::::
capture 374

:::::::::
synergistic

:::::::
effects,

:::::::
history

::::::::::
dependence

::::::
really

::::::::
provides

:
a
::::::::::::::
complementary 375

::::::::::::::
characterization

::
of

:::::
past

::::::::::::
dependencies

:::::::::
compared

::
to

:::::::::::
time-lagged

:::::::::
measures.

::::::::::::
Importantly, 376

:::::::
because

:::
the

:::::::::
approach

::::::
better

:::::::::::
disentangles

:::
the

:::::::
effects

::
of

::::::::
timescale

::::
and

:::::
total

:::::::
history 377

:::::::::::
dependence,

:::
the

::::::
results

:::::::
remain

::::::::::::
interpretable

:::
for

::::
very

::::::::
different

::::::::
models,

::::
and

:::::::
provide

:
a 378

::::
more

::::::::::::::
comprehensive

::::
view

:::
on

::::
past

::::::::::::
dependencies. 379

Embedding optimization can capture long-lasting
::::::::::
captures 380

history dependence for a benchmark spiking neuron model
::::::
with 381

::::::::::::::
long-lasting

::::::
spike

::::::::::::::
adaptation 382

On a benchmark spiking neuron model, we first demonstrate that without optimization 383

and proper regularization, past embeddings are likely to capture much less history 384

dependence, or lead to estimates that severely overestimate the true history dependence. 385

We then validate that embedding optimization captures
:::::::
Readers

:::::
that

:::
are

:::::::
familiar

:::::
with 386

:::
the

::::
bias

::::::::
problem

::
of

:::::::
mutual

:::::::::::
information

:::::::::
estimation

::::::
might

:::::
want

::
to

::::::
jump

::
to

::::
the

::::
next 387

::::
part,

::::::
where

:::
we

:::::::
validate

:::::
that

:::::::::::::::::::
embedding-optimized

:::::::::
estimates

::::::
indeed

:::::::
capture

:
the 388

model’s history dependence for hundreds of milliseconds
::::
true

::::::
history

:::::::::::
dependence, while 389

being robust to systematic overestimation. As a model we chose a generalized leaky 390

integrate-and-fire neuron
:::::::
(GLIF)

::::::
model with spike frequency adaptation, whose 391

parameters were fitted to experimental data [3, 43]. The neuron was driven with a 392

constant input current to achieve an average firing rate of 4 Hz. The model neuron 393

:::::
model

:
was chosen, because it is equipped with a

::::::::::
long-lasting

:
spike adaptation 394

mechanismthat lasts over 20 seconds, and the ground truth of the
:
,
::::
and

:::
its total 395

history dependence Rtot can be directly computed from sufficiently long simulations 396

(Materials and methods). In addition, we showed that the neuron model can be well 397

approximated by a generalized linear model (GLM). By fitting a GLM, we could thus 398

faithfully estimate the true value of history dependence R(T, d, κ) for any past 399

embedding T, d, κ (Materials and methods)Materials and methods
:
).
::::

For 400

:::::::::::::
demonstration,

:::
we

:::::
show

::::::
results

:::
on

::
a
:::::::
variant

::
of

:::
the

::::::
model

::::::
where

::::::::::
adaptation

:::::::
reaches 401

:::
one

::::::
second

:::::
into

:::
the

:::::
past,

::::
and

:::::
show

::::::
results

:::
on

:::
the

::::::::
original

:::::
model

:::::
with

::
a

::
22

:::::::
second 402

:::::
kernel

:::
in S1

:
,
:
S2

::::
and S5

::::
Figs.

::::
For

::::::::::
simulation,

::::
the

::::::
neuron

::::
was

::::::
driven

:::::
with

::
a

::::::::
constant 403

:::::
input

:::::::
current

::
to

:::::::
achieve

:::
an

:::::::
average

:::::
firing

::::
rate

::
of

::
4
:::
Hz. In the following, estimates

::::
R̂(T ) 404

are shown for a simulated recording of 90 minutes, whereas GLM estimates
::
the

:::::
true 405

:::::
values

:::::
R(T )

:
were computed on a 900 minute recording (Materials and methods). 406

Without regularization, history dependence is severely overestimated for 407

high-dimensional embeddings. For demonstration, we estimated the history 408

dependence R(τ, d) for varying numbers of bins d and a constant bin size τ = 20 ms (i.e. 409

κ = 0 and T = d · τ). We compared estimates R̂(τ, d) obtained by maximum likelihood 410

(ML) estimation [28], or Bayesian estimation using the NSB estimator [33], with the 411

model’s true R(τ, d) . 412
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:::
(Fig

:::::
5A).

:
Both estimators accurately estimate R(τ, d) for up to d ≈ 15

::::::
d ≈ 20

:
past 413

bins. As expected, the NSB estimator starts to be biased at higher d than the ML 414

estimator. For embedding dimensions d > 30, both estimators severely overestimate 415

R(τ, d). Note that
:
±

:
two standard deviations are plotted as shaded areas, but are too 416

small to be visible. Therefore, any deviation of estimates from the model’s true history 417

dependence R(τ, d) can be attributed to positive estimation bias, i.e. a systematic 418

overestimation of the true history dependence due to limited data. 419

Fig 5. Embedding optimization accurately estimates history dependence
for a generalized leaky integrate-and-fire neuron with long-lasting spike
frequency adaptation [3, 43].

:::::::::::
Embedding

::::::::::::::
optimization

:::::::::
captures

::::::::
history

::::::::::::
dependence

:::
for

::
a
::::::::
neuron

:::::::
model

:::::
with

::::::::::::
long-lasting

::::::
spike

::::::::::::
adaptation.

:::::::
Results

:::
are

::::::
shown

:::
for

:
a
:::::::::::

generalized
:::::
leaky

::::::::::::::::
integrate-and-fire

:::::::
(GLIF)

::::::
model

::::
with

:::::::::::
long-lasting

::::
spike

:::::::::
frequency

:::::::::::
adaptation

::::::
[3, 43]

::::
with

::
a
:::::::::
temporal

:::::
depth

::
of
::::

one
:::::::
second

:::::::::
(Methods

:::
and

:::::::::
material). (A) For illustration, history dependence R(τ, d) was estimated on a
simulated 90 minute recording for different embedding dimensions d and a fixed bin
width τ = 20 ms. Maximum likelihood (ML) [28] and Bayesian (NSB) [33] estimators
display the insufficient embedding versus estimation bias trade-off: For small embedding
dimensions d, the estimated history dependence is much smaller, but agrees well with
the true history dependence R(τ, d) for the given embedding. For larger d, the
estimated history dependence R̂(τ, d) increases, but when d is too high (d > 20), it
severely overestimates the true R(τ, d). The Bayesian bias criterion (BBC) selects NSB
estimates R̂(τ, d) for which the difference between ML and NSB estimate is small (red
solid line). All selected estimates are unbiased and agree well with the true R(τ, d)
(grey line). Thus, embedding optimization selects the highest, yet unbiased estimate
(red diamond). (B) The Shuffling estimator (blue solid line) subtracts estimation bias
on surrogate data (yellow dashed line) from the ML estimator (blue dashed line). Since
the surrogate bias is higher than the systematic overestimation in the ML estimator
(difference between grey and blue dashed lines), the Shuffling estimator is a lower bound
to R(τ, d). Embedding optimization selects the highest estimate, which is still a lower
bound (blue diamond). For A and B, shaded areas indicate 2 standard deviations of the
estimates obtained from 50 repeated simulations

:
,
:::::
which

::::
are

::::
very

:::::
small

::::
and

:::::
thus

::::::
hardly

::::::
visible. (C) Embedding optimized

:::::
BBC estimates R̂(T )

::::
(red

::::
line)

:
yield accurate

estimates of the model neuron’s
::::
true

:
history dependence R(T )for hundreds of

milliseconds
:
,
:::::
total

:::::::
history

::::::::::
dependence

:::::
Rtot :::

and
:::::::::::

information
:::::::::
timescale

:::
τR::::::::::

(horizontal

:::
and

:::::::
vertical

:::::::
dashed

:::::
lines). The zoom-in (right panel) shows robustness of both

regularization methods: For all T the model neuron’s R(T )
::::::::::
R(T, d∗, κ∗)

:
lies within

errorbars (BBC), or consistently above the Shuffling estimator that provides a lower
bound. Here, the model’s R(T )

::::::::::
R(T, d∗, κ∗)

:
was computed for the optimized embedding

parameters d∗, κ∗
:::::
d∗, κ∗

:
that were selected via BBC or Shuffling, respectively (dashed

lines). Shaded areas indicate 95 % confidence intervals
::
±

::::
two

::::::::
standard

:::::::::
deviations

obtained by bootstrapping, and colored dashed lines
:::::::
vertical

::::
bars

:
indicate past ranges

over which estimates R̂(T ) were averaged to compute R̂tot :
(Materials and methods).

The aim is now to identify the largest embedding dimension d∗ for which the 420

estimate of R(τ, d) is not yet biased. A biased estimate is expected as soon as the two 421

estimates ML and NSB start to differ significantly from each other (Fig 5A, red 422

diamond), which is formalized by the Bayesian bias criterion (BBC) (Materials and 423

methodsMaterials and methods). According to the BBC, all NSB estimates R̂(τ, d) 424

with d lower or equal to d∗ are unbiased (solid red line). We find that indeed all BBC 425

estimates agree well with the true R(τ, d) (grey line), but d∗ yields the largest unbiased 426

estimate. 427
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The problem of estimation bias has also been addressed previously by the so-called 428

Shuffling estimator [31]. The Shuffling estimator is based on the ML estimator and 429

applies a bias correction term (Fig 5B). In detail, one approximates the estimation bias 430

using surrogate data, which are obtained by shuffling of the embedded spiking history. 431

The surrogate estimation bias (yellow dashed line) is proven to be larger than the actual 432

estimation bias (difference between grey solid and blue dashed line). Therefore, 433

Shuffling estimates R̂(τ, d) provide lower bounds to the true history dependence R(τ, d). 434

As with the BBC, one can safely maximize Shuffling estimates R̂(τ, d) over d to find the 435

embedding dimension d∗ that provides the largest lower bound to the model’s total 436

history dependence Rtot (Fig 5B, blue diamond). 437

Thus, using a model neuron, we illustrated that history dependence can be severely 438

overestimated if the embedding is chosen too complex. Only when overestimation is 439

tamed by one of the two regularization methods, BBC or Shuffling, embedding 440

parameters can be safely optimized to yield better estimates of history dependence. 441

Optimized embeddings capture the model’s true history dependencefor 442

hundreds of milliseconds. In the previous part, we demonstrated how embedding 443

parameters are optimized for the example of fixed κ and τ . Now, we optimize all 444

embedding parameters for fixed past range T to obtain embedding-optimized estimates 445

R̂(T ) of R(T ). In particular, we test whether
:::
We

::::
find

::::
that

::::::::::::::::::::
embedding-optimized

:::::
BBC 446

estimates R̂(T ) agree well with the
::::
true

::::::
R(T ),

::::
such

::::
that

::::
the

:
model’s true history 447

dependence R(T ) (see Materials and methods for details on how we obtained R(T )). 448

Embedding-optimized estimates R̂(T ) were computed for a range of T using either 449

the Bayesian bias criterion (BBC) or
::::
total

:::::::
history

::::::::::
dependence

:::::
Rtot ::::

and
:::::::::::
information 450

::::::::
timescale

:::
τR:::

are
::::
well

:::::::::
estimated

:::::
(Fig

:::
5C,

:::::::
vertical

::::
and

::::::::::
horizontal

::::::
dashed

::::::
lines).

:::
In 451

::::::::
contrast, the Shuffling estimator . Notably, for both estimators, estimates R̂(T ) agree 452

with the true history dependence for up to several hundred milliseconds (Fig 5C). 453

When comparing the two regularization methods (BBC and Shuffling), the BBC 454

approach captures more history dependence. 455

For both regularization methods the
:::::::::::::
underestimates

::::
the

::::
true

:::::
R(T )

:::
for

:::::
past

::::::
ranges 456

::::::::::
T > 200 ms,

:::::
such

::::
that

::::
the

:::::::
model’s

::::
Rtot::::

and
:::
τR:::

are
:::::::::::::::

underestimated
:::::
(blue

::::::
dashed

::::::
lines). 457

:::
For

:::::
large

::::
past

::::::
ranges

:::::::::::::
T > 1000 ms, estimates R̂(T ) decrease for high T . This is 458

because little
::
of

:::::
both

:::::::::
estimators

::::::::
decrease

::::::
again,

:::::::
because

:::
no

:
additional history 459

dependence is uncovered, whereas the constraint of an unbiased estimation decreases 460

the temporal resolution . Thus for very high past ranges T , the embedding-optimized 461

estimates are considerably below the true history dependence of the underlying model 462

neuron. The estimated temporal depth T̂D ≈ 630 ms for BBC is therefore smaller than 463

the true temporal depth, which, based on the true R(T ), is larger than 3 seconds 464

(Fig 5C). The true total history dependence of Rtot = 13.2% is, however, well 465

estimated with R̂tot ≈ 12.8% for BBC.
::
of

::::
the

::::::::::
embedding.

:
466

Embedding-optimized estimates do not overestimate history dependence 467

:::
are

:::::::
robust

:::
to

::::::::::::::::
overestimation despite maximization over complex 468

embeddings. In the previous part, we investigated how much of the true history 469

dependence for different past ranges T (grey solid line) we miss by embedding the 470

spiking history. An additional source of error is the estimation of history dependence 471

from limited data. In particular, estimates are prone to overestimate history 472

dependence systematically
:::
(Fig

::::::
5A,B). 473

To test explicitly for overestimation, we computed the true history dependence 474

R(T, d∗, κ∗) for exactly the same sets of embedding parameters T, d∗, κ∗ that were 475

found during embedding optimization with BBC (grey dash-dotted line), and the 476

Shuffling estimator (gray
:::
grey

:
dotted line, Fig 5C, zoom-in). We expect that BBC 477
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estimates are unbiased, i.e. the true history dependence should lie within errorbars of 478

the BBC estimates (red shaded area) for a given T . In contrast, Shuffling estimates are 479

a lower bound, i.e. estimates should lie below the true history dependence (given the 480

same T, d∗, κ∗). We find that this is indeed the case for all T . Note that this is a strong 481

result, because it requires that the regularization methods work reliably for every single 482

set of embedding parameters used for optimization—otherwise, parameters that cause 483

overestimation would be selected. 484

Thus, we can confirm that the embedding-optimized estimates do not systematically 485

overestimate the model neuron’s history dependence, and are on average lower bounds 486

to the true history dependence. This is important for the interpretation of the results. 487

Mild overfitting can occur during embedding optimization on short 488

recordings, but can be overcome with cross-validation. We also tested 489

whether the recording length affects the reliability of embedding-optimized estimates, 490

and found very mild overestimation (1–3%) of history dependence for BBC for 491

recordings as short as 3 minutes (S1
:::
and

:
S4

:::
Figs). The overestimation is a consequence 492

of overfitting during embedding optimization: variance in the estimates increases for 493

shorter recordings, such that maximizing over estimates selects embedding parameters 494

that have high history dependence by chance. Therefore, the overestimation can be 495

overcome by cross-validation, i.e.
:::
e.g.

:::
by optimizing embedding parameters on one

:::
the 496

::::
first half, and computing estimates on the other

::::::
second half of the data (S1 Fig). In 497

contrast, we found that for the model neuron, Shuffling estimates do not overestimate 498

the true history dependence even for recordings as short as 3 minutes (S1 Fig). This is 499

because the effect of overfitting was small compared to the systematic underestimation 500

of Shuffling estimates. Here, all experimental recordings where we apply BBC are long 501

enough (≈ 90 minutes), such that overfitting was neglected in this paper
::
no 502

::::::::::::::
cross-validation

:::
was

:::::::
applied

:::
on

::::
the

::::::::::::
experimental

::::
data. 503

Estimates of temporal depth
:::
the

::::::::::::
information

::::::::::
timescale

:
are sensitive to the 504

recording length. Finally, we also tested the impact of the recording length on the 505

value of the estimated
::::::::
estimates

::::
R̂tot:::

of
:::
the

:
total history dependence R̂tot, as well as 506

the temporal depth T̂D::::::::
estimates

:::
τ̂R:::

of
:::
the

:::::::::::
information

::::::::
timescale. While on recordings 507

of 3 minutes embedding optimization still estimated ≈ 95 % of R̂tot that was estimated 508

for 90 minutes, the estimated T̂D was only half of the temporal depth that was 509

estimated for 90 minutes
:::
the

::::
true

:::::
Rtot,:::::::::

estimates
:::
τ̂R:::::

were
::::
only

:::::::
≈ 75 %

::
of

:::
the

:::::
true

::
τR 510

(S2 Fig). The temporal depth decreases for shorter recordings, because the variance of 511

estimates increases, such that estimates R̂(T ) saturate within errorbars for smaller 512

:::::
Thus,

:::::::::
estimates

::
of

:::
the

:::::::::::
information

:::::::::
timescale

:::
τR:::

are
:::::
more

::::::::
sensitive

:::
to

:::
the

:::::::::
recording 513

::::::
length,

:::::::
because

:::::
they

:::::::
depend

:::
on

:::
the

:::::
small

::::::::::
additional

::::::::::::
contributions

::
to

::::::
R(T )

:::
for

::::
high 514

past ranges T . We therefore advice to compare history dependence, and especially T̂D, 515

for
:
,
:::::
which

::::
are

::::
hard

:::
to

::::::::
estimate

:::
for

:::::
short

::::::::::
recordings.

::::::::::
Therefore,

:::
we

::::::
advice

:::
to

:::::::
analyze 516

recordings of similar recording length
::::::
length

::
to

:::::
make

:::::::
results

:::
on

::
τR:::::::::::

comparable
::::::
across 517

:::::::::::
experiments. In the following, we explicitly shorten some recordings such that all 518

recordings have approximately the same recording length. 519

In conclusion, embedding optimization accurately estimated the model neuron’s 520

history dependence for past ranges of several hundred milliseconds
::::
true

:::::::
history 521

::::::::::
dependence. Moreover, for all past ranges, embedding-optimized estimates were robust 522

to systematic overestimation. Embedding optimization is thus a promising approach to 523

quantify history dependence and temporal depth
:::
the

:::::::::::
information

:::::::::
timescale in 524

experimental spike recordings. 525
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Embedding optimization reveals
::
is

:::::
key

:::
to

:::::::::::
estimate

:
long-lasting 526

history dependence in
::::::::::::::::
extra-cellular

::::::
spike

:
recordingsof spiking 527

neurons 528

Here, we apply embedding optimization to long spike recordings (≈ 90 minutes) from 529

rat dorsal hippocampus layer CA1 [46,47], salamander retina [48,49] and in vitro 530

recordings of rat cortical culture [50]. In particular, we compare embedding 531

optimization to other popular estimation approaches, and demonstrate that an 532

exponential past embedding is necessary to estimate history dependence for long past 533

ranges. We conclude with a practical advice on how to estimate history dependence in 534

highly parallel recordings of spiking neurons. 535

Embedding optimization reveals history dependence that is not captured 536

by a generalized linear model or a single past bin. We use embedding 537

optimization to estimate history dependence R̂(T )
:::::
R(T ) as a function of the past range 538

T (see Fig 6B for an example neuron
:::::
single

::::
unit

:
from hippocampus layer CA1, and S6, 539

S7 and S8 Figs for all analyzed neurons
:::::
sorted

:::::
units). In this example, BBC and 540

Shuffling with a maximum of dmax = 20 past bins led to very similar estimates for all T . 541

Notably, embedding optimization with both regularization methods estimated high total 542

history dependence of almost up to 40%, and
::::::::::
Rtot ≈ 40%

:::::
with

:
a temporal depth of 543

almost a second,
::::

and
:::
an

:::::::::::
information

:::::::::
timescale

::
of

:::::::::::
τR ≈ 100 ms

:
(Fig 6B). This indicates 544

that embedding-optimized estimates capture a substantial part of history dependence 545

also in experimental spike recordings. 546

Importantly, other common estimation approaches fail to capture the same amount 547

of history dependence (Fig 6B,D). To compare how well the different estimation 548

approaches could capture the total history dependence, we plotted for each neuron
::
so 549

the different estimates R̂tot :
of

::::
Rtot:

relative to the
::::::::::::
corresponding

:
BBC estimate 550

(Fig 6D). Embedding optimization with Shuffling yields estimates that agree well with 551

BBC estimates. The Shuffling estimator even yields slightly higher values on the 552

experimental data. Interestingly, embedding optimization with the Shuffling estimator 553

and as little as dmax = 5 past bins captures almost the same history dependence as 554

BBC with dmax = 20, with a median above 95 % for all recorded systems. In contrast, 555

we find that a single past bin only accounts for 70% to 80% of the total history 556

dependence. A GLM bears little additional advantage with a slightly higher median of 557

≈ 85%. To save computation time, GLM estimates were only computed for the 558

temporal depth T̂D that was found
::::
that

::::
was

:::::::::
estimated

:
using BBC (Fig 6B, violet 559

square). The remaining embedding parameters d and κ of the GLM’s history kernel 560

were separately optimized using the Bayesian information criterion (Materials and 561

methodsMaterials and methods). Since embedding and model parameters for the GLM 562

::::::::::
parameters were optimized, we argue that the GLM underestimates history dependence 563

because of its model assumption of no interdependencies
:::::::
specific

:::::
model

::::::::::::
assumptions, 564

:::
i.e.

:::
no

::::::::::
interactions

:
between past spikes. Considering that

:::::::::
Moreover,

::
we

::::::
found

::::
that

::::
the 565

:::::
GLM

::::::::
performs

::::::
worse

::::
than

:
embedding optimization with only five past binsestimates 566

much higher history dependence
:
.
:::::::::
Therefore, we conclude that interdependencies 567

between past events
:::
for

::::::
typical

::::::::::::
experimental

:::::
spike

::::::
trains,

:::::::::::
interactions

::::::::
between

::::
past 568

:::::
spikes

:
are important, but do not require very high temporal resolution.

::
In

::::
the 569

:::::::::
remainder

::
of

::::
this

::::::
paper

:::
we

:::
use

:::
the

::::::::
reduced

::::::::
approach

::::::::::
(Shuffling

:::::::::
dmax = 5)

::
to

::::::::
compare 570

::::::
history

:::::::::::
dependence

::::::
among

::::::::
different

::::::::
recorded

::::::::
systems.

:
571

Increasing bin sizes exponentially is crucial to estimate
::::::::::::
long-lasting

:
history 572

dependencefor high past ranges. To demonstrate this, we plotted 573

embedding-optimized BBC estimates R̂(T )
::
of

:::::
R(T )

:
using a uniform embedding, i.e. 574
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Fig 6. Embedding optimization reveals strong and long-lasting history
dependence in experimental spike recordings.

:::::::::::
Embedding

:::::::::::::
optimization

:::
is

:::
key

:::
to

:::::::::
estimate

:::::::::::::
long-lasting

::::::::
history

::::::::::::
dependence

:::
in

::::::::::::::
extra-cellular

::::::
spike

:::::::::::
recordings. (A) Example of recorded spiking activity in rat dorsal hippocampus layer

CA1. (B) Estimated
:::::::::
Estimates

::
of

:
history dependence R̂(T )

:::::
R(T ) for various estimators,

as well as
::::::::
estimates

::
of

:
the estimated total history dependence R̂tot ::::

Rtot:
and temporal

depth T̂D ::::::::::
information

:::::::::
timescale

:::
τR (dashed lines) (example neuron

:::::
single

:::::
unit from

CA1). Embedding optimization with BBC (red) and Shuffling (blue) for dmax = 20
yields consistent estimates. Embedding-optimized Shuffling estimates with a maximum
of dmax = 5 past bins (green) are very similar to estimates obtained with dmax = 20
(blue). In contrast, using a single past bin (dmax = 1, yellow), or fitting a GLM for the
temporal depth T̂D found with BBC (violet dot), estimates much lower total history
dependence. Shaded areas show

:::::::
indicate

::
±
::::

two
:
standard deviation

:::::::::
deviations obtained

by bootstrapping, and colored dashed lines
::::
small

::::::::
vertical

::::
bars

:
indicate past ranges over

which estimates R̂(T )
:
of

:::::
R(T )

:
were averaged to compute R̂tot::::::::

estimate
::::
Rtot:

(Materials
and methods

:
). (C) An exponential past embedding is crucial to capture history

dependence for high past ranges T . For T > 100 ms, uniform embeddings strongly
underestimate history dependence. Shown is the median of embedding-optimized
estimates R̂(T )

::
of

:::::
R(T ) with uniform embeddings, relative to estimates obtained by

optimizing exponential embeddings, for BBC with dmax = 20 (red) and Shuffling with

:::::::::
dmax = 20

::::::
(blue)

::::
and dmax = 5 (green). Shaded areas show 95 % percentiles. Median

and percentiles were computed over analyzed neurons
:::::
sorted

:::::
units

:
in CA1 (n = 28).

(D) Comparison of estimated total history dependence R̂tot :::
Rtot:

for different estimation
and embedding techniques for three different experimental recordings. For each neuron

:::::
sorted

:::::
unit (grey dots), estimates are plotted relative to embedding-optimized estimates

for BBC and dmax = 20. Embedding optimization with Shuffling and dmax = 20 yields
consistent but slightly higher estimates than BBC. Strikingly, Shuffling estimates for as
little as dmax = 5 past bins (green) capture more than 95 % of the estimates for
dmax = 20 (BBC). In contrast, Shuffling estimates obtained by optimizing a single past
bin, or fitting a GLM, are considerably lower. Bars indicate the median and lines
indicate 95 % bootstrapping confidence intervals on the median over analyzed neurons

:::::
sorted

:::::
units

:
(CA1: n = 28; retina: n = 111; culture: n = 48).

equal bin sizes, relative to estimates obtained with exponential embedding (Fig 6C), 575

both for BBC with dmax = 20 (red) and Shuffling with
::::::::
dmax = 20

::::::
(blue)

:::
or dmax = 5 576

(green). For past ranges T > 100 ms, estimates using a uniform embedding miss 577

considerable history dependence, which becomes more severe the longer the past range. 578

In the case of dmax = 5, a uniform embedding captures around 80 % for T = 1 s, and 579

only around 60 % for T = 10 s
::::::
T = 5 s

:
(median over analyzed neurons

:::::
sorted

:::::
units

:
in 580

CA1). Therefore, we argue that an exponential embedding is crucial when assessing the 581

temporal depth of history dependence in neural spiking activity.
::
for

::::::::::
estimating 582

::::::::::
long-lasting

:::::::
history

:::::::::::
dependence 583

Practical advice on how to estimate history dependence. We found that 584

embedding optimization yields an efficient and robust way to estimate history 585

dependence in experimental spike recordings. To leverage the full potential of the 586

approach one should consider an exponential increase of past bin sizes, especially for 587

high past ranges. Interestingly, optimizing embeddings with as few as five past bins is 588

sufficient to capture most history dependence, which strongly reduces computation 589

time and enables embedding optimization for large, highly parallel spike recordings. 590

We therefore give the following practical advice: To estimate history dependence, use 591
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the Shuffling estimator and optimize past embeddings with up to five past bins and 592

including a scaling exponent κ (see Practical guidelines in Materials and methods). In 593

the following, we use this approach to estimate the total history dependenceand 594

temporal depth for spike recordings from different species and brain areas. 595

Embedding optimization reveals clear differences in
:::::::::::
Together, 596

::::::
total history dependence

::::
and

::::
its

::::::::::::
timescale

::::::
show

:::::::
clear

:::::::::::::
differences 597

between recorded systems and individual neurons
:::::::
sorted

:::::::
units 598

Finally, we present results from diverse electrophysiological
:::::::::::
extracellular

:
spike 599

recordings that show interesting differences in history dependence between neurons 600

:::::
sorted

:::::
units

:
of different recorded systems. In addition to recordings from rat dorsal 601

hippocampus layer CA1, salamander retina and rat cortical culture, we analyzed neural 602

spike trains recorded in
::::::
sorted

:::::
units

::
in

::
a

::::::::
recording

:::
of mouse primary visual cortex 603

using the novel Neuropixel
::::::::::
Neuropixels

:
probe [51]. Recordings from primary visual 604

cortex were approximately 40 minutes long. Thus, to make results comparable, we 605

analyzed only the first 40 minutes of all recordings. 606

We find clear differences between the recorded systems, both in terms of the total 607

history dependence, as well as the temporal depth
::::::::::
information

::::::::
timescale

:
(Fig 7). 608

Neurons
:::
A).

::::::
Sorted

:::::
units

:
in cortical culture and hippocampus layer CA1 have high 609

total history dependence Rtot with median over neurons
:::::
sorted

:::::
units

:
of ≈ 24 % and 610

≈ 25 %, whereas neurons
::::::
sorted

:::::
units in retina and primary visual cortex have typically 611

low Rtot of ≈ 11 % and ≈ 8 %. In terms of temporal depth, neurons
:::
the

:::::::::::
information 612

::::::::
timescale

:::
τR,

::::::
sorted

:::::
units

:
in hippocampus layer CA1 display much higher temporal 613

depth TD ::
τR:

with a median of ≈ 450 ms than neurons
:::::::
≈ 96 ms

:::::
than

:::::
units in cortical 614

culture with median temporal depth of ≈ 60 ms
::
τR::

of
::::::::
≈ 12 ms. Similarly, neurons 615

:::::
sorted

:::::
units

:
in primary visual cortex have higher TD ::

τR:
with median of ≈ 160 ms than 616

neurons
:::::::
≈ 37 ms

:::::
than

:::::
units

:
in retina with median of ≈ 70 ms

:::::::
≈ 23 ms. These differences 617

could reflect differences between early visual processing (retina, primary visual cortex) 618

and high level processing and memory formation in hippocampus, or likewise, between 619

neural networks that are mainly input driven (retina) or exclusively driven by recurrent 620

input (culture). Notably, studying history dependence or the temporal depth of history 621

dependence
::::
total

:::::::
history

::::::::::
dependence

::::
and

::::
the

::::::::::
information

:::::::::
timescale

::::::
varied 622

::::::::::::
independently

:::::::
among

::::::::
recorded

::::::::
systems,

::::
and

::::::::
studying

:::::
them

:
in isolation would miss 623

differences between recorded systems, whereas considering them jointly allows to 624

distinguish the different systemsin terms of history dependence
:
.
:::::::::
Moreover,

:::
no

:::::
clear 625

::::::::::::
differentiation

::::::::
between

:::::::
cortical

:::::::
culture,

::::::
retina

::::
and

::::::::
primary

:::::
visual

:::::::
cortex

::
is

:::::::
possible 626

:::::
using

:::
the

::::::::::::::
autocorrelation

:::::
time

::
τC:::::

(Fig
::::
7B),

:::::
with

:::::::
medians

:::::::::::
τC ≈ 68 ms

:::::::::
(culture), 627

::::::::::
τC ≈ 60 ms

:::::::
(retina)

::::
and

::::::::::
τC ≈ 80 ms

:::::::::
(primary

:::::
visual

::::::::
cortex),

:::::::::::
respectively. 628

::
To

::::::
better

:::::::::::
understand

::::
how

:::::
other

::::::::::::::
well-established

:::::::::
statistical

:::::::::
measures

::::::
relate

::
to

:::
the 629

::::
total

:::::::
history

:::::::::::
dependence

::::
Rtot::::

and
:::
the

:::::::::::
information

:::::::::
timescale

:::
τR,

:::
we

:::::
show

::::
Rtot::::

and
:::
τR 630

:::::
versus

::::
the

:::::::
median

:::::::::
interspike

::::::
inteval

:::::
(ISI),

::::
the

:::::::::
coefficient

:::
of

::::::::
variation

::::::::::::::
CV = σISI/µISI ::

of 631

:::
the

:::
ISI

:::::::::::
distribution,

::::
and

::::
the

::::::::::::::
autocorrelation

::::
time

:::
τC:::

in
:::
S14

::::
Fig.

:
.
:::::::::
Estimates

:::
of

:::
the 632

::::
total

:::::::
history

:::::::::::
dependence

::::
Rtot::::

tend
:::

to
::::::::
decrease

::::
with

::::
the

:::::::
median

::::
ISI,

:::
and

:::
to

:::::::
increase 633

::::
with

:::
the

::::::::::
coefficient

::
of

::::::::
variation

::::
CV .

:::::
This

::::::
result

::
is

::::::::
expected

:::
for

::
a
::::::::
measure

::
of

:::::::
history 634

:::::::::::
dependence,

:::::::
because

::
a

::::::
shorter

:::::::
median

::::
ISI

::::::::
indicates

::::
that

::::::
spikes

:::::
tend

::
to

::::::
occur

::::::::
together, 635

:::
and

::
a
::::::
higher

:::
CV:::::::::

indicates
::
a

::::::::
deviation

:::::
from

:::::::::::
independent

::::::::
Poisson

:::::::
spiking.

:::
In

::::::::
contrast, 636

:::
the

:::::::::::
information

::::::::
timescale

:::
τR:::::

tends
:::

to
::::::::
increase

::::
with

::::
the

:::::::::::::
autocorrelation

::::::
time,

::
as 637

::::::::
expected,

:::::
with

:::
no

::::
clear

::::::::
relation

::
to

::::
the

:::::::
median

:::
ISI

::
or

::::
the

:::::::::
coefficient

::
of

:::::::::
variation

::::
CV . 638

::::::::
However,

:::
the

::::::::::
correlation

::::::::
between

::::
the

::::::::
measures

::::::::
depends

:::
on

:::
the

::::::::
recorded

:::::::
system.

::::
For 639

:::::::
example

:::
in

:::::
retina

::::::::::
(n = 111),

::::
Rtot::

is
:::::::::::
significantly

::::::::::::::
anti-correlated

::::
with

::::
the

:::::::
median

:::
ISI 640

::::::::
(Pearson

::::::::::
correlation

::::::::::
coefficient:

::::::::::
r = −0.69,

:::::::::
p < 10−5)

::::
and

::::::::
strongly

:::::::::
correlated

::::
with

::::
the 641
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Fig 7. Total history dependence and temporal depth show clear differences
between recorded systems.

:::::::::
Together,

::::::
total

::::::::
history

::::::::::::
dependence

:::::
and

:::
its

:::::::::
timescale

::::::
show

:::::
clear

::::::::::::
differences

:::::::::
between

:::::::::
recorded

::::::::::
systems.

::::
(A)

Embedding-optimized Shuffling estimates (dmax = 5) of the total history dependence

::::
Rtot are plotted against the temporal depth

::::::::::
information

:::::::::
timescale

:::
τR for individual

neurons
::::::
sorted

:::::
units (dots) from four different recorded systems (raster plots show

spiketrains
::::
spike

::::::
trains

:
of the recorded neurons

::::::::
different

::::::
sorted

:::::
units).

::
No

:::::
clear

::::::::::
relationship

::::::::
between

:::
the

::::
two

:::::::::
quantities

::
is
:::::::
visible.

:
The analysis shows systematic

differences between the recorded systems: Neurons
:::::
sorted

:::::
units

:
in rat cortical culture

:::::::
(n = 48)

:
and rat dorsal hippocampus layer CA1

:::::::
(n = 28)

:
have higher median total

history dependence than neurons
::::
units

:
in salamander retina

:::::::::
(n = 111) and mouse

primary visual cortex
:::::::::
(n = 142). At the same time, neurons

::::::
sorted

:::::
units in cortical

culture and retina show smaller temporal depth
:::::::::
timescale than neurons

:::::
units in

primary visual cortex, and much smaller temporal depth
::::::::
timescale

:
than neurons

::::
units

in hippocampus layer CA1. Overall, recorded systems are clearly distinguishable when
jointly considering the total history dependence and temporal depth

::::::::::
information

::::::::
timescale. Error bars

:::
(B)

:::::
Total

:::::::
history

:::::::::::
dependence

::::
Rtot::::::

versus
::::
the

::::::::::::::
autocorrelation

::::
time

:::
τC ::::::

shows
::
no

:::::
clear

:::::::
relation

::::::::
between

::::
the

:::
two

::::::::::
quantities,

:::::::
similar

::
to

::::
the

::::::::::
information

::::::::
timescale

:::
τR.

::::::
Also,

:::
the

::::::::::::::
autocorrelation

:::::
time

:::::
gives

:::
the

:::::
same

:::::::
relation

:::
in

::::::::
timescale

:::::::
between

::::::
retina,

::::::::
primary

::::::
visual

::::::
cortex

::::
and

:::::
CA1,

:::::::
whereas

::::
the

:::::::
cortical

:::::::
culture

:::
has

::
a

:::::
higher

:::::::::
timescale

:::::::::
(different

:::::
order

::
of

::::::::
medians

:::
on

:::
the

::::::::
x-axis).

::
In

::::::::
general,

::::::::
recorded

:::::::
systems

:::
are

::::::
harder

:::
to

:::::::::::
differentiate

::
in

::::::
terms

::
of

::::
the

::::::::::::::
autocorrelation

::::
time

:::
τC:::

as

::::::::
compared

:::
to

:::
τR.

::::::::::
Errorbars indicate median over neurons

:::::
sorted

:::::
units

:
and 95 %

bootstrapping confidence intervals on the median.

:::::::::
coefficient

::
of

::::::::
variation

::::
CV :::::::::

(r = 0.90,
::::::::::
p < 10−5),

::::
and

:::
τR ::

is
:::::::::::
significantly

:::::::::
correlated

:::::
with 642

:::
the

::::::::::::::
autocorrelation

::::
time

:::
τC:::::::::

(r = 0.75,
::::::::::
p < 10−5).

:::
In

::::::::
contrast,

:::
for

::::::
mouse

::::::::
primary 643

:::::
visual

::::::
cortex

::::::::::
(n = 142),

:::
we

:::::
found

:::
no

::::::::::
significant

::::::::::
correlations

::::::::
between

::::
any

::
of

:::::
these 644

::::::::
measures.

::::::
Thus,

::::
the

:::::::
relation

::::::::
between

::::
Rtot:::

or
::
τR::::

and
::::
the

::::::::::
established

:::::::::
measures

::
is

:::
not 645

::::::::::
systematic,

::::
and

::::::::
therefore

::::
one

::::::
cannot

:::::::
replace

:::
the

:::::::
history

:::::::::::
dependence

:::
by

::::
any

::
of

:::::
them.

:
646

In addition to differences between recorded systems, we also find strong 647

heterogeneity of history dependence within a single recorded system. Here, we 648

demonstrate this for three different neurons
::::::
sorted

:::::
units in primary visual cortex (Fig 8, 649

see S9 Fig for all analyzed neurons
:::::
sorted

:::::
units

:
in primary visual cortex). In particular, 650

neurons
::::::
sorted

:::::
units display different signatures of history dependence R(T ) as a 651

function of the past range T . For some neurons
::::
units, history dependence builds up on 652

short past ranges T (e.g. Fig 8A), for some it only shows for higher T (e.g. Fig 8B), 653

and for some it already saturates for very short T (e.g. Fig 8C).
:
A
:::::::
similar

::::::::
behavior

::
is 654

::::::::
captured

::
by

::::
the

::::::::::::::
autocorrelation

:::::
C(T )

::::
(Fig

:::
8,

::::::
second

:::::
row).

:::::
The

:::::
rapid

:::::::::
saturation

:::
in 655

:::
Fig

:::
8C

::::::::
indicates

:::::::
history

:::::::::::
dependence

::::
due

::
to

::::::
bursty

::::::
firing,

::::::
which

:::
can

::::
also

:::
be

:::::
seen

::
by 656

:::::
strong

::::::::
positive

::::::::::
correlation

::::
with

:::::
past

::::::
spikes

:::
for

:::::
short

::::::
delays

::
T

::::
(Fig

::::
8C,

::::::::
bottom).

:::
To 657

:::::::
exclude

:::
the

::::::
effects

::
of

::::::::
different

::::::
firing

::::::
modes

::
or

:::::::::::::
refractoryness

:::
on

:::
the

:::::::::::
information 658

:::::::::
timescale,

:::
we

::::
only

::::::::::
considered

::::
past

::::::
ranges

:::::::::::::::
T > T0 = 10 ms

:::::
when

::::::::::
estimating

:::
τR,

::
or 659

:::::
delays

:::::::::::::::
T > T0 = 10 ms

:::::
when

::::::
fitting

:::
an

::::::::::
exponential

::::::
decay

::
to

::::::
C(T )

::
to

::::::::
estimate

::::
τC .

::::
The 660

::::::
reason

::
is

::::
that

::::::::::
differences

::
in

:::
the

:::::::::::
integration

::
of

::::
past

:::::::::::
information

:::
are

:::::::::
expected

::
to

:::::
show 661

::
for

::::::
larger

:::
T .

:::::
This

::::::
agrees

::::
with

::::
the

::::::::::
observation

::::
that

::::::::::
timescales

::::::
among

::::::::
recorded

::::::::
systems 662

::::
were

:::::
much

:::::
more

:::::::
similar

::
if

:::
one

:::::::
instead

::::
sets

::::::::::
T0 = 0 ms,

:::::::
whereas

:::::
they

:::::::
showed

:::::
clear 663

:::::::::
differences

:::
for

::::::::::
T0 = 10 ms

:::
or

::::::::::
T0 = 20 ms

:
(
::::
S15

::::
Fig.

:
).

:
664

We also observed that history dependence can build up on all timescales up to 665

seconds, and that it shows characteristic increases at particular past ranges, e.g. 666

T ≈ 100 ms and T ≈ 200 ms in EC
::::
CA1

:
(Fig 6B), possibly reflecting phase information 667

in the theta cycles [46,47].
:::::
Thus,

::::
the

:::::::
analysis

:::::
does

:::
not

::::
only

:::::
serve

:::
to

::::::::::
investigate 668
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Fig 8. Distinct signatures of history dependence for different neurons
within mouse primary visual cortex.

::::::::
Distinct

:::::::::::
signatures

:::
of

::::::::
history

::::::::::::
dependence

:::
for

::::::::::
different

:::::::
sorted

:::::
units

:::::::
within

:::::::
mouse

:::::::::
primary

:::::::
visual

::::::::
cortex.

:::::
(Top)

:
Embedding-optimized estimates of R(T ) reveal distinct signatures of history

dependence for
::::
three

:
different neurons

::::::
sorted

:::::
units

:::::::
(A,B,C)

:
within a single recorded

system (mouse primary visual cortex). In particular, neurons
::::::
sorted

:::::
units have similar

total history dependence R̂tot::::
Rtot, but differ vastly in the estimated temporal depth

T̂D ::::::::::
information

::::::::
timescale

:::
τR::::::::::

(horizontal
::::

and
::::::::
vertical

::::::
dashed

::::::
lines).

:::::
Note

::::
that

::::
for

::::
unit

::
C,

:::
τR::

is
:::::::
smaller

::::
than

:::::
5 ms

::::
and

::::
thus

:::::::
doesn’t

:::::::
appear

::
in

::::
the

::::
plot. Shaded areas indicate

::
±

:::
two

:
standard deviation

:::::::::
deviations

:
obtained by bootstrapping, and

::::::
vertical

:::::
bars

:::::::
indicate

:
the dashed line indicates past ranges

:::::::
interval

:
over which estimates R̂(T )

:
of

:::::
R(T ) were averaged to compute R̂tot:::::::

estimate
:::::
Rtot :

(Materials and methods
:
). Estimates

were computed with the Shuffling estimator and dmax = 5
:
.
:::::::::
(Bottom)

::::::::::::::::
Autocorrelograms

::
for

::::
the

:::::
same

::::::
sorted

:::::
units

:::::
(A,B,

::::
and

:::
C,

::::::::::::
respectively)

:::::::
roughly

:::::
show

:::
an

::::::::::
exponential

:::::
decay,

::::::
which

::::
was

:::::
fitted

::::::
(solid

::::
grey

:::::
line)

::
to

::::::::
estimate

::::
the

:::::::::::::
autocorrelation

:::::
time

:::
τC:::::

(grey

::::::
dashed

:::::
line).

:::::::
Similar

:::
to

:::
the

:::::::::::
information

:::::::::
timescale

:::
τR,

::::
only

:::::::::::
coefficients

:::
for

::::::
delays

:::::
larger

:::::
than

::::::::::
T0 = 10 ms

::::
were

::::::::::
considered

:::::::
during

::::::
fitting.

:::::::::
differences

::
in

:::::::
history

:::::::::::
dependence

::::::::
between

::::::::
recorded

::::::::
systems,

:::
but

::::
also

::::::::
resolves

:::::
clear 669

:::::::::
differences

::::::::
between

::::::
sorted

:::::
units.

:::::
This

::::::
could

::
be

:::::
used

::
to

::::::::::
investigate

::::::::::
differences

::
in 670

::::::::::
information

::::::::::
processing

::::::::
between

:::::::
different

::::::::
cortical

::::::
layers,

::::::::
different

::::::
neuron

::::::
types

::
or 671

:::::::
neurons

::::
with

::::::::
different

:::::::::
receptive

::::
field

::::::::::
properties.

:
672

Overall, this demonstrates
::
our

:::::::
results

:::::::::::
demonstrate

:
that embedding optimization is 673

powerful enough to reveal clear differences in history dependence between neurons 674

:::::
sorted

:::::
units

:
of different recorded systems, but also between neurons

:::::
units within the 675

same system. Even more importantly, because neurons
::::
units

:
are so different, ad hoc 676

embedding schemes with a fixed number of bins or fixed bin width will miss 677

considerable history dependence. 678

Discussion 679

To estimate history dependence in neural spiking activity
::::::::::::
experimental

::::
data, we 680

developed a method where the embedding of past spiking is optimized for each 681

individual neuron
:::::
spike

:::::
train. Thereby, it can estimate a maximum of history 682

dependence, given what is possible for the limited amount of data. We found that 683

embedding optimization is a robust and flexible tool to estimate history dependence in 684

neural spike trains with vastly different spiking statistics, where ad hoc embedding 685

strategies would estimate substantially less history dependence. 686

:::::
Based

:::
on

:::
our

:::::::
results,

:::
we

:::::::
arrived

::
at

:::::::::
practical

:::::::::
guidelines

::::
that

::::
are

:::::::::::
summarized

::
in 687

:::
Fig

::
9.

:
In the following, we contrast history dependence R with pairwise

::::
R(T )

:::::
with 688

::::::::::
time-lagged

:
measures such as the auto-correlation

:::::::::::::
autocorrelation

::
in

:::::
more

::::::
detail, 689

::::::
clearly

:::::::::
discussing

::::
the

:::::::::::::::
advantages—but

::::
also

:::
the

::::::::::
limitations

:::
of

:::
the

:::::::::
approach. We then 690

discuss how one can relate estimated history dependence to neural coding and 691

information processing at
:::::
based

:::
on the example data sets analyzed in this paper. 692

Why quantify history dependence and not the auto-correlation or 693

auto-information? First, 694

::::::::::::
Advantages

::::
and

:::::::::::
limitations

:::
of

::::::::
history

::::::::::::
dependence

:::
in

::::::::::::
comparison

:::
to

::::
the 695

:::::::::::::::
autocorrelation

:::::
and

:::::::
lagged

::::::::
mutual

:::::::::::::
information.

:
A
::::
key

:::::::::
difference

::::::::
between 696
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::
1)

:::::::::::
Embedding

:::::::::::::
optimization:

::::
The

:::::::::
embedding

:::
of

::::::::::
past-spiking

:::::::
activity

::::::
should

:::
be

:::::::::
individually

:::::::::
optimized

::
to

:::::
each

:::::
spike

:::::
train,

::
in

:::::
order

::
to

:::::::
account

:::
for

::::
very

::::::::
different

::::::
spiking

::::::::
statistics.

::::
This

::::
also

:::::::
applies

::
to

:::::
other

::::::::::
information

:::::::
metrics

:::
like

:::::::
transfer

:::::::
entropy

:::::
[52].

:

::
2)

::::::::::::::
Regularization:

::::::::
Estimates

:::::
have

::
to

:::
be

::::::
reliable

:::::
lower

:::::::
bounds,

:::::::::
otherwise

::::
one

::::::
cannot

:::::::
interpret

:::
the

::::::
results

::::::
(apply

::::::::
Bayesian

::::
bias

::::::::
criterion

::
or

::::::::
Shuffling

::::::::::
correction).

:

::
3)

:::::::::::
Exponential

::::::::::::
embedding:

::::
Given

::::
the

:::::::::
limitations

:::
on

:::
the

:::::::
number

::
of

:::::
bins,

:
a
:::::::::::

non-uniform
:::::::::
embedding

::
is

:::::::
required

:::
to

:::::::
capture

::::::::::
long-lasting

::::::::::::
dependencies.

:::
An

::::::::::
exponential

::::::::::
embedding

::::
with

::::
max.

::
5
::::
bins

::
is

:::::::
typically

::
a
:::::
good

::::::::::
compromise

::::::::
between

:::::::
accuracy

::::
and

:::::::::::
computation

::::::
speed,

:::
and

:::::::
enables

:::::::::
embedding

:::::::::::
optimization

:::
for

::::::
large,

:::::
highly

:::::::
parallel

::::
spike

::::::::::
recordings.

:

::
4)

:::::
Data

:::::::::::::
requirements:

:::
For

::::::::
practical

:::::::
purpose,

:::::
spike

:::::::::
recordings

::::::
should

:::
be

:::::::::
sufficiently

:::::
long

::
(at

:::::
least

:::
10

::::::::
minutes).

::
If
::::::
several

::::::::::
recordings

:::
are

::
to

:::
be

::::::::
analyzed,

:::::
these

::::::
should

:::
be

::
of

::::::
similar

:::::
length

:::
to

::::
allow

:::
for

::
a
::::::::::
meaningful

::::::::::
comparison

::
of

::::::
history

:::::::::::
dependence

:::
and

:::
its

::::::::
timescale

:::::::
between

:::::::::
recordings.

:

Fig 9.
:::::::::
Practical

::::::::::
guidelines

::::
for

::::
the

:::::::::::
estimation

:::
of

::::::::
history

::::::::::::
dependence

:::
in

::::::
single

:::::::
neuron

::::::::
spiking

:::::::::
activity.

::::
More

:::::::
details

:::::::::
regarding

:::
the

::::::::::
individual

::::::
points

:::
can

:::
be

:::::
found

::
at

::::
the

::::
end

::
of

:
Materials and methods.

:

history dependence R(T ) captures an important footprint of neural coding that is not 697

captured by pairwise dependency measures such as the auto-correlation [40] or the 698

auto- or delayed mutual information [41]. History dependence
::::
and

:::
the

::::::::::::::
autocorrelation 699

::
or

::::::
lagged

:::::::
mutual

:::::::::::
information

::
is

::::
that

:
R(T ) quantifies statistical dependencies between 700

current spiking and past spiking in the entire
:::
the

:::::
entire

:::::
past

::::::
spiking

::
in

:
a
:
past range T . 701

From
::::
(Fig

::::
1B).

:::::
This

:::
has

::::
the

::::::::
following

:::::::::::
advantages

::
as

::
a

:::::::
measure

:::
of

:::::::::
statistical 702

:::::::::::
dependence,

::::
and

::
as

::
a

::::::::
footprint

::
of

:::::::::::
information

::::::::::
processing

::
in

::::::
single

::::::
neuron

::::::::
spiking. 703

:::::
First,

:::::
R(T )

::::::
allows

::
to

::::::::
compute

::::
the

:::::
total

::::::
history

::::::::::::
dependence,

::::::
which,

:::::
from a coding 704

perspective, it gives
:::::::::
represents the redundancy of neural spiking with all past spikesin 705

the past range T , ;
:

or how much past information in T is integrated
::
of

:::
the

:::::
past 706

::::::::::
information

::
is
::::
also

:::::::::::
represented when emitting a spike.

:::::::
Second,

:::::::
because

:::::
past

:::::
spikes

::::
are 707

:::::::::
considered

:::::::
jointly,

:::::
R(T )

::::::::
captures

::::::::::
synergistic

::::::
effects

::::
and

::::::::
dismisses

::::::::::
redundant

::::
past 708

::::::::::
information

::::
(Fig

:::
4).

::::::::
Finally,

:::
we

:::::
found

:::::
that

::::
this

:::::::
enables

:::::
R(T )

::
to

:::::::::::
disentangle

:::
the 709

:::::::
strength

::::
and

:::::::::
timescale

::
of

:::::::
history

:::::::::::
dependence

:::
for

:::
the

::::::
binary

:::::::::::::
autoregressive

::::::::
process. 710

::::
(Fig

:::
3).

:
In contrast, auto-correlation or auto-information

:::::::::::::
autocorrelation

:::::
C(T )

:::
or 711

::::::
lagged

::::::
mutual

:::::::::::
information

:::::
L(T )

:
quantify the statistical dependency

::::::::::
dependence

:
of 712

neural spiking onto
:::
on a single past bin , independent of all other past bins. Thereby, 713

these measures neglect dependencies that only show in the context of other bins . 714

Moreover, they miscount
::::
with

:::::
delay

:::
T ,

::::::::
without

::::::::::
considering

::::
any

::
of

::::
the

:::::
other

::::
bins 715

::::
(Fig

::::
1A).

::::::::
Thereby,

:::::
they

::::
miss

::::::::::
synergistic

:::::::
effects;

::::
and

::::
they

::::::::
quantify

::::::::::
redundant

::::
past 716

dependencies that vanish once spiking activity in more recent past is taken into 717

consideration.
:::::::
account

::::
(Fig

:::
4).

:::
As

::
a
::::::::::::
consequence,

:::
the

::::::::::
timescales

::
of

:::::
these

:::::::::
measures 718

:::::
reflect

::::::
both,

:::
the

::::::::
strength

::::
and

:::
the

:::::::::
temporal

::::::
depth

::
of

:::::::
history

::::::::::
dependence

:::
in

:::
the

::::::
binary 719

::::::::::::
autoregressive

:::::::
process

:::::
(Fig

:::
3). 720

Second, quantifying history dependence yields the temporal depth, which provides 721

an intrinsic timescale of single neuron spiking with respect to all linear, non-linear and 722

higher-order dependencies. Previously, the intrinsic timescale was quantified by 723

:::::::::
Moreover,

::::::::::
technically,

:
the autocorrelation time [9, 53], which takes into account linear 724

and pairwise history dependence. The autocorrelation time is of interest, because it is 725

related to recurrent connection strength and reverberations of activity in a simple 726

model of neural activity propagation [14,15,54]. For any deviations from the simple 727

model , however, the autocorrelation might
:::
τC :::::::

depends
:::
on

::::::
fitting

:::::::::::
exponential

:::::
decay

:::
to 728

::::::::::
coefficients

:::::
C(T ).

:::::::::::
Computing

:::
the

::::::::::::::
autocorrelation

:::::
time

:::::
with

:::
the

::::::::::
generalized

:::::::::
timescale 729
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:
is
::::::::
difficult,

::::::::
because

::::::::::
coefficients

:::::
C(T )

::::
can

:::
be

::::::::
negative,

::::
and

:::
are

::::
too

:::::
noisy

:::
for

:::::
large 730

:::::
delays

:::
T .

::::::
While

::::::
model

::::::
fitting

::
is

::
in

:::::::
general

:::::
more

:::::
data

:::::::
efficient

:::::
than

:::
the

::::::::::
model-free 731

:::::::::
estimation

:::::::::
presented

:::::
here,

::
it

::::
can

::::
also

:::::::
produce

::::::
biased

::::
and

::::::::::
unreliable

::::::::
estimates

:::::
[16]. 732

:::::::::::
Furthermore,

::::::
when

:::
the

::::::::::
coefficients

:::
do

:
not decay exponentially, and history dependence 733

might be dominated by non-linear contributions. The temporal depth of history 734

dependence, in contrast, remains well-defined and considers linear as well as non-linear 735

contributions alike
:
a
:::::
more

::::::::
complex

::::::
model

::::
has

::
to

:::
be

:::::
fitted

:::::
[53],

:::
or

:::
the

::::::::
analysis

::::::
simply 736

::::::
cannot

:::
be

:::::::
applied.

:::
In

::::::::
contrast,

::::
the

::::::::::
generalized

:::::::::
timescale

:::
can

:::
be

:::::::
directly

:::::::
applied

:::
to 737

::::::::
estimates

::
of
::::
the

:::::::
history

::::::::::
dependence

::::::
R(T )

::
to

:::::
yield

:::
the

:::::::::::
information

:::::::::
timescale

:::
τR 738

:::::::
without

::::
any

::::::
further

::::::::::::
assumptions

::
or

::::::
fitting

:::::::
models.

:::::::::
However,

:::
we

::::::
found

::::
that

:::::::::
estimates 739

::
of

::
τR::::

can
:::::::
depend

::::::::
strongly

:::
on

:::
the

::::::::::
estimation

:::::::
method

::::
and

::::::::::
embedding

::::::::::
dimension

:
(
:::
S12 740

:::
Fig.

:
)
::::
and

:::
the

::::
size

:::
of

:::
the

::::
data

::::
set

:
(S2

:::
and

:
S3

:::::
Figs).

:::::
The

::::::::::
dependence

:::
on

:::::
data

:::
size

::
is
::::
not 741

::
so

::::::
strong

:::
for

:::
the

:::::::::
practical

::::::::
approach

:::
of

:::::::::
optimizing

:::
up

:::
to

::::::::
dmax = 5

:::::
past

::::
bins,

::::
but

::::
still 742

::
we

:::::::::::
recommend

::
to

::::
use

::::
data

::::
sets

:::
of

::::::
similar

::::::
length

::::::
when

::::::
aiming

:::
for

:::::::::::::
comparability

::::::
across 743

:::::::::::
experiments.

::::::::::
Moreover,

:::::
there

:::::
might

:::
be

:::::
cases

::::::
where

::
a

:::::::::
model-free

::::::::::
estimation

::
of

::::
the

::::
true 744

::::::::
timescale

::::::
might

::
be

:::::::::
infeasible

::::::::
because

::
of

:::
the

::::::::::
complexity

:::
of

::::
past

::::::::::::
dependencies

::
(S2 Fig

:
, 745

::::::
neuron

:::::
with

:
a
:::
22

:::::::
seconds

::::
past

::::::::
kernel).

::
In

::::
this

:::::
case,

:::::
only

::::::
≈ 80 %

:::
of

:::
the

::::
true

:::::::::
timescale 746

:::::
could

::
be

::::::::::
estimated

::
on

::
a
:::
90

::::::
minute

:::::::::
recording. 747

A
:::::::
Another

:
downside of quantifying the history dependence R

:::::
R(T )

:
is that its 748

estimation requires more data
::::
than

::::::
fitting

:::
the

::::::::::::::
autocorrelation

:::::
time

:::
τC . To make best 749

use of the limited data, we here devised an
:::
the

:
embedding optimization approach that 750

allows to find an
:::
the

:::::
most

:
efficient representation of past spiking for the estimation of 751

history dependence. Nonetheless
::::
Even

::
so, we found empirically that a minimum of 10 752

minutes of recorded spiking activity are advisable to allow
::::::
achieve

:
a meaningful 753

quantification of history dependence and its temporal depth ()
::::::::
timescale

:
(S2

:::
and

:
S3 754

:::::
Figs).

:::
In

::::::::
addition,

:::
for

:::::::
shorter

::::::::::
recordings,

::::
the

:::::::
analysis

::::
can

::::
lead

::
to

:::::
mild

:::::::::::::
overestimation 755

:::
due

:::
to

::::::::::::::
over-optimizing

::::::::::
embedding

::::::::::
parameters

:::
on

:::::
noisy

:::::::::
estimates

:
(S2 Fig

:
).
:::::

This 756

:::::::::::::
overestimation

::::
can,

::::::::
however,

:::
be

:::::::
avoided

:::
by

:::::::::::::::
cross-validation,

:::::
which

:::
we

::::
find

:::
to

:::
be 757

::::::::::
particularly

::::::::
relevant

:::
for

:::
the

:::::::::
Bayesian

::::
bias

::::::::
criterion

::::::
(BBC)

::::::::::
estimator.

:::::::
Finally,

::::
our 758

::::::::
approach

::::
uses

:::
an

::::::::::
embedding

::::::
model

::::
that

:::::::
ranges

::::
from

::::::::
uniform

::::::::::
embedding

::
to

:::
an 759

:::::::::
embedding

:::::
with

::::::::::::
exponentially

::::::::::
stretching

::::
past

::::::::::::::
bins—assuming

:::::
that

::::
past

:::::::::::
information 760

::::::
farther

::::
into

:::
the

:::::
past

:::::::
requires

::::
less

:::::::::
temporal

:::::::::
resolution.

:::::
This

::::::::::
embedding

::::::
model

::::::
might 761

::
be

:::::::::::::
inappropriate

:
if
:::
for

::::::::
example

:::::::
spiking

::::::::
depends

:::
on

:::
the

:::::
exact

:::::::
timing

::
of

:::::::
distant

::::
past 762

::::::
spikes,

::::
with

:::::
gaps

::
in

:::::
time

:::::
where

:::::
past

::::::
spikes

:::
are

:::::::::
irrelevant.

:::
In

:::::
such

:
a
:::::
case,

::::::::::
embedding 763

:::::::::::
optimization

:::::
could

:::
be

:::::
used

::
to

::::::::
optimize

:::::
more

::::::::
complex

::::::::::
embedding

:::::::
models

::::
that

::::
can

::::
also 764

:::::::
account

:::
for

::::
this

::::
kind

::
of
:::::::

spiking
:::::::::
statistics. 765

Differences in
::::
total

:
history dependence and temporal depth

::::::::::::
information 766

:::::::::
timescale

:
between data sets agree with ideas from neural coding and 767

hierarchical information processing. First, we found that the estimated total 768

history dependence R̂tot :::
Rtot:

clearly differs among the experimental data sets. Notably, 769

R̂tot ::::
Rtot:

was low for recordings of early visual processing areas such as retina and 770

primary visual cortex, which is in line with the theory of efficient coding [1, 55] and 771

neural adaptation for temporal whitening as observed in experiments [3,56]. In contrast, 772

R̂tot ::::
Rtot:

was high for neurons in dorsal hippocampus (layer CA1) and cortical culture. 773

In CA1, the original study [47] found that the temporal structure of neural activity 774

within the temporal windows set by the theta cycles was beyond of what one would 775

expect from integration of feed-forward excitatory inputs. The authors concluded that 776

this could be due to local circuit computations. The high values of R̂tot ::::
Rtot:

support 777

this idea, and suggest that local circuit computations could serve the integration of past 778

information, either for the formation of a path integration–based neural map [57], or to 779

recognize statistical structure for associative learning [8]. In cortical culture, neurons 780
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are exclusively driven by recurrent input and exhibit strong bursts in the population 781

activity [58]. This leads to strong history dependence also at the single neuron level. 782

To summarize, history dependence was low for early sensory processing and high for 783

high level processing or past dependencies that are induced by strong recurrent feedback 784

in a neural network. We thus conclude that estimated total history dependence R̂tot 785

::::
Rtot does indeed provide a footprint of neural coding and information processing. 786

Second, we observed that the temporal depth TD of history dependence
::::::::::
information 787

::::::::
timescale

:::
τR:

increases from retina (≈ 70 ms
:::::::
≈ 23 ms) to primary visual cortex 788

(≈ 160 ms) to EC (≈ 450 ms
::::::::
≈ 37 ms)

:::
to

::::
CA1

:::::::::
(≈ 96 ms), in agreement with the idea of 789

a temporal hierarchy in neural information processing [12]. These results
::::::::::
qualitatively 790

agree with similar results obtained for the autocorrelation time of spontaneous 791

activity [9]
:
,
::::::::
although

::::
the

:::::::::::
information

:::::::::
timescales

:::
are

:::::::
overall

:::::
much

:::::::
smaller

:::::
than

:::
the 792

:::::::::::::
autocorrelation

::::::
times. Our results indicate

::::::
suggest

:
that the hierarchy of intrinsic 793

timescales is also reflected
::::
could

::::
also

:::::
show

:
in the history dependence of single neurons 794

measured by the mutual information. 795

Conclusion. Embedding optimization enables to estimate history dependence in a 796

diversity of spiking neural systems, both in terms of the magnitude
::
its

::::::::
strength,

:
as well 797

as the temporal depth
::
its

:::::::::
timescale. The approach could be used in future experimental 798

studies to quantify history dependence across a diversity of brain areas, e.g. using the 799

novel neuropixel probe
::::::::::
Neuropixels

:::::
probe

:::::
[59], or even across cortical layers within a 800

single area. To this end we provide a toolbox for Python3 [37]and practical guidelines 801

in the Materials and methods section. These analyses might yield a more complete 802

picture of hierarchical processing in terms of the timescale and a footprint of 803

information processing and coding principles, i.e. information integration versus 804

redundancy reduction. 805

Materials and methods 806

In this section, we provide all mathematical details required to reproduce the results of 807

this paper. We first provide the basic definitions of history dependence, the past 808

embedding as well as the total history dependence and its temporal depth
:::
the 809

::::::::::
information

:::::::::
timescale. We then describe the embedding optimization approach that is 810

used to estimate history dependence from neural spike recordings, and provide a 811

description of the workflow. Next, we delineate the estimators of history dependence 812

considered in this paper, and present the novel Bayesian bias criterion. Finally, we 813

provide details on the benchmark model and how we approximated its history 814

dependence for given past range and embedding parameters. All code for Python3 that 815

was used to analyze the data and to generate the figures is available online at 816

https://github.com/Priesemann-Group/historydependence. 817

Glossary 818

Terms 819

• Past embedding : discrete, reduced representation of past spiking through temporal 820

binning 821

• Past-embedding optimization: Optimization of temporal binning for better estimation of 822

history dependence 823

• Embedding-optimized estimate: Estimate of history dependence for optimized embedding 824

Abbreviations 825

• GLM : generalized linear model 826
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• ML: Maximum likelihood 827

• BBC : Bayesian bias criterion 828

• Shuffling : Shuffling estimator based on a bias correction for the ML estimator 829

Symbols 830

• ∆t: bin size of the time bin for current spiking 831

• T : past range of the past embedding 832

• [t− T, t): embedded past window 833

• d: embedding dimension or number of bins 834

• κ: scaling exponent for exponential embedding 835

• Trec: recording length 836

• N = (Trec − T )/∆t: number of measurements, i.e. number of observed joint events of 837

current and past spiking 838

• X: random variable with binary outcomes x ∈ [0, 1], which indicate the presence of a 839

spike in a time bin ∆t 840

• X−T : random variable whose outcomes are binary sequences x−T ∈ {0, 1}d, which 841

represent past spiking activity in a past range T 842

Information theoretic quantities 843

• H(spiking) ≡ H(X): average spiking information 844

• H(spiking|past) ≡ H(X|X−T ): average spiking information for given past spiking in a 845

past range T 846

• I(spiking; past) ≡ I(X;X−T ): mutual information between current spiking and past 847

spiking in a past range T 848

• R(T ) ≡ I(X;X−T )/H(X): history dependence for given past range T 849

• R(T, d, κ) ≡ I(X;X−Td,κ )/H(X): history dependence for given past range T and past 850

embedding d, κ 851

• Rtot ≡ lim
T→∞

R(T ): total history dependence 852

• TD: temporal depth, i.e. minimal
::::::::::::::::::::::
∆R(Ti) ≡ R(Ti)−R(Ti−1):

::::
gain

::
in
:::::::

history 853

:::::::::
dependence

:
854

•
:::
τR:

::::::::::
information

::::::::
timescale

::
or

::::::::::
generalized

::::::::
timescale

::
of

::::::
history

::::::::::
dependence

:::::
R(T ) 855

•
::::::::::::::::
L(T ) ≡ I(X;X−T ):

::::::
lagged

::::::
mutual

::::::::::
information

::::
with

::::
time

:::
lag

:
T for which R(T ) = Rtot 856

•
::
τL:

::::::::::
generalized

::::::::
timescale

::
of
::::::
lagged

::::::
mutual

::::::::::
information

:::::
L(T )

:
857

Estimated quantities 858

• R̂(T, d, κ): estimated history dependence for given past range T and past embedding d, κ 859

• R̂(T ): embedding-optimized estimate of R(T ) for optimal embedding parameters d∗, κ∗ 860

• T̂D: estimated temporal depth, i.e. past range T for which R̂(T ) saturates within 861

errorbars 862

• R̂tot: estimated total history dependence, i.e. average R̂(T ) for T ∈ [T̂D, Tmax] 863

::::::::::::
T ∈ [TD, Tmax],

::::
with

:::::::
interval

::
of

:::::::::
saturated

::::::::
estimates

::::::::
[TD, Tmax]

:
864

•
:::
τ̂R:

::::::::
estimated

::::::::::
information

::::::::
timescale

:
865
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Basic definitions 866

Definition of history dependence. We estimate
:::::::
quantify

:
history dependence 867

R(T ) as the mutual information I(X,X−T ) between present and past spiking X and 868

X−T , normalized by the binary Shannon information of spiking H(X), i.e. 869

R(T ) ≡ I(X,X−T )

H(X)
= 1− H(X|X−T )

H(X)
. (6) 870

Under the assumption of stationarity and ergodicity the mutual information can be 871

computed either as the average over the stationary distribution p(x,x−T ), or the time 872

average [21,60], i.e. 873

I(X,X−T ) = H(X)−H(X|X−T ) (7) 874

=
∑

x∈{0,1}

p(x) log2

1

p(x)
−

∑
x−T∈{0,1}d

p(x,x−T ) log2

1

p(x|x−T )
(8) 875

=
∑

x∈{0,1}

∑
x−T∈{0,1}d

p(x,x−T ) log2

p(x|x−T )

p(x)
(9) 876

= lim
N→∞

1

N

N∑
n=1

log2

p(xtn |x−Ttn )

p(xtn)
. (10) 877

Here, xtn ∈ {0, 1} indicates the presence of a spike in a small interval [tn, tn + ∆t] 878

:::::::::::
[tn, tn + ∆t) with ∆t = 5 ms throughout the paper, and x−Ttn encodes the spiking 879

history in a time window [tn − T, tn) at times tn = n∆t that are shifted by ∆t. 880

::::::::::
Definition

:::
of

:::::::
lagged

::::::::
mutual

:::::::::::::
information.

:::
The

::::::
lagged

:::::::
mutual

:::::::::::
information

:::::
L(T ) 881

::::
[41]

:::
for

::
a

:::::::::
stationary

::::::
neural

:::::
spike

::::::
trains

::
is

:::::::
defined

::
as

::::
the

:::::::
mutual

::::::::::
information

::::::::
between 882

::::::
present

:::::::
spiking

:::
X

::::
and

::::
past

:::::::
spiking

:::::
X−T ::::

with
:::::
delay

:::
T ,

:::
i.e.

::::
=0 883

L(T )
::::

≡ I(X;X−T )
:::::::::::

(11) 884

=
∑

x∈{0,1}

∑
x−T∈{0,1}

p(x, x−T ) log2

p(x|x−T )

p(x)
:::::::::::::::::::::::::::::::::::::

(12) 885

= lim
N→∞

1

N

N∑
n=1

log2

p(xtn |xtn−T )

p(xtn)
.

:::::::::::::::::::::::::::::

(13) 886

:::::
Here,

::::::::::
xtn ∈ {0, 1}:::::::::

indicates
:::
the

::::::::
presence

:::
of

:
a
:::::
spike

:::
in

:
a
:::::
time

:::
bin

::::::::::::
[tn, tn + ∆t)

:::
and 887

:::::::::::::
xtn−T ∈ {0, 1} :::

the
::::::::
presence

::
of

::
a
:::::
spike

::
in

::
a
::::::
single

::::
past

:::
bin

:::::::::::::::::::
[tn − T, tn − T + ∆t)

:::
at 888

:::::
times

::::::::
tn = n∆t

:::::
that

:::
are

:::::::
shifted

::
by

::::
∆t.

:::
In

:::::::
analogy

:::
to

:::::
R(T ),

::::
one

::::
can

:::::
apply

::::
the 889

::::::::::
generalized

::::::::
timescale

:::
to

:::
the

::::::
lagged

:::::::
mutual

:::::::::::
information

:::
to

::::::
obtain

:
a
:::::::::

timescale
:::
τL::::

with
:

890

τL ≡
n∑
i=1

T̄i
L(Ti)∑n
i=j L(Tj)

− T0.

:::::::::::::::::::::::::

(14)

::::::::::
Definition

:::
of

::::::::::::::::
autocorrelation.

::::
The

::::::::::::::
autocorrelation

:::::
C(T )

:::
for

::
a

:::::::::
stationary

::::::
neural 891

::::
spike

::::::
trains

::
is

:::::::
defined

::
as

:
892

C(T ) =
Cov[xtn , xtn−T ]

Var[xtn ]
=
〈xtnxtn−T 〉 − 〈xtn〉2

〈x2
tn〉 − 〈xtn〉2

:::::::::::::::::::::::::::::::::::::::::

(15)
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::::
with

:::::
delay

::
T

::::
and

::::
xtn :::

and
::::::
xtn−T:::

as
::::::
above.

::::
For

:::
an

::::::::::::
exponentially

::::::::
decaying 893

:::::::::::::
autocorrelation

::::::::::::::::::
C(T ) ∝ exp

(
− T
τC

)
,
:::
τC::

is
::::::
called

::::::::::::::
autocorrelation

::::
time

:
.
:

894

Past embedding. Here, we encode the spiking history in a finite time window 895

[t− T, t) as a binary sequence x−Tt = (x−Tt,i )di=1 of binary spike counts x−Tt,i ∈ {0, 1} in d 896

past bins (Fig 2). When more than one spike can occur in a single bin, x−Tt,i = 1 is 897

chosen for spike counts larger than the median activity in the ith bin. This type of 898

temporal binning is more generally referred to as past embedding. It is formally defined 899

as a mapping 900

ΓT (θ) : FT → Sd (16) 901

from the set of all possible spiking histories FT = σ(Xτ : τ ∈ [t− T, t)), i.e. the sigma 902

algebra generated by the point process X (neural spiking) in the time interval [t− T, t), 903

to the set of d-dimensional binary sequences Sd. We can drop the dependence on the 904

time t because we assume stationarity of the point process. Here, T is the embedded 905

past range, d the embedding dimension, and θ denotes all the embedding parameters 906

that govern the mapping, i.e. θ = (d, ...). The resulting binary sequence at time t for 907

given embedding θ and past range T will be denoted by x−Tt,θ . In this paper, we consider 908

the following two embeddings for the estimation of history dependence. 909

Uniform embedding. If all bins have the same bin width τ = T/d, the embedding 910

is called uniform. The main drawback of the uniform embedding is that higher past 911

ranges T enforce a uniform decrease in resolution τ when d is fixed. 912

Exponential embedding. One can generalize the uniform embedding by letting bin 913

widths increase exponentially with bin index j = 1, ..., d according to 914

τj = τ10(j−1)κ
:::::::::::::
τj = τ110(j−1)κ. Here, τ

::
τ1:gives the bin size of the first past bin, and is 915

uniquely determined when T , d and κ are specified. Note that κ = 0 yields a uniform 916

embedding, whereas κ > 0 decreases resolution on distant past spikes. For fixed 917

embedding dimension d and past range T , this allows to retain a higher resolution on 918

spikes in the more recent past. 919

Sufficient embedding. Ideally, the past embedding preserves all the information 920

that the spiking history in the past range T has about the present spiking dynamics. In 921

that case, no additional past information has an influence on the probability for xt once 922

the embedded spiking history x−Tt,θ is given, i.e. 923

p(xt|x−Tt,θ ,x
−T
t,ν ) = p(xt|x−Tt,θ ) (17) 924

for any other past embedding x−Tt,ν . If Eq (17) holds for all times t, the embedding 925

ΓT (θ) is called a sufficient embedding. For the remainder of this paper, the sequences 926

of sufficient embeddings are denoted by x−Tt . 927

Insufficient embeddings cause underestimation of history dependence. The 928

past embedding is essential when inferring history dependence from recordings, because 929

an insufficient embedding causes underestimation of history dependence. To show this, 930

we note that for any embedding parameters θ and past range T the Kullback-Leibler 931

divergence between the spiking probability for the sufficient embedding p(xt|x−Tt ) and 932

p(xt|x−Tt,θ ) cannot be negative [61], i.e. 933

DKL

[
p(xt|x−Tt )||p(xt|x−Tt,θ )

]
=

∑
xt∈{0,1}

p(xt|x−Tt ) log2

p(xt|x−Tt )

p(xt|x−Tt,θ )
≥ 0, (18) 934
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with equality iff p(xt|x−Tt,θ ) = p(xt|x−Tt ). By taking the average over all times tn, we 935

arrive at 936

0 ≤ lim
N→∞

1

N

N∑
n=1

∑
xtn∈{0,1}

p(xtn |x−Ttn ) log2

p(xtn |x−Ttn )

p(xtn |x−Ttn,θ)
(19) 937

= lim
N→∞

1

N

N∑
n=1

∑
xtn∈{0,1}

p(xtn |x−Ttn ,x−Ttn,θ) log2

1

p(xtn |x−Ttn,θ)
(20) 938

− lim
N→∞

1

N

N∑
n=1

∑
xtn∈{0,1}

p(xtn |x−Ttn ) log2

1

p(xtn |x−Ttn )
(21) 939

=H(X|X−Tθ )−H(X|X−T ), (22) 940

where the last step follows from stationarity and ergodicity and marginalizing out x−Ttn 941

in the first term. From here, it follows that one always underestimates the history 942

dependence in neural spiking, as long as the embedding is not sufficient, i.e. 943

R(T, θ) ≡ 1− H(X|X−Tθ )

H(X)
≤ 1− H(X|X−T )

H(X)
= R(T ). (23) 944

Total history dependence and temporal depth. In this paper we quantify 945

history dependence R(T ) in dependence of the past range T . This allows us to 946

characterize history dependence not only in terms of the total history dependence Rtot, 947

but also the temporal depth TD. We defined the total history dependence as the limit 948

for an infinite past range 949

Rtot ≡ lim
T→∞

R(T ),

and quantifies all dependencies of neural spiking on its own spiking history. The 950

temporal depth we defined as the minimal past range T for which the history 951

dependence is equal to the total history dependence, i.e. 952

TD ≡ minT |R(T )=Rtot
.

The temporal depth TD gives the past range over which spiking depends on its own 953

history. 954

Estimation of history dependence using past-embedding 955

optimization 956

The past embedding is crucial in determining how much history dependence we can 957

capture, since an insufficient embedding θ leads to an underestimation of the history 958

dependence R(T ) ≥ R(T, θ). In order to capture as much history dependence as 959

possible, the embedding θ should be chosen to maximize the estimated history 960

dependence R(T, θ). Since the history dependence has to be estimated from data, we 961

formulate the following embedding optimization procedure in terms of the estimated 962

history dependence R̂(T, θ). 963

Embedding optimization. For given T , find the optimal embedding θ∗ that 964

maximizes the estimated history dependence 965

θ∗ = arg max
θ

R̂(T, θ). (24) 966

This yields an embedding-optimized estimate R̂(T ) = R̂(T, θ∗) of the true history 967

dependence R(T ). 968
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Requirements. Embedding optimization can only give sensible results if the 969

optimized estimates R̂(T, θ) are guaranteed to be unbiased or a lower bound to the true 970

R(T, θ). Otherwise, embeddings will be chosen that strongly overestimate history 971

dependence. In this paper, we therefore use two estimators, BBC and Shuffling, the 972

former of which is designed to be unbiased, and the latter a lower bound to the true 973

R(T, θ) (see below). In addition, embedding optimization works only if the estimation 974

variance is sufficiently small. Otherwise, maximizing over variable estimates can lead to 975

a mild overestimation. We found for a benchmark model that this overestimation was 976

negligibly small for a recording length of 90 minutes for a model neuron with a 4 Hz 977

average firing rate (S1 Fig). For smaller recording lengths, potential overfitting can be 978

avoided by cross-validation, i.e. optimizing embeddings on one half of the recording and 979

computing embedding-optimized estimates on the other half. 980

Implementation. For the optimization, we compute estimates R̂(T, d, κ) for a range 981

of embedding dimensions d ∈ [1, 2, ..., dmax] and scaling parameter κ = [0, ..., κmax]. For 982

each T , we then choose the optimal parameter combination d∗, κ∗ for each T that 983

maximizes the estimated history dependence R̂(T, d, κ), and use R̂(T, d∗, κ∗) as the best 984

estimate of R(T ). 985

Estimation of temporal depth and total history dependence
::::
and

::::
the 986

::::::::::::
information

::::::::::
timescale. Using the embedding-optimized

:::::
When

::::::::::
estimating

::::::
history 987

::::::::::
dependence

:::::
R(T )

:::::
from

:::::
data,

:::::
there

:::
are

:::::
some

::::::::::::
adjustments

:::::::
required

:::
to

::::::::
estimate

:::
the

:::::
total 988

::::::
history

:::::::::::
dependence

::::
Rtot::::

and
:::
the

:::::::::::
information

:::::::::
timescale

:::
τR.

:
989

:::::
First, estimates R̂(T )

:::
are

::::
not

::::::::::
guaranteed

::
to

::::::::
converge

:::
for

:::::
large

:::::
past

::::::
ranges

:::
T ,

:::
but 990

:::::
might

::::::::
decrease

::::
due

::
to

::
a

:::::::
reduced

:::::::::
resolution

:::
of

:::::::::::
embeddings

:::
for

::::::
higher

::
T

::::
(Fig

:::::
2D).

:::::
Thus, 991

::
we

:::::::::
estimated

:::
an

:::::::
interval

::::::::::
[TD, Tmax]

:::
for

::::::
which

::::::::
estimates

:::::
have

::::::::::
converged.

:::::
Here, the 992

temporal depth TD is estimated as the minimum past range
:::
and

:::
the

::::::
upper

::::::
bound

:::::
Tmax 993

:::
are

:::
the

::::
first

::::
and

::::
the

:::
last

:::::
past

::::::
ranges

:
T for which

::::::::
estimates R̂(T ) lies

:::
are within one 994

standard deviation of the maximum estimated history dependence
::::::
highest

::::::::
estimate 995

:::::
R̂max, i.e. 996

T̂D ≡ minT |R(T )≥R̂max−σR̂max

,

with 997

R̂max = max
T

R̂(T ).

:::::::::::::::::::
R̂(T ) ≥ R̂max − σR̂max:::::

(Fig
:::
2D,

:::::::
vertical

:::::
blue

:::::
bars).

:
The standard deviation σR̂max

was 998

estimated by bootstrapping (see below). Taking the standard deviation into account 999

makes estimates of the temporal depth more robust to statistical fluctuations in 1000

estimates of the history dependence R̂(T ). The Bootstrap confidence intervals
:
).

:::::
From 1001

:::
this

::::::::
interval,

:::
an

::::::::
estimate

::
of

::::
the total history dependence was estimated

::::
R̂tot::

is 1002

::::::::
obtained by averaging R̂(T ) over past ranges T ∈ [T̂D, Tmax] that were larger or equal 1003

to the temporal depth, but not larger than Tmax. The maximum past range was chosen 1004

as the highest past range for which
:::::::::::::
T ∈ [TD, Tmax]

::::
(Fig

::::
2D,

:::::::
vertical

:::::::
dashed

::::
blue

:::::
line).

:
1005

:::::::
Second,

:::::
noisy

::::::::
estimates

:
R̂(T ) lies within standard error of the maximum estimated 1006

history dependence, i. e. 1007

Tmax ≡ maxT |R(T )≥R̂max−σR̂max

.

This avoids averaging over estimates that are systematically underestimated because 1008

of limited resolution for high past ranges
::
are

::::
not

::::::::::
guaranteed

:::
to

::
be

:::::::::::::
monotonously 1009

March 9, 2021 28/56



:::::::::
increasing,

:::::
such

::::
that

::::::::::
increments

:::::::
∆R̂(T )

::::
can

::
be

:::::::::
negative.

:::::::::
Moreover,

::::::
noisy

::::::::
estimates 1010

:::
can

::::
lead

:::
to

:::::::
positive

:::::::
∆R̂(T )

::::
even

:::::::
though

::::
the

::::
true

:::::
R(T )

::::
has

:::::::
already

:::::::::
converged

:::
to

::::
Rtot. 1011

::::
This

::::
can

::::
have

::
a
:::::
huge

:::::
effect

:::
on

:::
the

:::::::::
estimated

:::::::::::
information

:::::::::
timescale

:::
τ̂R :

if
::::

one
:::::::
simply 1012

::::
uses

:::::
these

:::::::::
estimates

::
in

:::
Eq

::::
(5).

:::
To

:::::
avoid

:::::
this,

:::
we

:::
use

::::::::::
knowledge

:::::
about

::::
the

::::::::
behavior

::
of 1013

:::
the

::::
true

:::::
R(T )

:::::
when

::::::::::
estimating

::::::::
∆R(T ).

::
In

::::::::::
particular,

:::
we

:::
set

:::::::::
estimates

:::::
R̂(T )

::::::
equal

::
to 1014

:::
the

::::::
largest

::::::::
previous

::::::::
estimate

::::::
R̂(T ′)

:::
for

:::::::
T ′ < T

::
if

::::
they

::::
fall

:::::
below

:::
it,

::::
and

:::::
equal

::
to

:::::
R̂tot 1015

:
if
:::::
they

:::
are

::::::
larger

::::
than

:::::
R̂tot.:::::

This
::::::::
enforces

::::
that

:::
the

::::::::::
estimated

::::
gain

::::::::::
∆R̂(T ) ≥ 0

::
is 1016

::::::::::::
non-negative,

::::
and

::::::::
excludes

:::::::
spurious

:::::
gain

:::
for

::::
high

::
T
::::
due

:::
to

:::::
noisy

:::::::::
estimates. 1017

::::::
Finally,

::::
the

:::::::::::
information

::::::::
timescale

:::
τR::::

can
::::::::
crucially

:::::::
depend

:::
on

:::
the

::::::
choice

::
of

::::
the 1018

::::::::
minimum

:::::
past

:::::
range

:::
T0 ::

in
::::
the

::::
sum

::
in

:::
Eq

::::
(5).

::
A
:::::::
T0 > 0

:::::
larger

:::::
than

::::
zero

::::::
allows

:::
to 1019

:::::
ignore

:::::
short

:::::
term

::::::
effects

:::
on

::::
the

::::::
history

:::::::::::
dependence

:::::
such

::
as

:::
the

::::::::::
refractory

::::::
period

::
or 1020

:::::::
different

::::::
firing

::::::
modes,

::::::
which

:::
we

::::::
found

::::::::
beneficial

::::
for

::::::::
resolving

::::::::::
differences

::
in

::::
the 1021

::::::::
timescale

::::::
among

::::::::
different

:::::::::
recorded

:::::::
systems

:
(
::::
S15

::::
Fig.

:
).

:::
In

::::::::
contrast,

::
if

:::
the

::::::
decay

::
is 1022

::::
truly

::::::::::::
exponential,

::::
than

:::
τR::

is
:::::::::::
independent

:::
of

:::
T0.

:::
In

::::
this

::::::
paper,

:::
we

:::::
chose

::::::::::
T0 = 10 ms

:::
to 1023

:::::::
exclude

:::::
short

::::
term

:::::::
effects,

:::::
while

::::
also

::::
not

:::::::::
excluding

:::
too

::::::
much

::::
past

:::::::::::
information.

:
1024

Workflow. The estimation workflow using embedding optimization can be 1025

summarized by the following sequence of steps (Fig 10): 1026

1) Define a set of embedding parameters d, κ for fixed past range T . 1027

2) For each embedding d, κ, record sequences of current and past spiking xtn ,x
−T
tn,θ

1028

for all time steps tn in the recording. 1029

3) Use the frequencies of the recorded sequences to estimate history dependence for 1030

each embedding. 1031

4) Apply regularization such that all estimates are unbiased or lower bounds to the 1032

true history dependence. 1033

5) Select the optimal embedding to obtain an embedding-optimized estimate R̂(T ). 1034

6) Repeat the estimation for a set of past ranges T to obtain estimates of the 1035

temporal depth T̂D and the total history dependence R̂tot. 1036

:::
The

::::::::::
estimation

:::::::::
workflow

:::::
using

::::::::::
embedding

::::::::::::
optimization

::
is

:::::::::::
summarized

::
in

::::
(Fig

::::
10).

:
1037

Fig 10.
::::::::::
Workflow

::
of

:::::::::::::::::
past-embedding

:::::::::::::
optimization

:::
to

:::::::::
estimate

::::::::
history

::::::::::::
dependence

::::
and

:::
its

::::::::::
temporal

:::::::
depth.

::
1)

::::::
Define

:
a
:::
set

:::
of

::::::::::
embedding

::::::::::
parameters

:::
d, κ

:::
for

:::::
fixed

::::
past

::::::
range

::
T .

:::
2)

:::
For

:::::
each

::::::::::
embedding

::::
d, κ,

::::::
record

:::::::::
sequences

::
of
:::::::
current

:::
and

:::::
past

::::::
spiking

:::::::::
xtn ,x

−T
tn,θ:::

for
:::
all

::::
time

:::::
steps

:::
tn ::

in
:::
the

::::::::::
recording.

::
3)

:::
Use

::::
the

::::::::::
frequencies

::
of

:::
the

::::::::
recorded

:::::::::
sequences

:::
to

::::::::
estimate

::::::
history

:::::::::::
dependence

:::
for

:::::
each

::::::::::
embedding,

::::::
either

:::::
using

:::::::::
maximum

:::::::::
likelihood

::::::
(ML),

::
or

:::::
fully

::::::::
Bayesian

::::::::::
estimation

:::::::
(NSB).

:::
4)

::::::
Apply

:::::::::::::
regularization,

:::
i.e.

:::
the

:::::::::
Bayesian

::::
bias

::::::::
criterion

::::::
(BBC)

:::
or

::::::::
Shuffling

::::
bias

::::::::::
correction,

:::::
such

::::
that

::
all

:::::::::
estimates

::::
are

::::::::
unbiased

::
or

::::::
lower

:::::::
bounds

::
to

:::
the

:::::
true

::::::
history

::::::::::::
dependence.

:::
5)

:::::
Select

::::
the

:::::::
optimal

::::::::::
embedding

::
to

:::::::
obtain

::
an

::::::::::::::::::::
embedding-optimized

::::::::
estimate

::
of

::::::
R(T ).

:::
6)

::::::
Repeat

::::
the

:::::::::
estimation

:::
for

::
a
:::
set

:::
of

::::
past

::::::
ranges

::
T
:::
to

::::::::
compute

:::::::::
estimates

::
of

:::
the

::::::::::
information

:::::::::
timescale

:::
τR ::::

and
:::
the

:::::
total

:::::::
history

::::::::::
dependence

:::::
Rtot.:

Different estimators of history dependence 1038

To estimate R(T, θ), one has to estimate the binary entropy of spiking H(X) in a small 1039

time bin ∆t, and the conditional entropy H(X|X−Tθ ) from data. The estimation of the 1040
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binary entropy only requires the average firing probability p(x=1) = r∆t with 1041

Ĥ(X) = −r∆t log2 r∆t− (1− r∆t) log2(1− r∆t), (25) 1042

which can be estimated with high accuracy from the estimated average firing rate r 1043

even for short recordings. The conditional entropy H(X|X−Tθ ), on the other hand, is 1044

much more difficult to estimate. In this paper, we focus on a non-parametric approach 1045

that estimates 1046

H(X|X−Tθ ) = H(X,X−Tθ )−H(X−Tθ ) (26) 1047

by a non-parametric estimation of the entropies H(X−Tθ ) and H(X,X−Tθ ). 1048

The estimation of entropy from data is a well-established problem, and we can make 1049

use of previously developed entropy estimation techniques for the estimation of history 1050

dependence. We here write out the estimation of the entropy term for joint sequences of 1051

present and past spiking H(X,X−Tθ ), which is the highest dimensional term and thus 1052

the hardest to estimate. Estimation for the marginal entropy H(X−Tθ ) is completely 1053

analogous. 1054

Computing the entropy requires knowing the statistical uncertainty and thus the 1055

probabilities for all possible joint sequences. In the following we will write probabilities 1056

as a vector π = (πk)Kk=1, where πk ≡ p
(
(x,x−Tθ )=ak

)
are the probabilities for the 1057

K = 2d+1 possible joint spike pattern
:::::::
patterns

:
ak ∈ {0, 1}d+1. The entropy H(X,X−Tθ ) 1058

then reads 1059

H(X,X−Tθ ) = H(π) = −
K∑
k=1

πk log2 πk. (27) 1060

Once we are able to estimate the probability distribution π, we are able to estimate the 1061

entropy. In a non-parametric approach, the probabilities π = (πk)Kk=1 are directly 1062

inferred from counts n = (nk)Kk=1 of different spike sequences ak within the spike 1063

recording. Each timestep [tn, tn + ∆t]
::::
time

::::
step

:::::::::::
[tn, tn + ∆t)

:
provides a sample of 1064

present spiking xtn and its history x−Ttn,θ, such that a recording of length Trec provides 1065

N = (Trec − T )/∆t data points. 1066

Maximum likelihood estimation. Most commonly, probabilities of spike sequences 1067

ak are then estimated as the relative frequencies π̂k = nk/N of their occurrence in the 1068

observed data. It is the maximum likelihood (ML) estimator of π for the multinomial 1069

likelihood 1070

p(n|π) ∝
K∏
k=1

πnkk . (28) 1071

Plugging the estimates π̂k into the definition of entropy results in the ‘ML ’
:::
ML 1072

estimator of the entropy 1073

ĤML(X,X−Tθ ) = −
K∑
k=1

nk
N

log2

nk
N

(29) 1074

or history dependence 1075

R̂ML(T, θ) = 1− ĤML(X,X−Tθ )− ĤML(X−Tθ )

Ĥ(X)
. (30) 1076

The ML estimator has the right asymptotic properties [28,62], but is known to 1077

underestimate the entropy severely when data is limited [28,63]. This is because all 1078

probability mass is assumed to be concentrated on the observed outcomes. A more 1079
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concentrated probability distribution results in a smaller entropy, in particular if many 1080

outcomes have not been observed. This results in a systematic underestimation or 1081

negative bias 1082

biasBias
:::

[
ĤML(X,X−Tθ )

]
≤ 0. (31) 1083

The negative bias in the entropy, which is largest for the highest-dimensional joint 1084

entropy ĤML(X,X−Tθ ), then typically leads to severe overestimation of the mutual 1085

information and history dependence [27,64]. Because of this severe overestimation, we 1086

cannot use the ML estimator for embedding optimization. 1087

Bayesian Nemenman-Shafee-Bialek (NSB) estimator. In a Bayesian 1088

framework, the entropy is estimated as the posterior mean or minimum mean square 1089

error (MMSE) 1090

ĤMMSE(n) =

∫
dπH(π)p(π|n) =

∫
dπH(π)

p(n|π)p(π)∫
dπ′p(n|π′)p(π′)

. (32) 1091

The posterior mean is the mean of the entropy with respect to the posterior distribution 1092

on the probability vector π given the observed frequencies of spike sequences n 1093

p(π|n) =
p(n|π)p(π)∫
dπ′p(n|π′)p(π′)

. (33) 1094

The probability for i.i.d. observations n from an underlying distribution π is given by 1095

the multinomial distribution in Eq (28). 1096

If the prior p(π) is a conjugate prior to the multinomial likelihood, then the high 1097

dimensional integral of Eq (32) can be evaluated analytically [32]. This is true for a 1098

class of priors called Dirichlet priors, and in particular for symmetric Dirichlet priors 1099

p(π|β) ∝
K∏
k=1

πβ−1
k . (34) 1100

The prior p(π|β) gives every outcome the same a priori weight, but controls the weight 1101

β > 0 of uniform prior pseudo-counts. A β = 1 corresponds to a flat prior on all 1102

probability distributions π, whereas β → 0 gives maximum likelihood estimation (no 1103

prior pseudo-count). 1104

It has been shown that the choice of β is highly informative with respect to the 1105

entropy, in particular when the number of outcomes K becomes large [65]. This is 1106

because the a priori variance of the entropy vanishes for K →∞, such that for any 1107

π ∼ p(π|β) the entropy H(π) is very close to the a priori expected entropy 1108

ξ(β) =

∫
dπH(π)p(π|β) = ψ0(Kβ + 1)− ψ0(β + 1), (35) 1109

where ψm(z) = ∂m+1
z log Γ(z) are the polygamma functions. In addition, a lot of data is 1110

required to counter-balance this a priori expectation. The reason is the prior adds 1111

pseudo-counts on every outcome, i.e. it assumes that every outcome has been observed β 1112

times prior to inference. In order to influence a prior that constitutes K pseudo-counts, 1113

one needs at least N > K samples, with more data required the sparser the true 1114

underlying distribution. Therefore, an estimator of the entropy for little data and fixed 1115

concentration parameter β is highly biased towards the a priori expected entropy ξ(β). 1116
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Nemenman et al. [33] exploited the tight link between concentration parameter β 1117

and the a priori expected entropy to derive a mixture prior 1118

pNSB(π) ∝
∫
dβ

∣∣∣∣ ∂ξ∂β
∣∣∣∣ p(π|β), (36) 1119

∂ξ

∂β
= Kψ1(Kβ + 1)− ψ1(β + 1), (37) 1120

that weights Dirichlet priors to be flat with respect to the expected entropy ξ(β). Since 1121

the variance of this expectation vanishes for K � 1 [65], for high K the prior is also 1122

approximately flat with respect to the entropy, i.e. H(π) ∼ U(0, log2K) for 1123

π ∼ pNSB(π). The resulting MMSE estimator for the entropy is referred to as the NSB 1124

estimator 1125

ĤNSB(n) =

∫
dπH(π)

p(n|π)pNSB(π)∫
dπ′p(n|π′)pNSB(π′)

(38) 1126

=

∫
dβ dξdβ (β)Ĥ(β)ρ(β,n)∫
dβ′ dξdβ (β′)ρ(β′,n)

. (39) 1127

Here, ρ(β,n) is proportional to the evidence for given concentration parameter 1128

ρ(β,n) :=
Γ(Kβ)

Γ(N +Kβ)

K∏
i=1

Γ(ni + β)

Γ(β)
(40) 1129

∝
∫
dπ p(n|π) p(π|β) = p(n|β), (41) 1130

where Γ(x) is the gamma function. The posterior mean of the entropy for given 1131

concentration parameter is 1132

Ĥ(β) =

K∑
i=1

ni + β

N +Kβ
[ψ0(N +Kβ + 1)− ψ0(ni + β + 1)]. (42) 1133

From the Bayesian entropy estimate, we obtain an NSB estimator for history 1134

dependence 1135

R̂NSB(T, θ) = 1− ĤNSB(X,X−Tθ )− ĤNSB(X−Tθ )

Ĥ(X)
. (43) 1136

where the marginal and joint entropies are estimated individually using the NSB 1137

method. 1138

To compute the NSB entropy estimator, one has to perform a one-dimensional 1139

integral over all possible concentration parameters β. This is crucial to be unbiased 1140

with respect to the entropy. An implementation of the NSB estimator for Python3 is 1141

published alongside the paper with our toolbox [37]. To compute the integral, we use a 1142

Gaussian approximation around the maximum a posteriori β∗ to define sensible 1143

integration bounds when the likelihood is highly peaked, as proposed in [34]. 1144

Bayesian bias criterion. The goal of the Bayesian bias criterion (BBC) is to 1145

indicate when estimates of history dependence are potentially biased. It might indicate 1146

bias even when estimates are unbiased, but the opposite should never be true. 1147

To indicate a potential estimation bias, the BBC compares ML and BBC estimates 1148

of the history dependence. ML estimates are biased when too few joint sequences have 1149

been observed, such that the probability for unobserved or undersampled joint outcomes 1150
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is underestimated. To counterbalance this effect, the NSB estimate adds β 1151

pseudo-counts to every outcome, and then infers β with an uninformative prior. For the 1152

BBC, we turn the idea around: when the assumption of no pseudo-counts (ML) versus a 1153

posterior belief on non-zero pseudo-counts (NSB) yield different estimates of history 1154

dependence, then too few sequences have been observed and estimates are potentially 1155

biased. This motivates the following definition of the BBC. 1156

The NSB estimator RNSB(T, θ) is biased with tolerance p > 0, if 1157

|R̂NSB(T, θ)− R̂ML(T, θ)| > p · R̂NSB(T, θ). (44) 1158

Similarly, we define the BBC estimator 1159

R̂BBC(T, θ) ≡

{
R̂NSB(T, θ) if R̂NSB(T, θ)− R̂ML(T, θ) ≤ p · R̂NSB(T, θ),

0 otherwise.
(45) 1160

This estimator is designed to be unbiased, and can thus can be used for embedding 1161

optimization in Eq (24). We use the NSB estimator for R(T, θ) instead of the ML 1162

estimator, because it is generally less biased. A tolerance p > 0 accounts for this, and 1163

accepts NSB estimates when there is only a small difference between the estimates. The 1164

bound for the difference is multiplied by R̂NSB(T, θ), because this provides the scale on 1165

which one should be sensitive to estimation bias. We found that a tolerance of p = 0.05 1166

was small enough to avoid overestimation by BBC estimates on the benchmark model 1167

(Fig 5 and S2 Fig). 1168

Shuffling estimator. The Shuffling estimator was originally proposed in [31] to 1169

reduce the sampling bias of the ML mutual information estimator. It has the desirable 1170

property that it is negatively biased in leading order of the inverse number of samples. 1171

Because of this property, Shuffling estimates can safely be maximized during embedding 1172

optimization without the risk of overestimation. Here, we therefore propose to use the 1173

Shuffling estimator for embedding-optimized estimation of history dependence. 1174

The idea behind the Shuffling estimator is to rewrite the ML estimator of history 1175

dependence as 1176

R̂ML(T, θ) =
1

Ĥ(X)

(
ĤML(X−Tθ )− ĤML(X−Tθ |X)

)
(46) 1177

and to correct for bias in the entropy estimate ĤML(X−Tθ |X). Since X is well sampled 1178

and thus Ĥ(X) is unbiased, and the bias of the ML entropy estimator is always 1179

negative [28,63], we know that 1180

Bias[R̂ML(T, θ)] = Bias[ĤML(X−Tθ )]− Bias[ĤML(X−Tθ |X)] (47) 1181

≤ −Bias[ĤML(X−Tθ |X)]. (48) 1182

Therefore, if we find a correction term of the magnitude of Bias[ĤML(X−Tθ |X)], we can 1183

turn the bias in the estimate of the history dependence from positive to negative, thus 1184

obtaining an estimator that is a lower bound of the true history dependence. This can 1185

be achieved by subtracting a lower bound of the estimation bias Bias[ĤML(X−Tθ |X)] 1186

from ĤML(X−Tθ |X). 1187

In the following, we describe how [31] obtain a lower bound of the bias in the 1188

conditional entropy ĤML(X−Tθ |X) by computing the estimation bias for shuffled 1189

surrogate data. 1190

Surrogate data are created by shuffling recorded spike sequences such that statistical 1191

dependencies between past bins are eliminated. This is achieved by taking all past 1192
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sequences that were followed by a spike, and permuting past observations of the same 1193

bin index j. The same is repeated for all past sequences that were followed by no spike. 1194

The underlying probability distribution can then be computed as 1195

psh(x−Tθ |x) =

d∏
j=1

p(x−Tθ,j |x), (49) 1196

and the corresponding entropy is 1197

H(X−Tθ,sh|X) =

d∑
j=1

H(Xjθ,j
::

−T |X). (50) 1198

The pairwise probabilities p(x−Tθ,j |x) are well sampled, and thus each conditional entropy 1199

in the sum can be estimated with high precision. This way, the true conditional entropy 1200

H(X−Tθ,sh|X) for the shuffled surrogate data can be computed and compared to the ML 1201

estimate ĤML(X−Tθ,sh|X) on the shuffled data. The difference between the two 1202

∆ĤML(X−Tθ,sh|X)] ≡ ĤML(X−Tθ,sh|X)−H(X−Tθ,sh|X) (51) 1203

yields a correction term that is on average equal to the bias of the ML estimator on the 1204

shuffled data. 1205

Importantly, the bias of the ML estimator on the shuffled data is in leading order 1206

more negative than on the original data. To see this, we consider an expansion of the 1207

bias on the conditional entropy in inverse powers of the sample size N [27, 64] 1208

Bias[ĤML(X−Tθ |X)] = − 1

2N ln 2

∑
x∈{0,1}

(
K̃(x)− 1

)
+O

(
1

N2

)
. (52) 1209

Here, K̃(x) denotes the number of past sequences with nonzero probability 1210

p(x−Tθ =ak|x) > 0 of being observed when followed by a spike (x = 1) or no spike 1211

(x = 0), respectively. Notably, the bias is negative in leading order, and depends only on 1212

the number of possible sequences K̃(x). For the shuffled surrogate data, we know that 1213

psh(x−Tθ =ak|x) = 0 implies p(x−Tθ =ak|x) = 0, but Shuffling may lead to novel 1214

sequences that have zero probability otherwise. Hence the number of possible sequences 1215

under Shuffling can only increase, i.e. K̃sh(x) ≥ K̃(x), and thus the bias of the ML 1216

estimator under Shuffling to first order is always more negative than for the original 1217

data 1218

Bias[ĤML(X−Tθ,sh|X)] . Bias[ĤML(X−Tθ |X)]. (53) 1219

Terms that could render it higher are of order O(N−2) and higher and are assumed to 1220

have no practical relevance. 1221

This motivates the following definition of the Shuffling estimator: Compute the 1222

difference between the ML estimator on the shuffled and original data to yield a 1223

bias-corrected Shuffling estimate 1224

ĤML,sh(X−Tθ |X) ≡ ĤML(X−Tθ |X)−∆ĤML(X−Tθ,sh|X), (54) 1225

and use this to estimate history dependence 1226

R̂Shuffling(T, θ) ≡ 1

Ĥ(X)

(
ĤML(X−Tθ )− ĤML,sh(X−Tθ |X)

)
. (55) 1227

Because of Eq (48) and Eq (53), we know that this estimator is negatively biased in 1228

leading order 1229

R̂Shuffling(T, θ) . 0 (56) 1230

and can safely be used for embedding optimization. 1231
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Estimation of history dependence by fitting a generalized linear model 1232

(GLM). Another approach to the estimation history dependence is to model the 1233

dependence of neural spiking onto past spikes explicitly, and to fit model parameters to 1234

maximize the likelihood of the observed spiking activity [21]. For a given probability 1235

distribution p(xt|x−Tt , ν) of the model with parameters parameters ν, the conditional 1236

entropy can be estimated as 1237

Ĥ(X|X−T , ν) =
1

N

N∑
n=1

log2 p(xtn |x−Ttn , ν)−1 (57) 1238

which one can plug into Eq (6) to obtain an estimate of the history dependence. The 1239

strong law of large numbers [60] ensures that if the model is correct, i.e. 1240

p(xt|x−Tt , ν) = p(xt|x−Tt ) for all t, this estimator converges to the entropy H(X|X−T ) 1241

for N →∞. However, any deviations from the true distribution due to an incorrect 1242

model will lead to an underestimation of history dependence, similar to choosing an 1243

insufficient embedding. Therefore, model parameters should be chosen to maximize the 1244

history dependence, or to maximize the likelihood 1245

ν∗ = arg max
ν

N∑
n=1

log2 p(xtn |x−Ttn , ν). (58) 1246

We here consider a generalized linear model (GLM) with exponential link function that 1247

has successfully been applied to make predictions in neural spiking data [20] and can be 1248

used for the estimation of directed, causal information [21]. In a GLM with past 1249

dependencies, the spiking probability at time t is described by the instantaneous rate or 1250

conditional intensity function 1251

λ(t|x−Tt , ν) = lim
δt→0

p(t̂ ∈ [t, t+ δt]|x−Tt , ν)

δt
. (59) 1252

Since we discretize spiking activity in time as spiking or non-spiking in a small time 1253

window ∆t, the spiking probability is given by the binomial probability 1254

p(xt=1|x−Tt , ν) =
λ(t|x−Tt , ν)∆t

1 + λ(t|x−Tt , ν)∆t
. (60) 1255

The idea of the GLM is that past events contribute independently to the probability of 1256

spiking, such that the conditional intensity function factorizes over their contributions. 1257

Hence, it can be written as 1258

λ(t|x−Tt , µ,h) = exp

µ+

d∑
j=1

hjx
−T
t,j

 , (61) 1259

where hj gives the contribution of past activity x−Tt,j in past time bin j to the firing rate, 1260

and µ is an offset that is adapted to match the average firing rate. 1261

Although fitting GLM parameters is more data-efficient than computing 1262

non-parametric estimates, overfitting may occur for limited data and high embedding 1263

dimensions d, such that d cannot be chosen arbitrarily high. In order to estimate a 1264

maximum of history dependence for limited d, we apply the same type of binary past 1265

embedding as we use for the other estimators, and optimize the embedding parameters 1266

by minimizing the Bayesian information criterion [66]. In particular, for given past 1267

range T , we choose embedding parameters d∗, κ∗ that minimize 1268

BIC(d, κ) = (d+ 1) log2N − 2L∗(d, κ), (62) 1269
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where N is the number of samples and 1270

L∗(d, κ) =

N∑
n=1

log2 p(xtn |x−Ttn,d,κ, µ
∗,h∗) (63) 1271

is the maximized log-likelihood of the recorded spike sequences (xtn ,x
−T
tn,d,κ

)Nn=1 for 1272

optimal model parameters µ∗,h∗. We then use the optimized embedding parameters to 1273

estimate the conditional entropy according to 1274

ĤGLM(X|X−Td∗,κ∗) = − 1

N
L∗(d∗, κ∗), (64) 1275

which results in the GLM estimator of history dependence 1276

R̂GLM(T ) = 1−
ĤGLM(X|X−Td∗,κ∗)

Ĥ(X)
. (65) 1277

Bootstrap confidence intervals. In order to estimate confidence intervals of 1278

estimates R̂(T, θ) for given past embeddings, we apply the blocks of blocks 1279

bootstrapping method [67]. To obtain bootstrap samples, we first compute all the 1280

binary sequences (xtn ,x
−T
tn,θ

) for n = 1, ..., N that result from discretizing the spike 1281

recording in N time steps ∆t and applying the past embedding. We then randomly 1282

draw N/l blocks of length l of the recorded binary sequences such that the total number 1283

of redrawn sequences is the same as the in the original data. We choose l to be the 1284

average inter-spike-interval
:::::::::
interspike

:::::::
interval (ISI) in units of time steps ∆t, i.e. 1285

l = 1/(r∆t) with average firing rate r. Sampling successive sequences over the typical 1286

ISI ensures that bootstrapping samples are representative of the original data, while 1287

also providing a high number of distinct blocks that can be drawn. 1288

The different estimators (but not the bias criterion) are then applied to each 1289

bootstrapping sample to obtain confidence intervals of the estimators. Instead of 1290

computing the 95% confidence interval via the 2.5 and 97.5 percentiles of the 1291

bootstrapped estimates, we assumed a Gaussian distribution and approximated the 1292

interval via [R̂(T, θ)− 2σ̂R(T, θ), R̂(T, θ) + 2σ̂R(T, θ)], where σ̂R(T, θ) is the standard 1293

deviation over the bootstrapped estimates. 1294

We found that the true standard deviation of estimates for the model neuron was 1295

well estimated by the bootstrapping procedure, irrespective of the recording length (S10 1296

Fig). Furthermore, we simulated 100 recordings of the same recording length, and for 1297

each computed confidence interval for the maximum history dependence Rmax of Eq 1298

(??)
:::
past

::::::
range

::
T

:::::
with

:::
the

:::::::
highest

:::::::::
estimated

:::::::
history

::::::::::
dependence

::::::
R(T ). By measuring 1299

how often the model’s true value for the same embedding was included in these intervals, 1300

we found that the Gaussian confidence intervals are indeed close to the claimed 1301

confidence level (S10 Fig). This indicates that the bootstrap confidence intervals 1302

approximate well the uncertainty associated with estimates of history dependence. 1303

Cross-validation. For small recording lengths, embedding optimization may cause 1304

overfitting through the maximization of variable estimates (S1 Fig). To avoid this type 1305

of overestimation, we apply
:::
one

:::::
round

:::
of cross-validation, i.e. we optimize embeddings 1306

over the first half of the recording, and evaluate estimates for the optimal past 1307

embedding on the second half. We chose this separation of training and evaluation data 1308

sets, because it allows the fastest computation of binary sequences (xtn ,x
−T
tn,θ

) for the 1309

different embeddings during optimization. We found that none of the cross-validated 1310

embedding-optimized estimates were systematically overestimating the true history 1311

dependence for the benchmark model for recordings as short as three minutes (S1 Fig). 1312
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Therefore, cross-validation allows to apply embedding optimization to estimate history 1313

dependence even for very short recordings. 1314

Benchmark neuron model 1315

Generalized leaky integrate-and-fire neuron with spike-frequency 1316

adaptation. As a benchmark model, we chose a generalized leaky integrate-and-fire 1317

model (GLIF) with an additional adaptation filter ξ (GLIF-ξ) that captures 1318

spike-frequency adaptation over 20 seconds [43]. 1319

For a standard leaky integrate-and-fire neuron, the neuron’s membrane is formalized 1320

as an RC circuit, where the cell’s lipid membrane is modeled as a capacitance C, and 1321

the ion channels as a resistance that admits a leak current with effective conductance 1322

gL. Hence, the temporal evolution of the membrane’s voltage V is governed by 1323

CV̇ = −gL(V − VR) + Iext(t). (66) 1324

Here, VR denotes the resting potential and Iext(t) external currents that are induced by 1325

some external drive. The neuron emits an action potential (spike) once the neuron 1326

crosses a voltage threshold VT , where a spike is described as a delta pulse at the time of 1327

emission t̂. After spike emission, the neuron returns to a reset potential V0. Here, we do 1328

not incorporate an explicit refractory period, because inter-spike-intervals
:::::::::
interspike 1329

:::::::
intervals

:
in the simulation were all larger than 10ms. For constant input current Iext, 1330

integrating Eq (66) yields the membrane potential between two spiking events 1331

V (t) = V∞ + (V0 − V∞)e−γ(t−t̂0), (67) 1332

where t̂0 is the time of the most recent spike, γ = gL/C the inverse membrane timescale 1333

and V∞ = VR + Iext/γ the equilibrium potential. 1334

In contrast to the LIF, the GLIF models the spike emission with a soft spiking 1335

threshold. To do that, spiking is described by an inhomogeneous Poisson process, where 1336

the spiking probability in a time window of width δt� 1 is given by 1337

p(t̂ ∈ [t, t+ δt]) = 1− exp

(∫ t+δt

t

λ(s)ds

)
≈ λ(t)δt. (68) 1338

Here, the spiking probability is governed by the time dependent firing rate 1339

λ(t) = λ0 exp

(
V (t)− VT (t)

∆V

)
. (69) 1340

The idea is that once the membrane potential V (t) approaches the firing threshold 1341

VT (t), the firing probability increases exponentially, where the exponential increase is 1342

modulated by 1/∆V . For ∆V → 0, we recover the deterministic LIF, while for larger 1343

∆V the emission becomes increasingly random. 1344

In the GLIF-ξ, the otherwise constant threshold V ∗T is modulated by the neuron’s 1345

own past activity according to 1346

VT (t) = V ∗T +
∑
t̂j<t

ξ(t− t̂j). (70) 1347

Thus, depending on their spike times t̂j , emitted action potentials increase or decrease 1348

the threshold additively and independently according to an adaptation filter ξ(t). 1349

Thereby ξ(t) = 0 for t < 0 to consider effects of action potentials that were emitted in 1350
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the past only. In the experiments conducted in [43], the following functional form for 1351

the adaptation filter was extracted: 1352

ξ(s) =

{
aξ , if 0 < s ≤ Tξ
aξ

(
s
Tξ

)−βξ
, if Tξ < s < 22 s.

(71) 1353

The filter is an effective model not only for the measured increase in firing threshold, 1354

but also for spike-triggered currents that reduce the membrane potential. When 1355

mapped to the effective adaptation filter ξ, it turned out that past spikes lead to a 1356

decrease in firing probability that is approximately constant over a period Tξ = 8.3 ms, 1357

after which it decays like a power-law with exponent βξ = 0.93, until the contributions 1358

are set to zero after 22 s. 1359

::::::
Model

::::::::
variant

:::::
with

:::
1s

:::::
past

::::::::
kernel.

:::
For

:::::::::::::
demonstration,

:::
we

::::
also

:::::::::
simulated

::
a 1360

::::::
variant

::
of

::::
the

::::::
above

:::::
model

:::::
with

::
a

::
1s

::::
past

::::::
kernel

:
1361

ξ1s(s) =

{
a1s
ξ , if 0 < s ≤ Tξ
a1s
ξ

(
s
Tξ

)−βξ
, if Tξ < s < 1 s.

::::::::::::::::::::::::::::::::::::

(72) 1362

:::
All

::::::::::
parameters

:::
are

::::::::
identical

::::::
apart

::::
from

::::
the

::::::::
strength

::
of

::::
the

:::::
kernel

::::::::::::::
a1s
ξ = 35.2 mV, 1363

:::::
which

::::
was

::::::::
adapted

::
to

::::::::
maintain

::
a
:::::
firing

::::
rate

:::
of

::::
4 Hz

:::::::
despite

:::
the

:::::::
shorter

:::::::
kernel.

:
1364

Simulation details. In order to ensure stationarity, we simulated the model neuron 1365

exposed to a constant external current Iext = const. over a total duration of 1366

Trec = 900 min. Thereby, the current Iext was chosen such that the neuron fired with a 1367

realistic average firing rate of 4 Hz. During the simulation, Eq (66) was integrated using 1368

simple Runge-Kutta integration with an integration time step of δt = 0.5 ms. At every 1369

time step, random spiking was modeled as a binary variable with probability as in Eq 1370

(68). After a burning-in time of 100 s, spike times were recorded and used for the 1371

estimation of history dependence. The detailed simulation parameters can be found in 1372

Table 1. 1373

Table 1. Simulation parameters of the GLIF-ξ model.

Term Description Value Units
λ0 Latency 2.0 ms−1

1/γ Membrane timescale 15.3 ms
V∞ Equilibrium potential -45.9 mV
V0 Reset potential -38.8 mV
V ∗T Firing threshold baseline -51.9 mV
∆V Firing threshold sharpness 0.75 mV
αξ Magnitude of the effective adaptation filter ξ 19.3 mV
βξ Scaling exponent of the effective adaptation filter ξ 0.93 -
Tξ Cutoff of the effective adaptation filter ξ 8.3 ms
δt Simulation step 0.5 ms

The parameters were originally extracted from experimental recordings of (n=14) L5
pyramidal neurons [43].

Computation of the total history dependence. In order to determine the total 1374

history dependence in the simulated spiking activity, we computed the conditional 1375
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entropy H(X|X−∞) from the conditional spiking probability in Eq (68) that was used 1376

for the simulation. Note that this is only possible because of the constant input current, 1377

otherwise the conditional spiking probability would also capture information about the 1378

external input. 1379

Since the conditional probability of spiking used in the simulation computes the 1380

probability in a simulation step δt = 0.5 ms, we first have to transform this to a 1381

probability of spiking in the analysis time step ∆t = 5 ms. To do so, we compute the 1382

probability of no spike in a time step [t, t+ ∆t]
:::::::::
[t, t+ ∆t) according to 1383

psim(xt=0|x−∞t ) =

∆t/δt∏
j=1

[1− λ̃(t+ (j − 1)δt)δt], (73) 1384

and then compute the probability of at least one spike by 1385

p(xt=1|x−∞t ) = 1− p(xt=0|x−∞t ). Here, the rate ˜λ(t) is computed as λ(t) in Eq (69), 1386

but only with respect to past spikes that are emitted at times t̂ < t. This is because no 1387

spike that occurs within [t, t+ ∆t]
::::::::
[t, t+ ∆t)

:
must be considered when computing 1388

psim(xt=0|x−∞t ). 1389

For sufficiently long simulations, one can make use of the SLLN to compute the 1390

conditional entropy 1391

Hsim(X|X−∞) = − 1

N

N∑
n=1

log2 psim(xtn |x−∞tn ), (74) 1392

and thus the total history dependence 1393

Rtot = 1− Hsim(X|X−∞)

Ĥ(X)
, (75) 1394

which gives an upper bound to the history dependence for any past embedding. 1395

Computation of history dependence for given past embedding. To compute 1396

history dependence for given past embedding, we use that the model neuron can be well 1397

approximated by a generalized linear model (GLM) within the parameter regime of our 1398

simulation. We can then
::::
thus

:
fit a GLM to the simulated data for the given past 1399

embedding T, d, κ to obtain a good approximation of the corresponding true history 1400

dependence R(T, d, κ).
::::
Note

::::
that

::::
this

::
is

::
a

:::::::
specific

::::::::
property

::
if

::::
this

::::::
model

:::
and

:::::
does

:::
not 1401

::::
hold

::
in

::::::::
general.

:::
For

::::::::
example

:::
in

:::::::::::
experiments,

:::
we

::::::
found

::::
that

::::
the

:::::
GLM

:::::::::
accounted

:::
for 1402

:::
less

:::::::
history

::::::::::
dependence

:::::
than

::::::::::
model-free

:::::::::
estimates

::::
(Fig

:::
6).

:
1403

To map the model neuron to a GLM, we plug the membrane and threshold dynamics 1404

of Eq (67) and Eq (70) into the equation for the firing rate Eq(69), i.e. 1405

λ(t) = exp

log λ0 + V∞ − V ∗T +
∑
t̂j<t

ξ(t− t̂j) + (V0 − V∞)e−γ(t−t̂0)

 . (76) 1406

For the parameters used in the simulation, the decay time of the reset term V0 − V∞ is 1407

1/γ = 15.3 ms. When compared to the minimum and mean inter-spike intervals of 1408

ISImin = 25,ms and ISI = 248 ms, it is apparent that the probability for two spikes to 1409

occur within the decay time window is negligibly small. Therefore, one can safely 1410

approximate 1411

(V0 − V∞)e−γ(t−t̂0) ≈
∑
t̂j<t

(V0 − V∞)e−γ(t−t̂j), (77) 1412
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i.e. describing the potential reset after a spike as independent of other past spikes, 1413

because contributions beyond the last spike (j > 0) are effectively zero. Using the above 1414

approximation, one can formulate the rate as in a generalized linear model with 1415

λ(t) = exp

µ d∑
j=1

hjx
−
t,j

 , (78) 1416

where 1417

µ = log λ0 + V∞ − V ∗T (79) 1418

hj = ξ(jδt) + (V0 − V∞)e−γjδt, (80) 1419

and x−t,j ∈ {0, 1} indicates whether the neuron spiked in [t− jδt, t− (j + 1)δt]. 1420

Therefore, the true spiking probability of the model is well described by a GLM. 1421

We use this relation to approximate the history dependence R(T, d, κ) for any past 1422

embedding T, d, κ with a GLM with the same past embedding. Since in that case the 1423

parameters µ and h are not known, we fitted them to the simulated 900 minute 1424

recording via maximum likelihood (see above) and computed the history dependence 1425

according to 1426

R̂GLM(T, d, κ) = 1−
ĤGLM(X|X−Td,κ )

Ĥ(X)
. (81) 1427

Computation of history dependence as a function of the past range. To 1428

approximate the model’s true history dependence R(T ), for each T we computed GLM 1429

estimates R̂GLM(T, d, κ) (Eq 81) for a varying number of past bins 1430

d ∈ [25, 50, 75, 100, 125, 150]. For each d, the scaling κ was chosen such that the size of 1431

the first past bin was equal or less than 0.5 ms. To save computation time, and to 1432

reduce the effect of overfitting, the GLM parameters where fitted on 300 minutes of the 1433

simulation, whereas estimates R̂GLM(T, d, κ) were computed on the full 900 minutes of 1434

the simulated recording. For each T , we then chose the highest estimate R̂GLM(T, d, κ) 1435

among the estimates for different d as the best estimate of the true R(T ). 1436

Experimental recordings 1437

We analyzed neural spike trains from in vitro recordings of rat cortical cultures and 1438

salamander retina, as well as in vivo recordings in rat dorsal hippocampus (layer CA1) 1439

and mouse primary visual cortex. Data from salamander retina were recorded in strict 1440

accordance with the recommendations in the Guide for the Care and Use of Laboratory 1441

Animals of the National Institutes of Health, and the protocol was approved by the 1442

Institutional Animal Care and Use Committee (IACUC) of Princeton University 1443

(Protocol Number: 1828). The rat dorsal hippocampus experimental protocols were 1444

approved by the Institutional Animal Care and Use Committee of Rutgers 1445

University [46,47]. Data from mouse primary visual cortex were recorded according to 1446

the UK Animals Scientific Procedures Act (1986). 1447

For all recordings, we only analyzed neurons
::::::
sorted

:::::
units with firing rates between 1448

0.5 Hz and 10 Hz to exclude the extremes of either inactive neurons or neurons
::::
units

:::
or 1449

::::
units

:
with very high firing rate. 1450

Rat cortical culture. Neurons were extracted from rat cortex (1st day postpartum) 1451

and recorded in vitro on an electrode array 2-3 weeks after plating day. We took data 1452

from five consecutive sessions (L_Prg035_txt_nounstim.txt, 1453

L_Prg036_txt_nounstim.txt, ..., L_Prg039_txt_nounstim.txt) with a total 1454
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duration of about Trec ≈ 203 min. However, we only analyzed the first 90 minutes to 1455

make the results comparable to the other recorded systems. We analyzed in total 1456

n = 48 neurons
:::::
sorted

:::::
units

:
that satisfied our requirement on the firing rate. More 1457

details on the recording procedure can be found in [68], and details on the data set 1458

proper can be found in [50]. 1459

Salamander retina. Spikes from larval tiger salamander retinal ganglion cells were 1460

recorded in vitro by extracting the entire retina on an electrode array [69], while a 1461

non-repeated natural movie (leaves moving in the wind) was projected onto the retina. 1462

The recording had a total length of about Trec ≈ 82 min, and we analyzed in total 1463

n = 111 neurons
:::::
sorted

:::::
units

:
that satisfied our requirement on the firing rate. More 1464

details on the recording procedure and the data set can be found in [48,49]. The spike 1465

recording as obtained from the Dryad database [48]. 1466

Rat dorsal hippocampus (layer CA1). We evaluated spike trains from a 1467

multichannel simultaneous recording made from layer CA1 of the right dorsal 1468

hippocampus of a Long-Evans rat during an open field task (data set ec014.277). The 1469

data-set provided sorted spikes from 8 shanks with 64 channels. The recording had a 1470

total length of about Trec ≈ 90 min. We analyzed in total n = 28 neurons
:::::
sorted

:::::
units 1471

that were indicated as single units and satisfied our requirement on the firing rate. 1472

More details on the experimental procedure and the data set can be found in [46,47]. 1473

The spike recording was obtained from the NSF-founded CRCNS data sharing website. 1474

Mouse primary visual cortex. Neurons were recorded in vivo during spontaneous 1475

behavior, while face expressions were monitored. Recordings were obtained by 8 1476

simultaneously implanted Neuropixel probes, and neurons
::::::
sorted

:::::
units were located 1477

using the location of the electrode contacts provided in [51], and the Allen Mouse 1478

Common Coordinate Framework [70]. We analyzed in total n = 142 neurons from the 1479

rat
::::::
sorted

:::::
units

::::
from

::::
the

::::::
mouse

:
”Waksman” that belonged to primary visual cortex 1480

(irrespective of their layer) and satisfied our requirement on the firing rate. Second, we 1481

only selected neurons
:::::
units that were recorded for more than Trec ≈ 40 min (difference 1482

between the last and first recorded spike time). Details on the recording procedure and 1483

the data set can be found in [59] and [51]. 1484

Parameters used for embedding optimization 1485

The embedding dimension or number of bins was varied in a range d ∈ [1, dmax], where 1486

dmax was either dmax = 20, dmax = 5 (max five bins) or dmax = 1 (one bin). During 1487

embedding optimization, we explored Nκ = 10 linearly spaced values of the exponential 1488

scaling κ within a range [0, κmax(d)]. The maximum κmax(d) was chosen for each 1489

number of bins d ∈ [1, dmax] such that the bin size of the first past bin was equal to a 1490

minimum bin size, i.e. τ1 = τ1,min, which we chose to be equal to the time step 1491

τ1,min = ∆t = 5 ms. To save computation time, we did not consider any embeddings 1492

with κ > 0 if the past range T and d were such that τ1(κmax(d)) ≤ ∆t for κ = 0. 1493

Similarly, for given T and each d, we neglected values of κ during embedding 1494

optimization if the difference ∆κ to the previous value of κ was less than ∆κmin = 0.01. 1495

In Table 2 we summarize the relevant parameters that were used for embedding 1496

optimization. 1497

:::::::
Details

:::
to

::::
Fig

::
3.

:::
For

::::
Fig

:::
3B,

::::
the

:::::::
process

::::
was

::::::::::
considered

:::
for

:::::
l = 1

:::
and

:::
an 1498

::::::::::
reactivation

::::::::::
probability

:::
of

::::::::
m = 0.8.

::::
For

:::::
l = 1,

:::
all

:::::::::::
probabilities

::::
can

:::::
easily

:::
be

::::::::::
calculated, 1499

::::
with

::::::::
marginal

::::::::::
probability

:::
to

:::
be

:::::
active

:::::::::::::::::::::::::::
p(xt = 1) = h/(1−m+mh),

::::
and

::::::::::
conditional 1500
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Table 2. Parameters used for embedding optimization.

Symbol Value Settings variable name Description
∆t 0.005 embedding_step_size Time step (in seconds) for the discretiza-

tion of neural spiking activity.
d 1, 2, ..., dmax embedding_number_of_bins_set Set of embedding dimensions.
Nκ 10 number_of_scalings Number of linearly spaced values of the

exponential scaling κ.
τ1,min 0.005 min_first_bin_size Minimum bin size (in seconds) of the

first past bin.
∆κmin 0.01 min_step_for_scaling Minimum required difference between

two values of κ.
p 0.05 bbc_tolerance Tolerance for the acceptance of esti-

mates for BBC.
- False cross_validated_optimization Is cross-validation used for optimization

or not.
- 250 number_of_bootstraps_R_max Number of bootstrap samples used to

estimate σR̂max
.

l 1/r∆t block_length_l Block length used for blocks-of-blocks
bootstrapping.

- all estimation_method Estimators for which embeddings are
optimized (BBC, Shuffling)

To facilitate reproduction, we added the settings variable names of the parameters as they are used in the toolbox [37].

:::::::::::
probabilities

:::::::::::::::::::::::::::::::
p(xt = 1|xt−1 = 1) = h+ (1− h)m

::::
and

:::::::::::::::::::::
p(xt = 1|xt−1 = 0) = h.

:::::
From 1501

::::
these

::::::::::::
probabilities,

::::
the

:::::
total

:::::::
mutual

::::::::::
information

::::
Itot::::

and
:::::
total

::::::
history

:::::::::::
dependence 1502

::::
Rtot :::::

could
:::
be

:::::::
directly

::::::::::
computed.

:::
We

:::::
then

:::::::
plotted

:::::
these

:::::::::
quantities

:::
as

:
a
::::::::
function

::
of
:::
h, 1503

:::::
where

::::::
values

::
of

::
h
:::::
were

::::::
chosen

:::
to

::::
vary

::::
the

:::::
firing

::::
rate

::::::::
between

:::
0.5

::::
and

::
10

::::
Hz,

:::::
with

:
a 1504

:::
bin

::::
size

::
of

::::::::::
∆t = 5ms.

:::
For

::::
Fig

::::
3C,

:::
the

::::::
binary

:::::::::::::
autoregressive

:::::::
process

::::
was

:::::::::
simulated

:::
for 1505

:::::::
n = 107

::::
time

:::::
steps

:::::
with

::::::::
m = 0.8

:::::::
(l = 1),

:::::::
whereas

:::
for

::::::
l = 5,

::
m

::::
was

::::::::
adapted

::
to

:::::
yield 1506

:::::::::::::
approximately

:::
the

:::::
same

::::
Rtot:::

as
:::
for

:::::
l = 1.

:::::
The

:::::
input

:::::::::
activation

:::::::::::
probability

:
h
::::
was 1507

::::::
chosen

::
to

::::
lead

:::
to

::
a

::::
fixed

:::::::::::
probability

:::::::::::::::
p(x = 1) ≈ 0.025,

:::::::::::::
corresponding

:::
to

:
5
:::
Hz

::::::
firing 1508

:::
rate

:::::
with

::::::::::
∆t = 5ms.

::::::::::::::
Autocorrelation

::::::
C(T )

::::
was

:::::::::
computed

:::::
using

:::
the

:::::::::::::
MR.estimator 1509

:::::::
toolbox

::::
[53]

:
,
:::
and

:::::::
∆R(T )

::::
and

:::::
L(T )

:::::
were

:::::::::
estimated

:::::
using

::::::
plugin

:::::::::::
estimation.

:::
For 1510

:::
Fig

::::
3D,

:::
the

:::::
same

::::::::::
procedures

:::::
were

:::::::
applied

::
as

:::
in

:::
Fig

::::
3C,

:::
but

:::::
now

::
m

::::
was

::::::
varied 1511

:::::::
between

:::
0.5

::::
and

:::::
0.95,

::::
and

::
h

:::
was

::::::::
adapted

:::
for

:::::
each

::
m

:::
to

::::
hold

:::
the

::::::
firing

::::
rate

:::::
fixed

::
at

::
5 1512

:::
Hz.

::::
For

:::
Fig

::::
3E,

:::
the

:::::
same

::::::::::
procedures

:::::
were

:::::::
applied

::
as

:::
in

:::
Fig

::::
3C,

::::
but

::::
now

:
l
::::
was

::::::
varied 1513

:::::::
between

::
1

::::
and

:::
10,

::::
and

::
h

:::
and

:::
m

::::
were

::::::::
adapted

:::
for

:::::
each

:
l
::
to

:::::
hold

:::
the

::::::
firing

::::
rate

:::::
fixed

::
at 1514

:
5
:::
Hz

::::
and

::::
Rtot:::::

fixed
:::
at

:::
the

:::::
value

:::
for

:::::
l = 1

::::
and

::::::::
m = 0.8.

:
1515

Details to Fig 3A
:::
4A,B.

::::
The

:::::::::
branching

:::::::
process

::::
was

:::::::::
simulated

:::::
using

::::
the 1516

::::::::::::
MR.estimator

::::::::
toolbox,

::::
with

::
a
:::::
time

::::
step

::
of

::::::::::
∆t = 4 ms,

::::::::::
population

::::
rate

:::
of

:::
500

:::
Hz

::::
and 1517

:::::::::::
subsampling

::::::::::
probability

::
of

:::::
0.01.

::::::
Thus,

:::
the

:::::::::::
subsampled

:::::
spike

:::::
train

::::
had

::
a

:::::
firing

::::
rate

::
of 1518

::::::
≈ 5 Hz.

:::::
The

:::::::::
branching

::::::::::
parameter

:::
was

::::
set

::
to

:::::::::
m = 0.98

::::
with

::::::::
analytic

::::::::::::::
autocorrelation 1519

::::
time

:::::::::::::::
τC(m) = 198 ms.

::::
For

::
a

::::
long

::::::::::
simulation,

::::::::::::::
autocorrelation

:::::
C(T )

::::
was

:::::::::
computed 1520

:::::
using

:::
the

:::::::::::::
MR.estimator

::::::::
toolbox,

:::::
L(T )

:::::
using

::::::
plugin

::::::::::
estimation,

::::
and

:::::
R(T )

::::::
using 1521

:::::::::
embedding

::::::::::
optimized

::::::::
Shuffling

:::::::::
estimator

:::::
with

:::::::::
dmax = 20.

:::::
The

::::::::::
generalized

::::::::::
timescales 1522

::
τR::::

and
:::
τL::::

were
::::::::::
computed

::::
with

:::::::::::
T0 = 10 ms.

:
1523

:::::::
Details

:::
to

::::
Fig

::::::
4C,D.

::::
The

:::::::::
Izhikevich

::::::
model

::::
was

:::::::::
simulated

:::::
with

:::
the

::::::
PyNN

:::::::
toolbox 1524

::::
[71],

:::::
with

::::::::::
parameters

:::
set

:::
to

:::
the

::::::::::
chattering

:::::
mode

:::::::::
(a = 0.02,

::::::::
b = 0.2,

::::::::
c = −50,

:::::::
d = 2), 1525

:::::::::
simulation

:::::
time

:::
bin

::::::::::::
dt = 0.01 ms,

::::
and

:::::
noisy

:::::
input

:::::
with

:::::
mean

::::::
0.011

:::
and

:::::::::
standard 1526
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::::::::
deviation

::::::
0.001.

::::
For

:::
the

::::::::
analysis,

::
a
::::
time

:::::
step

::
of

:::::::::
∆t = 1 ms

::::
was

:::::::
chosen.

::::::
Apart

:::::
from 1527

::::
that,

:::::
C(T )

::::
and

:::::
L(T )

:::::
were

:::::::::
computed

:::
as

:::
for

:::
Fig

::::
4B.

:::::
Here,

:::::
R(T )

::::
was

:::::::::
computed

:::::
with 1528

::::
BBC

::::
and

::::::::::
dmax = 20,

::::::
which

::::::::
revealed

::::::
higher

::::
Rtot:::::

than
:::::::::
Shuffling.

:::
To

::::::::
compute

:::
τR,

:::
we 1529

::
set

:::::::
T0 = 0.

:
1530

:::::::
Details

:::
to

::::
Fig

::::::
4E,F.

:::
The

::::::
GLIF

::::::
model

::::
was

:::::::::
simulated

::
as

:::::::::
described

::
in

:::::::::::
Benchmark 1531

::::::
neuron

::::::
model

:::::::
(model

::::
with

::::
22s

::::
past

:::::::
kernel).

:::::
The

:::::::
analysis

:::::
time

::::
step

::::
was

::::::::::
∆t = 5 ms. 1532

:::::
Apart

:::::
from

:::::
that,

:::::
C(T )

::::
and

:::::
L(T )

:::::
were

:::::::::
computed

::
as

:::
for

::::
Fig

:::
4B.

::::::::
History

::::::::::
dependence 1533

:::::
R(T )

:::
was

::::::::::
estimated

:::::
using

:
a
::::::
GLM

::
as

:::::::::
described

::
in

:::::::::::
Benchmark

:::::::
neuron

::::::
model.

:::
To 1534

:::::::
compute

::::
τR,

:::
we

:::
set

:::::::::::
T0 = 10 ms.

:
1535

:::::::
Details

:::
to

::::
Fig

::::::
5A,B. In Fig 5A,B, we applied the ML, NSB, BBC and Shuffling 1536

estimators for R(d) to a simulated recording of 90 minutes. Embedding parameters were 1537

T = d · τ and κ = 0, with τ = 20 ms and d ∈ [1, 100]
:::::::::
d ∈ [1, 60]. Since the goal was to 1538

show the properties of the estimators, confidence intervals were estimated from 50 1539

repeated 90 minute simulations instead of bootstrapping samples from the same 1540

recording. Each simulation had a burning in period of 100 seconds. To estimate the 1541

true R(d), the GLM was fitted and evaluated on a 900 minute recording. 1542

Details to Fig 3C
:::
5C. In Fig 5C, history dependence R(T ) was estimated on a 90 1543

minute recording for 57 different values of T in a range T ∈ [10 ms, 3 s]. 1544

Embedding-optimized estimates were computed with dmax = 20
::
up

::
to

::::::::::
dmax = 25

::::
past 1545

::::
bins, and 95% confidence intervals were computed using the standard deviation over 1546

n = 100 blocks-of-blocks bootstrapping samples (see Bootstrap confidence intervals). 1547

To estimate the true R(T, d∗, κ∗) for the optimized embedding parameters d∗, κ∗ with 1548

either BBC or Shuffling, a GLM was fitted for the same embedding parameters on a 300 1549

minute recording and evaluated on 900 minutes recording for the estimation of R. See 1550

above on how we computed the best estimate of R(T ). 1551

Details to Fig 4.
::
6. For Fig 6, history dependence R(T ) was estimated for 61 1552

different values of T in a range T ∈ [10 ms, 5 s]. For each recording, we only analyzed 1553

the first 90 minutes to have a comparable recording length. For embedding 1554

optimization, we used dmax = 20 as a default for BBC and Shuffling, and compared the 1555

estimates with the Shuffling estimator optimized for dmax = 5 (max five bins) and 1556

dmax = 1 (one bin). For the GLM, we only estimated R(T̂D)
:::::
R(TD)

:
for the temporal 1557

depth T̂D :::
TD that was estimated with BBC. To optimize the estimate, we computed 1558

GLM estimates R̂(T̂D)
::
of

::::::
R(TD)

:
with the optimal embedding found by BBC, and for 1559

varying embedding dimension d ∈ [1, 2, 3, .., 20, 25, 30, 35, 40, 45, 50], where for each d we 1560

chose κ such that τ1 = ∆t. We then chose the embedding that minimized the BIC, and 1561

took the corresponding estimate R̂(T̂D)
::::::
R̂(TD)

:
as a best estimate for Rtot. For Figure 1562

3A
::
Fig

::::
6A, we plotted only spiketrains

::::
spike

::::::
trains

:
of channels that were identified as 1563

single units. For Figure 3B
:::
Fig

:::
6B, 95% confidence intervals were computed using the 1564

standard deviation over n = 100 blocks-of-blocks bootstrapping samples. For Figure 1565

3C
:::
Fig

:::
6C, embedding-optimized estimates with uniform embedding (κ

:::::
κ = 0) were 1566

computed with dmax = 20 (BBC ) or dmax = 20
:::
and

::::::::::
Shuffling)

::
or

:::::::::
dmax = 5 (Shuffling). 1567

Medians were computed over the n = 28 neurons in EC
:::::
sorted

:::::
units

::
in

:::::
CA1. 1568

Details to Figs 5
::
7 and 6.

:
8. For Figs 7 and 8, history dependence was R(T ) was 1569

estimated for 61 different values of T in a range T ∈ [10 ms, 5 s] using the Shuffling 1570

estimator with dmax = 5.
:::
The

::::::::::::::
autocorrelation

::::::::::
coefficients

::::::
C(T )

::::
were

:::::::::
computed

:::::
with 1571

:::
the

:::::::::::::
MR.Estimator

:::::::
toolbox

:::::
[53],

::::
and

::::
the

::::::::::::::
autocorrelation

::::
time

:::
τC::::

was
::::::::
obtained

:::::
using 1572
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:::
the exponential_offset

:::::
fitting

:::::::::
function.

:
For each recording, we only analyzed the 1573

first 40 minutes to have a comparable recording length. For Figure 5
:::
Fig

::
7, medians of 1574

T̂D and R̂tot ::
τR,

:::
τC::::

and
::::
Rtot:

were computed over all neurons
::::::
sorted

:::::
units that were 1575

analyzed, and 95% confidence intervals on the medians were obtained by bootstrapping 1576

with n = 10000 resamples of the median. For Figure 6
::
Fig

::
8, 95% confidence intervals 1577

were computed using the standard deviation over n = 100 blocks-of-blocks 1578

bootstrapping samples. 1579

Practical guidelines: How to estimate history dependence from 1580

neural spike recordings 1581

Estimating history dependence (or any complex statistical dependency) for neural data 1582

is notoriously difficult. In the following, we address the main requirements for a 1583

practical and meaningful analysis of history dependence, and provide guidelines on how 1584

to fulfill these requirements using embedding optimization. A toolbox for Python3 is 1585

available online [37], together with default parameters that worked best with respect to 1586

the following requirements. It is important that practitioners make sure that their data 1587

fulfill the data requirements (points 4 and 5). 1588

1) The embedding of past-spiking
::::
past

::::::::
spiking activity should be 1589

individually optimized to account for very different spiking statistics. It is 1590

crucial to optimize the embedding for each neuron individually, because history 1591

dependence can strongly differ for neurons from different areas or neural systems 1592

(Fig 7), or even among neurons within a single area (see examples in Fig 8). Individual 1593

optimization enables a meaningful comparison of temporal depth and history 1594

dependency R between neurons. 1595

2) The estimation has to capture any non-linear or higher-order statistical 1596

dependencies. Embedding optimization using both, the BBC or Shuffling estimators, 1597

is based on non-parametric estimation, in which the joint probabilities of current and 1598

past spiking are directly estimated from data. Thereby, it can account for any 1599

higher-order or non-linear dependency among all bins. In contrast, the classical 1600

generalized linear model (GLM) that is commonly used to model statistical dependencies 1601

in neural spiking activity [20,21] does not account for higher-order dependencies. We 1602

found that the GLM recovered consistently less total history dependence Rtot (Fig 6D). 1603

Hence, to capture single-neuron history dependence, higher-order and non-linear 1604

dependencies are important, and thus a non-parametric approach is advantageous. 1605

3) Estimation has to be computationally feasible even for a high number of 1606

recorded neurons. Strikingly, while higher-order and non-linear dependencies are 1607

important, the estimation of history dependence does not require high temporal 1608

resolution. Optimizing up to dmax = 5 past bins with variable exponential scaling κ 1609

could account for most of the total history dependence that was estimated with up to 1610

dmax = 20 bins (Fig 6D). With this reduced setup, embedding optimization is feasible 1611

within reasonable computation time. Computing embedding-optimized estimates of the 1612

history dependence R(T ) for 61 different values of T (for 40 minute recordings, the 1613

approach used for Fig 7 and Fig 8) took around 10 minutes for the Shuffling estimator, 1614

and about 8.5 minutes for the BBC per neuron on a single computing node. Therefore, 1615

we recommend using dmax = 5 past bins when computation time is a constraint. Ideally, 1616

however, one should check for a few recordings if higher choices of dmax lead to different 1617

results, in order to cross-validate the choice of dmax = 5 for the given data set. 1618
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4) Estimates have to be reliable lower bounds, otherwise one cannot 1619

interpret the results. It is required that embedding-optimized estimates do not 1620

systematically overestimate history dependence for any given embedding. Otherwise, 1621

one cannot guarantee that on average estimates are lower bounds to the total history 1622

dependence, and that an increase in history dependence for higher past ranges is not 1623

simply caused by overestimation. This guarantee is an important aspect for the 1624

interpretation of the results. 1625

For BBC, we found that embedding-optimized estimates are unbiased if the variance 1626

of estimators is sufficiently small (S1 Fig). The variance was sufficiently small for 1627

recordings of 90 minutes duration. When the variance was too high (short recordings 1628

with 3–45 minutes recording length), maximizing estimates for different embedding 1629

parameters introduced very mild overestimation due to overfitting (1–3%) (S1 Fig). The 1630

overfitting can, however, be avoided by cross validation
::::::::::::::
cross-validation, i.e. optimizing 1631

the embedding on one half of the recording and computing estimates on the other half. 1632

Using cross-validation, we found that embedding-optimized BBC estimates were 1633

unbiased even for recordings as short as 3 minutes (S1 Fig). 1634

For Shuffling, we also observed overfitting, but the overestimation was small 1635

compared to the inherent systematic underestimation of Shuffling estimates. Therefore, 1636

we observed no systematic overestimation by embedding-optimized Shuffling estimates 1637

on the model neuron, even for shorter recordings (3 minutes and more). Thus, for the 1638

Shuffling estimator, we advice to apply the estimator without cross-validation as long as 1639

recordings are sufficiently long (10 minutes and more, see next point). 1640

5) Spike recordings must be sufficiently long (at least 10 minutes), and of 1641

similar length, in order to allow for a meaningful comparison of
:::::
total 1642

history dependence and temporal depth among neurons
::::::::::::
information 1643

:::::::::
timescale

:::::::
across

:::::::::::::
experiments. The recording length affects the estimated 1644

::::::::
estimates

::
of
::::
the

:
total history dependence R̂tot::::

Rtot, and especially the estimated 1645

temporal depth T̂D. First, this
:
of

::::
the

::::::::::
information

:::::::::
timescale

::::
τR.

::::
This

:
is because more 1646

data allows more complex embeddings, such that more history dependence can be 1647

captured. Second, more data reduces the variance of the estimates. The variance 1648

affects the temporal depth, because only increments in history dependence are 1649

considered that are beyond statistical fluctuations
:::::::::
Moreover,

:::::::
complex

:::::::::::
embeddings

::::
are 1650

:::::::::
particular

:::::::
relevant

:::
for

:::::
long

::::
past

::::::
ranges

::
T . Therefore, if the variance is high, smaller 1651

temporal depth
:::::::::
recordings

:::
are

::::::::
shorter,

:::::::
smaller

:::::
R(T )

:
will be estimated

:::
for

::::
long

::::
past 1652

::::::
ranges

::
T ,

:::::::
leading

:::
to

::::::
smaller

:::::::::
estimates

:::
of

::
τR. We found that for shorter recordings, the 1653

estimated total history dependence (thus its amount R̂tot) was
::::::::
estimates

::
of

::::
Rtot:::::

were 1654

roughly the same as for 90 minutes, but the estimated temporal depth T̂D was much 1655

::::::::
estimates

::
of
:::
τR:::::

were
:::::::::::
considerably

:
smaller (S2 and S3 Figs). 1656

To allow for a meaningful comparison of temporal depth between neurons, one thus 1657

has to ensure that recordings are sufficiently long (in our experience at least 10 1658

minutes), otherwise differences in temporal depth are not
::
τR::::

may
::::

not
:::
be well resolved. 1659

Below 10 minutes, we found that the estimated temporal depth T̂D ::::::::
estimates

::
of

:::
τR 1660

could be less than half of the value that was estimated for 90 minutes, and also the 1661

estimated total history dependence R̂tot ::::::::
estimates

::
of

::::
Rtot:

showed a notable decrease. 1662

In addition, all recordings should have comparable length to prevent that differences in 1663

history dependence or temporal depth
::::::::
timescale

:
are due to different recording lengths. 1664

Finally, it might be useful to consider additional quantities that capture the temporal 1665

aspect of history dependence. As an example, we computed the remaining history 1666

dependence ∆R̂(T ) after a past range of T = 80 ms, which showed interesting 1667

differences between neurons in mouse primary visual cortex versus neurons in rat 1668
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cortical culture and salamander retina (). This quantity captures the amount of 1669

long-term history dependence beyond 80 ms 1670
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Supporting information

S1 Fig. Embedding optimization leads to mild overfitting for short
recordings, which can be avoided by cross-validation. Shown is the relative
bias , i.e.

::
for

::::
two

:::::::
versions

:::
of

:::
the

::::::
GLIF

::::::
model

::::
with

:::::
spike

:::::::::
adaption,

::::
one

::::
with

:::
1s

:::
and

::::
the

:::::
other

::::
with

::::
22s

::::
past

::::::
kernel.

:::::
The

:::::::
relative

::::
bias

:::::
refers

:::
to the relative difference between

embedding-optimized estimates R̂(T, d∗, κ∗) and the the model’s true history
dependence R(T, d∗, κ∗) for the same optimized embedding parameters d∗, κ∗. The
relative bias for R̂tot was computed by first averaging the relative difference
(R̂(T, d∗, κ∗)−R(T, d∗, κ∗))/R(T, d∗, κ∗) for T ∈ [T̂D, Tmax]

:::::::::::::
T ∈ [TD, Tmax], and second

averaging again over 30 different simulations for Trec between 1 and 20 minutes, and 10
different simulations for 45 and 90 minutes. Embedding parameters were optimized for
each simulation, respectively, using parameters as in Table 2

::::
with

:::::::::
dmax = 25. (Left) For

BBC, the relative bias for R̂tot is zero only if recordings are sufficiently long (
::::
> 20

:::::::
minutes

:::
for

::
1s

:::::::
kernel,

::::
and ≈ 90 minutes

::
for

::::
22s

::::::
kernel). When recordings are shorter,

the relative bias increases, and thus estimates are mildly overestimating the model’s
true history dependence for the optimized embedding parameters. For Shuffling,
estimates provide lower bounds to the model’s true history dependence, such that the
relative bias remains negative even in the presence of overfitting. (Right) When

:::
one

:::::
round

::
of

:
cross-validation is applied, i.e. embedding parameters are optimized on one

half
:::
the

::::
first, and estimates are computed on the other

::::::
second half of the data, even for

short recordings the bias is approximately zero for BBC
::::
even

:::
for

:::::
short

:::::::::
recordings, or

more negative for the Shuffling estimator. Therefore, we conclude that the origin of
overfitting is the selection of embedding parameters on the same data that are used for
the estimation of R. Errorbars show 95 % bootstrapping confidence intervals on the
mean over

:::::
n = 10

::::
(45

::
or

:::
90

:::::
min)

::
or

:::::::
n = 30

:::::
(≤ 20

:::::
min)

:
different simulations.

S2 Fig. For the simulated neuron
::::::
model, recording length has little effect

on
:::
the

:
estimated total history dependence, but large impact on the

estimated temporal depth
::::::::::::
information

::::::::::
timescale. (Left) Estimated

:::::
Mean

::::::::
estimated

:
total history dependence R̂tot for different recording lengths, relative to the

mean
::::
true

:
total history dependence estimated for 90 minute recordings (mean over 10

simulations
::::
Rtot ::

of
:::
the

::::::
model

::::::
(GLIF

:::::
with

:::::
spike

::::::::
adaption

:::::
with

::
1s

:::
or

:::
22s

:::::
past

::::::
kernel).

As the recording length decreases, also
::
so

:::::
does R̂totdecreases. However, with only 3

minutes, one does still infer about ≈ 95% of R̂tot that one does estimate with 90
minutes of data

::
the

:::::
true

::::
Rtot. (Right) In contrast, the estimated temporal depth

::::::::::
information

:::::::::
timescale

:::
τ̂R decreases strongly with decreasing recording length. With 3

minutes and less, only ≈ 50% of the mean T̂D for 90 minutes
::::::
≈ 75%

::
of

::::
the

::::
true

:::
τR is

estimated on average.
:::::
Note

::::
that

:::
for

:::
the

:::::::
simpler

:::
1s

::::::
model

:::::
(top),

:::
an

::::::::
accurate

::::::::::
estimation

::
of

:::
the

::::
true

:::
τR::

is
:::::::
possible

:::
for

:::
90

:::::::
minute

::::::::::
recordings,

:::::::
whereas

:::
for

::::
the

:::
22s

::::::
model

:::::::::
(bottom),

:::
the

:::::::::
estimated

:::
τ̂R :::::::

remains
::::::
below

:::
the

:::::
true

:::::
value.

:
Shown are mean values for 30 different

simulations for Trec between 1 and 20 minutes, and 10 different simulations for 45
::::
and

::
90

:
minutes, as well as 95% confidence intervals on the mean based on bootstrapping.

S3 Fig. Also for
:::
For

:
experimental data,

::::
too, recording length has little

effect on estimated total history dependence, but large
::::::
larger

:
impact on

the estimated temporal depth
::::::::::::
information

::::::::::
timescale. (Left) Estimated total

history dependence R̂tot ::::
Total

:::::::
history

:::::::::::
dependence

::::
Rtot:

for different recording lengths,
relative to the total history dependence estimated for a 90 minute recording. As long as
recordings are 10 minutes or longer, one does still estimates

:::::::
estimate

:
about ≈ 95%

::
as

:::::
much or more of R̂tot than

:::
Rtot:::

as
:
for 90 minutes, for all three recordings. For less than
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10 minutes, the estimated total history dependence decreases down to 90% (CA1), or
increases again due to overfitting (retina). (Right) Similar to the simulated
neuron

:::::
GLIF

::::::
model, the estimated temporal depth T̂D decreases

::::::::::
information

:::::::::
timescale

::
τR:::::::::

decreases
:::::
more

:
strongly with decreasing recording length. With 10 minutes and

more, one estimates around ≈ 50%
::::::
≈ 75%

:
or more of T̂D :::

the
:::
τR:

that is estimated on a

90 minute recording. For even shorter recordings, the median T̂D drops even below
≈ 50% for CA1 and rat cortical culture (BBC )

::::
Note

::::
that

:::
for

::::
the

::::::::::::
experimental

:::::
data,

:::
the

:::::::::
estimated

:::::::::
timescale

::
of

:::
the

:::::
BBC

:::::::::
estimator

::::::::
depends

:::::
more

::::::::
strongly

::
on

::::
the

:::::::::
recording

::::
time,

::::::::
whereas

:::
the

:::::::::
Shuffling

:::::::::
estimator

::
is

:::::
more

::::::
robust,

:::::::::
especially

:::
for

:::::::::
dmax = 5. Shown is

the median with 95% bootstrapping confidence intervals over n = 10 randomly chosen
neurons

::::::
sorted

:::::
units for each recorded system. Before taking the median over

neurons
:::::
sorted

:::::
units, for each neuron

::::
unit

:
we averaged estimates over 10 excerpts of the

full recording, each with 3 or 5 minutes duration, and over 8,4 and 2 excerpts with 10,
20 and 45 minutes duration, respectively.

S4 Fig. Estimation
:::::::::
Example

:::::::::::
estimation

:
results for

::::
the

::::::::::::
generalized

::::::
leaky

::::::::::::::::::
integrate-and-fire model neuron for simalated example recordings

::::::::
(GLIF)

::::
with

:::
1s

:::::
past

:::::::
kernel. For each neuron

::::::::
recording

::::::
length, we show the

embedding-optimized estimates of history dependence R(T ) for BBC with dmax = 20

::::
with

::::
and

:::::::
without

:::::::::::::::
cross-validation,

:::
for

:::::
BBC

:
(red) and Shuffling with dmax = 20 (blue)

::::
with

:::::::::
dmax = 25, as well as the ground truth for the same embeddings that were found

during optimization (dashed lines). Colored dashed
:::::::
Dashed lines indicate the estimated

temporal depth T̂D :::::::::::
information

::::::::
timescale

:::
τ̂R:

and total history dependence R̂tot.

::::::
Shaded

:::::
areas

::::::::
indicate

::
±

::::
two

::::::::
standard

::::::::::
deviations

::::::::
obtained

:::
by

:::::::::::::
bootstrapping.

:

S5 Fig. Remaining history dependence reveals that many neurons in
mouse primary visual cortex still integrate a substantial amount of

:::::::::
Example

:::::::::::
estimation

:::::::
results

::::
for

::::
the

::::::::::::
generalized

::::::
leaky

::::::::::::::::::
integrate-and-fire

::::::
model

::::::::
(GLIF)

:::::
with

::::
22s

:
past information after 80ms

::::::
kernel. Shown is the

remaining history dependence ∆R̂(T ) ≡ R̂tot − R̂(T ) for T = 80 ms for all neurons in
cortical culture, retina and primary visual cortex

:::
For

::::
each

:::::::::
recording

:::::::
length,

:::
we

:::::
show

:::
the

:::::::::::::::::::
embedding-optimized

:::::::::
estimates

::
of

:::::::
history

:::::::::::
dependence

:::::
R(T )

::::
with

::::
and

::::::::
without

::::::::::::::
cross-validation,

:::
for

:::::
BBC

:::::
(red)

::::
and

::::::::
Shuffling

::::::
(blue)

:::::
with

:::::::::
dmax = 25, as well as

hippocampus layer CA1 (dots). Errorbars show median as well as 95% bootstrapping
confidence intervals on the median. The ∆R̂(T ) is much higher for neurons in
hippocampus layer CA1, but also in visual cortex it is substantially higher than in
retina or cortical culture

:::
the

:::::::
ground

:::::
truth

:::
for

::::
the

:::::
same

:::::::::::
embeddings

::::
that

:::::
were

:::::
found

::::::
during

:::::::::::
optimization

::::::::
(dashed

::::::
lines).

:::::::
Dashed

:::::
lines

:::::::
indicate

::::
the

:::::::::
estimated

:::::::::::
information

::::::::
timescale

:::
τ̂R::::

and
::::
total

:::::::
history

:::::::::::
dependence

:::::
R̂tot.:::::::

Shaded
:::::
areas

::::::::
indicate

::
±

::::
two

::::::::
standard

:::::::::
deviations

::::::::
obtained

:::
by

:::::::::::::
bootstrapping.

S6 Fig. Estimation results for all neurons
::::::
sorted

::::::
units in rat dorsal

hippocampus (layer CA1). For each neuron
:::
unit, we show the embedding-optimized

estimates of history dependence R(T ) for BBC with dmax = 20 (red), as well as
Shuffling with dmax = 20 (blue), dmax = 5 (green) and dmax = 1 (yellow). Dashed lines
indicate the estimated temporal depth T̂D ::::::::

estimates
::
of

:::
the

:::::::::::
information

:::::::::
timescale

:::
τR

and total history dependence R̂tot :::
Rtot. Also shown is the embedding optimized GLM

estimate for the same temporal depth T̂D as
:::::::::::::::::::
embedding-optimized

:::::
GLM

::::::::
estimate

::::::
(violet

:::::::
square)

::::
with

::
a
::::
past

::::::
range

:::::
equal

::
to

::::
the

::::::::
temporal

::::::
depth

::::
that

:
was found with

BBC
:::
the

:::::
BBC

:::::::::
estimator.

:
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::
S7

:::::
Fig.

:::::::::::
Estimation

:::::::
results

::::
for

:::
all

:::::::
sorted

::::::
units

:::
in

:::
rat

:::::::::
cortical

::::::::
culture.

:::
For

::::
each

:::::
unit,

:::
we

::::
show

::::
the

:::::::::::::::::::
embedding-optimized

:::::::::
estimates

::
of

:::::::
history

:::::::::::
dependence

:::::
R(T )

:::
for

::::
BBC

:::::
with

:::::::::
dmax = 20

::::::
(red),

::
as

::::
well

:::
as

::::::::
Shuffling

:::::
with

:::::::::
dmax = 20

:::::::
(blue),

::::::::
dmax = 5

::::::
(green)

::::
and

:::::::::
dmax = 1

::::::::
(yellow).

:::::::
Dashed

:::::
lines

:::::::
indicate

:::::::::
estimates

::
of

::::
the

:::::::::::
information

::::::::
timescale

:::
τR::::

and
:::::
total

::::::
history

:::::::::::
dependence

:::::
Rtot.:::::

Also
::::::
shown

::
is

:::
the

:::::::::::::::::::
embedding-optimized

:::::
GLM

::::::::
estimate

:
(violet square)

::::
with

::
a

::::
past

:::::
range

::::::
equal

::
to

::::
the

::::::::
temporal

::::::
depth

::::
that

::::
was

:::::
found

:::::
with

:::
the

:::::
BBC

:::::::::
estimator.

S7 Fig. Estimation results for all neurons in rat cortical culture.

S8 Fig. Estimation results for all neurons
::::::
sorted

::::::
units in salamander

retina.
:::
For

:::::
each

:::::
unit,

:::
we

:::::
show

:::
the

:::::::::::::::::::
embedding-optimized

:::::::::
estimates

::
of
:::::::
history

::::::::::
dependence

:::::
R(T )

:::
for

:::::
BBC

:::::
with

:::::::::
dmax = 20

::::::
(red),

::
as

::::
well

:::
as

::::::::
Shuffling

:::::
with

:::::::::
dmax = 20

::::::
(blue),

::::::::
dmax = 5

:::::::
(green)

::::
and

::::::::
dmax = 1

:::::::::
(yellow).

:::::::
Dashed

::::
lines

::::::::
indicate

:::::::::
estimates

::
of

::::
the

::::::::::
information

:::::::::
timescale

:::
τR ::::

and
::::
total

:::::::
history

:::::::::::
dependence

:::::
Rtot.::::

Also
:::::::

shown
::
is

:::
the

:::::::::::::::::::
embedding-optimized

:::::
GLM

::::::::
estimate

::::::
(violet

:::::::
square)

:::::
with

::
a

::::
past

:::::
range

::::::
equal

::
to

::::
the

::::::::
temporal

::::::
depth

::::
that

::::
was

:::::
found

:::::
with

:::
the

:::::
BBC

::::::::::
estimator.

:

S9 Fig. Estimation results for all neurons
::::::
sorted

::::::
units in mouse primary

visual cortex. For each neuron
::::
unit, we show the embedding-optimized Shuffling

estimates of history dependence R(T ) for dmax = 5. Dashed lines indicate the estimated
temporal depth T̂D :::::::::

estimates
::
of

:::
the

:::::::::::
information

:::::::::
timescale

:::
τR and total history

dependence R̂tot::::
Rtot.

S10 Fig. Bootstrapping yields accurate estimates of standard deviation
and confidence intervals. (Left) The

:::::
Shown

::
is
::::
the standard deviation on BBC

estimates
:::::
(blue)

:
obtained from 250

:
“blocks of blocksbootstrap samples (Materials and

methods)
:
”
:::::::::
bootstrap

:::::::
samples

:
on a single recording (blue)

:::::
GLIF

::::::
model

::::
with

::::
22s

::::
past

:::::::
kernel).

::
It

:
agrees well with the true standard deviation (black), which we estimated

from 100 repeated simulations of the same recording length and embedding(black). As
expected, the standard deviation decreases substantially for longer recordings. For each
recording length, estimates were computed for typical optimal embedding parameters
d∗, κ∗ and T = T̂D :::::::

T = TD that were found by embedding optimization. Errorbars
show mean and standard deviation of the estimated σ(R) over the repeated simulations.
(Right) The 95% confidence intervals based on two standard deviations σ(R) over 250
blocks of blocks bootstrap samples have approximately the claimed confidence level

:::
(CI

:::::::::
accuracy).

:::::::::
Standard

:::::::::
deviation

:::
was

::::::::::
estimated

::::
from

::::
250

:::::::
“blocks

::
of

:::::::
blocks”

:::::::::
bootstrap

:::::::
samples. For each recording length, we computed estimates R̂ and the bootstrapping
confidence intervals on the 100 simulations, and .

::::
We

::::
then

:
computed the confidence

level
:::
(CI

:::::::::
accuracy) by counting how often the true value of R was contained in the

::::::::
estimated

:
confidence interval (green line). Estimates and the true value of R were

computed for the same typical embedding parameters
:::::
d∗, κ∗

::::
and

:::::::
T = TD:

as before.

::::
S11

::::
Fig.

:::::
Total

::::::::
history

:::::::::::::
dependence

::::
and

:::::::::::::
information

::::::::::
timescale

:::
for

::::::::::
increasing

:::::::::::
branching

:::::::::::
parameter

:::
m.

::::::
Similar

:::
to

:::
the

::::::
binary

:::::::::::::
autoregressive

::::::::
process,

:::::::::
increasing

:::
the

:::::::::
branching

::::::::::
parameter

::
m

:::::::::
increases

:::
the

:::::
total

:::::::
history

::::::::::
dependence

:::::
Rtot,

:::::::
whereas

:::
the

:::::::::::
information

:::::::::
timescale

:::
τR :::::

stays
::::::::
constant,

:::
or

::::
even

:::::::::
decreases

:::
for

::::
high

:::
m.

::::
For

::::
each

:::
m,

:::
the

::::::
input

:::::::::
activation

::::::::::
probability

::
h

::::
was

:::::::
adapted

:::
to

::::
hold

::::
the

:::::
firing

::::
rate

:::::
fixed

::
at

:
5
::::
Hz.

:
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::::
S12

::::
Fig.

::::
The

:::::::::::
estimated

::::::::::::
information

::::::::::
timescale

:::::::
varies

:::::::::
between

:::::::::::
estimators.

:::
For

::::
each

::::::
sorted

:::::
unit

:::::
(grey

::::::
dots),

::::::::
estimates

:::
of

:::
the

:::::::::::
information

:::::::::
timescale

::
τR::::

are
:::::::
plotted

::::::
relative

:::
to

:::
the

:::::::::::::
corresponding

:::::
BBC

::::::::
estimate

:::
for

::::::::::
dmax = 20.

:::::
The

::::
BBC

:::::::::
estimator

::::::
tends

::
to

::::::::
estimate

::::::
higher

:::::::::
timescales

:::::
than

:::
the

:::::::::
Shuffling

:::::::::
estimator

:::
on

:::::::::
recordings

::
of
:::::
CA1

::::
and

::::::
cortical

::::::::
culture,

:::::::
whereas

:::
for

::::::
retina

::::
the

:::::::
medians

:::
of

::::::::
different

:::::::::
estimators

::::
are

:::::
more

::::::
similar.

::::::::::
Although

::::::::
estimates

:::
of

:::
the

:::::::::
timescale

:::
are

::::::
highly

::::::::
variable

:::::::
between

:::::::::::
estimators,

::::::::
Shuffling

::::
with

:::::
only

::::::::
dmax = 5

::::
past

:::::
bins

::::
still

::::::::
estimates

::::::::::
timescales

::
of

:::
at

::::
least

:::::
80 %

::
of

::::
the

:::::::::
timescales

::::
that

:::
are

::::::::::
estimated

::::
with

::::::
BBC.

:::::::::
Errorbars

:::::::
indicate

:::::::
median

:::::
over

::::::
sorted

:::::
units

:::
and

:::::
95 %

:::::::::::::
bootstrapping

::::::::::
confidence

::::::::
intervals

::
on

::::
the

:::::::
median.

:

::::
S13

::::
Fig.

:::::
Total

::::::::
history

:::::::::::::
dependence

::::
and

:::::::::::::
information

::::::::::
timescale

:::::
show

::::
no

:::::
clear

::::::::::::
dependence

:::
on

::::
the

:::::::
firing

:::::
rate,

:::::::::
whereas

::::
the

:::::
total

::::::::
mutual

:::::::::::::
information

:::::
tends

:::
to

:::::::::
increase

:::::
with

::::
the

::::::
rate.

::::::
Shown

::::
are

:::
the

:::::
same

:::::::::
estimates

::
of

:::
the

:::::
total

:::::::
history

::::::::::
dependence

::::
Rtot::::

and
:::::::::::
information

:::::::::
timescale

:::
τR ::

as
::
in

::::
Fig

::
7

:::::::::
(Shuffling

:::::::::
estimator

::::
with

:::::::::
dmax = 5)

::::::
versus

:::
the

:::::
firing

:::::
rates

::
of
::::::

sorted
::::::

units
::::::
(dots).

::::
The

:::::
total

:::::::
mutual

:::::::::::
information

:::
Itot::

is
:::::
equal

:::
to

::::
Rtot:::::

times
::::
the

:::::::
spiking

:::::::
entropy

::::::::::
H(spiking)

::
of

::::
the

:::::::::
respective

:::::
unit.

::::::
While

:::
Itot:::::

tends
:::
to

:::::::
increase

:::::
with

:::::
firing

:::::
rate,

:::
no

::::
clear

::::::::
relation

::
is

::::::
visible

:::
for

::::
Rtot:::

or
:::
τR.

::::::::
Errorbars

::::::::
indicate

:::::::
median

::::
over

::::::
sorted

:::::
units

::::
and

:::::
95 %

:::::::::::::
bootstrapping

:::::::::
confidence

:::::::
intervals

:::
on

::::
the

:::::::
median.

:

::::
S14

::::
Fig.

:::::::::::::
Relationship

:::::::::
between

:::::
total

::::::::
history

:::::::::::::
dependence

::
or

:::::::::::::
information

:::::::::
timescale

:::::
and

:::::::::
standard

:::::::::::
statistical

::::::::::
measures

::
of

:::::::
neural

::::::
spike

:::::::
trains.

:::::::::
Estimates

::
of

:::
the

:::::
total

:::::::
history

::::::::::
dependence

:::::
Rtot ::::

tend
:::
to

::::::::
decrease

::::
with

::::
the

:::::::
median

:::::::::
interspike

:::::::
interval

:::::
(ISI),

::::
and

::
to

::::::::
increase

::::
with

::::
the

:::::::::
coefficient

:::
of

::::::::
variation

::::
CV .

:::::
This

:::::
result

::
is

::::::::
expected

:::
for

:
a
::::::::
measure

::
of
:::::::

history
:::::::::::
dependence,

::::::::
because

::
a

::::::
shorter

:::::::
median

::::
ISI

::::::::
indicates

::::
that

:::::
spikes

:::::
tend

::
to

::::::
occur

::::::::
together,

::::
and

::
a
::::::
higher

:::
CV:::::::::

indicates
:
a
:::::::::

deviation
:::::
from

:::::::::::
independent

:::::::
Poisson

:::::::
spiking.

:::
In

::::::::
contrast,

::::
the

:::::::::::
information

::::::::
timescale

:::
τR:::::

tends
:::

to

:::::::
increase

::::
with

::::
the

::::::::::::::
autocorrelation

:::::
time,

::
as

:::::::::
expected,

:::::
with

:::
no

::::
clear

::::::::
relation

::
to

::::
the

::::::
median

::::
ISI

::
or

:::
the

::::::::::
coefficient

::
of

:::::::::
variation

::::
CV .

::::::::
However,

::::
the

::::::::::
correlation

::::::::
between

:::
the

::::::::
measures

::::::::
depends

::
on

::::
the

::::::::
recorded

:::::::
system.

::::
For

::::::::
example

::
in

::::::
retina

::::::::::
(n = 111),

::::
Rtot::

is

:::::::::::
significantly

:::::::::::::
anti-correlated

::::
with

::::
the

:::::::
median

:::
ISI

::::::::
(Pearson

::::::::::
correlation

::::::::::
coefficient:

:::::::::
r = −0.69,

::::::::::
p < 10−5)

:::
and

::::::::
strongly

::::::::::
correlated

::::
with

::::
the

:::::::::
coefficient

::
of

:::::::::
variation

:::
CV

:::::::::
(r = 0.90,

:::::::::
p < 10−5),

::::
and

:::
τR::

is
:::::::::::
significantly

::::::::::
correlated

::::
with

::::
the

::::::::::::::
autocorrelation

::::
time

::
τC:::::::::

(r = 0.75,
::::::::::
p < 10−5).

:::
In

::::::::
contrast,

:::
for

::::::
mouse

::::::::
primary

::::::
visual

::::::
cortex

:::::::::
(n = 142),

:::
we

:::::
found

:::
no

:::::::::
significant

:::::::::::
correlations

::::::::
between

::::
any

::
of

:::::
these

:::::::::
measures.

:::::::
Results

::::
are

::::::
shown

:::
for

:::
the

::::::::
Shuffling

:::::::::
estimator

:::::
with

:::::::::
dmax = 5,

:::
and

:::::::::::
T0 = 10 ms.

::::::::::
Errorbars

:::::::
indicate

:::::::
median

::::
over

::::::
sorted

:::::
units

::::
and

::::
95 %

:::::::::::::
bootstrapping

::::::::::
confidence

::::::::
intervals

:::
on

:::
the

::::::::
median.

:

::::
S15

::::
Fig.

::::::::::
Excluding

::::::::::::
short-term

::::::::::::::
contributions

::::::
helps

:::
to

::::::::::::
differentiate

::::
the

::::::::::
timescales

::::
for

:::::::::
different

:::::::::
recorded

::::::::::
systems.

::
By

::::
only

:::::::::::
considering

:::::
gains

:::::::
∆R(T )

:::
for

::::
past

::::::
ranges

:::::::
T > T0 :::::

when
::::::::::
computing

:::
the

:::::::::::
information

:::::::::
timescale

:::
τR,

::::::::::
short-term

::::::
effects

::::
that

:::
are

:::::::
related

::
to

::::
the

:::::::::
refractory

::::::
period

::::
and

::::::::
different

:::::
firing

::::::
modes

::::
are

:::::::::
excluded.

::::
The

:::::
higher

::::
T0,

:::
the

::::::
higher

::
is
::::
the

::::::::
distance

::
in

:::
the

:::::::
median

:::
τR::::::::

between
:::::::
systems

::::::::::
(especially

:::::::
between

:::::::::::
salamander

:::::
retina

::::
and

::::::
mouse

:::::::::
primiary

:::::
visual

::::::::
cortex).

:::::
This

::
is

:::::::
because

:::::
both

:::::::::
timescales

:::
τR ::::

and
::
τC::::::::

increase
:::::
with

::
T0:::

for
:::::
CA1

::::
and

:::::::
primary

::::::
visual

:::::::
cortex,

:::::::
whereas

::::
they

::::::::
decrease

:::
for

::::::
retina.

::::
The

:::::
same

::::::
holds

:::
for

:::
the

::::::::::::::
autocorrelation

:::::
time

:::
τC ,

::::::
where

::::
only

:::::
delays

:::::::
T > T0:::::

were
::::::::::
considered

:::::
when

::::::
fitting

:::
an

::::::::::
exponential

::::::
decay

::
to

::::
the

::::::::::::::::
autocorrelograms.

:::::
Note

::::
that

::
if

:::
the

::::::
decay

::
is

::::::::
perfectly

:::::::::::
exponential,

:::::
then

:::
T0 ::::

does
::::
not

:::::
affect

:::
the

:::::::
results.

::::::::::
Estimates

::
of

::::
Rtot::::

and
:::
τR:::

are
::::::
shown

:::
for

::::
the

::::::::
Shuffling

:::::::::
estimator

:::::
with

::::::::
dmax = 5.

::::::::::
Errorbars

:::::::
indicate

:::::::
median

::::
over

::::::
sorted

:::::
units

::::
and

:::::
95 %

:::::::::::::
bootstrapping

:::::::::
confidence

::::::::
intervals

:::
on

:::
the

::::::::
median.

:
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::::
S16

::::
Fig.

:::::
Total

::::::::
history

:::::::::::::
dependence

::::::::::
decreases

:::
for

::::::
small

::::::
time

::::
bins

::::
∆t.

::::
The

:::::
choice

:::
of

:::
the

:::::
time

:::
bin

:::
∆t

::
of

::::
the

:::::::
spiking

:::::::
activity

:::
has

:::::
little

::::::
effect

::
on

::::
the

:::::::::::
information

::::::::
timescale

:::
τR,

::::::::
whereas

:::
the

:::::
total

:::::::
history

:::::::::::
dependence

::::
Rtot:::::::::

decreases
:::
for

:::::
small

:::::
time

::::
bins

:::::::::
∆t < 5 ms.

:::::
This

::
is
:::::::::
consistent

::::::
across

::::::::::::
experiments.

::::
The

:::::::
smaller

::::
the

::::
time

::::
bin,

::::
the

::::::
higher

:::
the

::::
risk

::::
that

:::::
noise

::
in

::::
the

:::::
spike

::::::::
emission

:::::::
reduces

:::
the

:::::::
overall

::::::::::::
predictability

:::
or

::::::
history

::::::::::
dependence

::
in

::::
the

:::::::
spiking,

::::::::
whereas

:::
an

:::::
overly

:::::
large

:::::
time

:::
bin

::::::
holds

:::
the

::::
risk

::
of

:::::::::
destroying

::::::
coding

::::::::
relevant

:::::
time

::::::::::
information

:::
in

:::
the

:::::
spike

::::::
train.

:::::
Thus,

:::
we

::::::
chose

:::
the

:::::::
smallest

:::::
time

:::
bin

::::::::::
∆t = 5 ms

::::
that

::::
does

::::
not

:::
yet

:::::
show

::
a
::::::::::
substantial

::::::::
decrease

::
in

:::::
Rtot.::::

We

::
do

::::
not

::::
plot

::::::
results

:::
for

::::::
higher

::::
∆t,

:::::::
because

:::
for

::::::
higher

:::
∆t

:::
we

:::::::::
observed

:::::
many

:::::::::
instances

::
of

:::::::
multiple

::::::
spikes

::
in

::::
the

:::::
same

::::
time

::::
bin.

::::::::
Results

:::
are

::::::
shown

:::
for

:::
the

:::::::::
Shuffling

:::::::::
estimator

::::
with

:::::::::
dmax = 5,

::::
and

:::::::::::
T0 = 10 ms.

:::::::::
Errorbars

:::::::
indicate

:::::::
median

:::::
over

::::::
sorted

:::::
units

::::
and

::::
95 %

::::::::::::
bootstrapping

::::::::::
confidence

::::::::
intervals

:::
on

:::
the

::::::::
median.
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