Supporting information

Metabolism of the Selective Matrix Metalloproteinase-9 Inhibitor (R)-ND-336

Charles Edwin Raja Gabriel, Trung T. Nguyen, Emanuele Marco Gargano, Jed F. Fisher, Mayland Chang,* and Shahriar Mobashery*

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

Table of contents

S1. Experimental details	S-2
S2. The ¹ H and ¹³ C NMR Spectra of Compounds	S-7

S1. Experimental details

4-(4-Iodophenoxy)benzonitrile (18b) [856704-55-7]. To a round-bottom flask containing DMF (10 mL) under an argon atmosphere were added 4-fluorobenzonitrile (1.00 g, 8.26 mmol), 4-iodophenol (1.82 g, 8.26 mmol) and K₂CO₃ (1.37 g, 9.9 mmol). The mixture was heated to 110 °C for 15 h (reaction was complete by TLC). The mixture was diluted with water (40 mL) and washed with Et₂O (2 × 20 mL). The combined Et₂O extract was washed with brine and dried over anhydrous Na₂SO₄. The suspension was filtered and the filtrate was evaporated to dryness. The residue was purified by silica-gel chromatography (9:1 hexanes:EtOAc) to give the desired product1**8b** (2.1 g, 6.54 mmol, 80%) as an off-white-colored solid: ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.8 Hz, 2H), 7.54 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.08, 155.01, 139.37, 134.36, 122.52, 118.77, 118.28, 106.54, 88.60; HRMS (ESI⁺) *m/z* calcd for C₁₃H₈INNaO (M+Na)⁺ 343.9543, found 343.9550.

Synthesis of compounds 19b–19d. To a round-bottom flask containing anhydrous THF (20 mL) under an argon atmosphere was added the respective starting materials (**18a**, X = Br: 1.7 g, 6.2 mmol or **18b**, X = I: 2.0 g, 6.2 mmol). A solution of BH₃·SMe₂ (1 M in THF, 7.45 mL, 1.2 equiv.) was added. The mixture was refluxed for 12 h, at which time the reaction had reached completion. It was cooled to room temperature and methanolic HCl (5 mL, 3 M HCl in MeOH) was added slowly. The solvent was evaporated *in vacuo*. The resulting solid was triturated with Et₂O (10 mL) to give the product as the HCl salt. The crude product was carried forward to protection without further purification. The entire solid HCl salt was suspended in dry THF (20 mL). To this stirred mixture were added sequentially 2 M aq NaOH (5 mL), and Boc₂O (1.6 g, 7.43 mmol) or CbzCl (1.27 g, 7.43 mmol). The mixture was stirred at room temperature for 15 h. The reaction mixture was washed with Et₂O (2 × 20 mL). The combined Et₂O layer were washed with brine and dried over anhydrous Na₂SO₄. The suspension was filtered. The filtrate was concentrated to dryness *in*

vacuo. The resulting crude was purified by silica-gel chromatography (2:8 hexanes/EtOAc) to afford the product (**19b**, *N*-Cbz protection with X = Br: 1.66 g, 4.03 mmol, 65%; **19c**, *N*-Boc protection with X = I: 1.8 g, 4.23 mmol, 68%; **19d**, *N*-Cbz protection with X = I: 2.0 g, 4.35 mmol, 70%).

Benzyl 4-(4-bromophenoxy)benzylcarbamate (19b, $C_{21}H_{18}BrNO_3$). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.8 Hz, 2H), 7.32–7.23 (m, 5H), 7.19 (d, J = 7.9 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 5.07 (s, 2H), 5.00 (s, 1H), 4.29 (d, J = 5.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.48, 156.12, 136.42, 133.85, 132.72, 129.16, 128.58, 128.23, 128.19, 120.40, 119.22, 115.73, 66.95, 44.56; HRMS (ESI⁺) *m/z* calcd for C₂₁H₁₉BrNO₃ (M+H)⁺ 412.0543, found 412.0543.

tert-Butyl 4-(4-iodophenoxy)benzylcarbamate (19c, $C_{18}H_{20}INO_3$). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.9 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 6.68 (d, J = 8.9 Hz, 2H), 4.78 (br s, 1H), 4.29 (d, J = 5.9 Hz, 2H), 1.39 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.47, 155.76, 138.66, 134.49, 129.06, 120.75, 119.3, 85.92, 44.08, 28.43; HRMS (ESI⁺) *m/z* calcd for $C_{18}H_{21}INO_3$ (M+H)⁺ 448.0380, found 448.0377.

Benzyl 4-(4-iodophenoxy)benzylcarbamate (19d, $C_{21}H_{18}INO_3$). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.9 Hz, 2H), 7.37–7.23 (m, 5H), 7.19 (d, J = 8.1 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 6.68 (d, J = 8.9 Hz, 2H), 5.07 (s, 1H), 5.00 (br s, 1H), 4.29 (d, J = 5.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.37, 155.94, 138.69, 136.42, 133.93, 129.16, 128.58, 128.23, 128.19, 120.80, 119.33, 86.01, 66.95, 44.56; HRMS (ESI⁺) *m/z* calcd for C₂₁H₁₈INNaO₃ (M+Na)⁺ 482.0224, found 482.0239.

Synthesis of 20b. Pd(dba)₃ (0.1 mmol) and Xantphos (0.2 mmol) were suspended in a roundbottom flask with toluene (20 mL) under an argon atmosphere. Compound **19b** (1.6 g, 3.9 mmol) was added, followed by methyl 3-mercaptopropanoate (648 mg, 4.0 mmol) and DIPEA (1.154 g, 8.93 mmol). The reaction mixture was refluxed overnight, at which time the reaction had reached completion. The mixture was cooled to room temperature and filtered through Celite. The Celite plug was washed with toluene. The combined toluene solution was evaporated. The residue was purified by silica-gel chromatography (8:2 hexanes/EtOAc) to give the product as an off-whitecolored solid (**20b**, 1.4 g, 3.10 mmol, 79%).

Methyl 3-((4-(4-((((benzyloxy)carbonyl)amino)methyl)phenoxy)phenyl)thio)propanoate (20b, C₂₅H₂₅NO₅S). ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.22 (m, 6H), 7.24–7.16 (m, 3H), 6.90 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 5.07 (s, 2H), 5.00 (br s, 1H), 4.30 (d, *J* = 5.9 Hz, 2H), 3.62 (s, 3H), 3.04 (t, *J* = 7.4 Hz, 2H), 2.54 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.22, 156.82, 156.15, 133.75, 133.31, 129.14, 128.57, 128.22, 128.18, 119.33, 119.24, 66.94, 51.87, 44.57, 34.34, 30.44; HRMS (ESI⁺) *m/z* calcd for C₂₅H₂₆NO₅S (M+H)⁺ 452.1526, found 452.1523.

Synthesis of compounds 21a and 21b. A solution of 20a (150 mg, 0.34 mmol) in 10:1 CH_2Cl_2/TFA (5.5 mL) was stirred overnight. The solvents were removed by evaporation. To the resulting residue were added respectively Ac₂O (34 mg, 0.33 mmol) in pyridine (2 mL), or trifluoroacetic anhydride (70 mg, 0.33 mmol) in pyridine (2 mL). The reaction was stirred at room temperature for 6 h, at which time the reaction had reached completion. The solvents were removed by evaporation. The residue was purified by silica-gel chromatography (7:3 hexanes/EtOAc) to give the products as an off-white solids (21a, *N*-Ac: 91 mg, 0.25 mmol, 70%; 21b, *N*-TFAc: 122 mg, 0.29 mmol, 82%).

Methyl 3-((4-(acetamidomethyl)phenoxy)phenyl)thio)propanoate (21a, C₁₉H₂₁NO₄S). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.8 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.69 (br s, 1H), 4.35 (d, J = 5.8 Hz, 2H), 3.62 (s, 3H), 3.04 (t, J = 7.4 Hz, 2H), 2.54 (t, J = 7.4 Hz, 2H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.22, 169.89, 156.76, 156.20, 133.56, 133.30, 129.45, 128.68, 119.34, 119.26, 51.87, 43.18, 34.33, 30.42, 23.35; HRMS (ESI⁺) *m/z* calcd for C₁₉H₂₂NO4S (M+H)⁺ 360.1264, found 360.1276.

Methyl 3-((4-(4-((2,2,2-trifluoroacetamido)methyl)phenoxy)phenyl)thio)propanoate (21b, C₁₉H₁₈F₃NO₄S). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.7 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.59 (br s, 1H), 4.44 (d, J = 5.8 Hz, 2H), 3.61 (s, 3H), 3.04 (t, J = 7.4 Hz, 2H), 2.54 (t, J = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.23,

157.12 (J = 36 Hz), 157.02, 156.31, 133.20, 130.92, 129.71, 129.16, 115.86 (q, J = 286 Hz), 119.57, 119.36, 51.88, 43.37, 34.31, 30.32; HRMS (ESI⁺) m/z calcd for C₁₉H₁₉F₃NO₄S (M+H)⁺ 414.0981, found 414.0965.

Synthesis of 22b–22d. To a round-bottom flask containing anhydrous acetic acid (10 mL) under an argon atmosphere was added the respective starting materials (**20b**, 1.0 g, 2.21 mmol; **21a**, 70 mg, 0.19 mmol; **21b**, 70mg, 0.17 mmol) To this solution was added 30% H₂O₂ (2 mL). The mixture was stirred at room temperature overnight, at which time the reaction had reached completion. The solvent was removed by evaporation. The residue was taken up into EtOAc (2×20 mL). The combined EtOAc solution was washed sequentially with sat. NaHCO₃ and brine, and the organic layer was dried over anhydrous Na₂SO₄. The mixture was filtered and the filtrate was concentrated to dryness. The residue was purified by silica-gel chromatography (6:4 hexanes/EtOAc) to give the product as an off-white solid (**22b**, R = Cbz, 846 g, 1.75 mmol, 79%; **22c**, R = Ac, 61 g, 0.155 mmol, 80%; **22d**, R = TFAc, 53 g, 0.118 mmol, 70%).

Methyl 3-((4-(4-((((benzyloxy)carbonyl)amino)methyl)phenoxy)phenyl)sulfonyl)propanoate (22b, C₂₅H₂₅NO₇S). ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.71 (m, 2H), 7.35–7.23 (m, 7H), 7.06– 6.88 (m, 4H), 5.08 (br s, 2H), 4.34 (d, *J* = 6.0 Hz, 2H), 3.59 (s, 3H), 3.35 (t, *J* = 7.5 Hz, 2H), 2.69 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.53, 162.77, 156.48, 154.10, 136.34, 135.59, 131.87, 130.54, 129.44, 128.60, 128.28, 128.21, 120.68, 117.69, 67.04, 52.38, 51.72, 44.49, 27.73; HRMS (ESI⁺) *m/z* calcd for C₂₅H₂₆NO₇S (M+H)⁺ 484.1424, found 484.1452.

Methyl 3-((4-(acetamidomethyl)phenoxy)phenyl)sulfonyl)propanoate (22c, C₁₉H₂₁NO₆S). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.7 Hz, 2H), 7.19 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 5.75 (br s, 1H), 4.34 (d, *J* = 5.7 Hz, 2H), 3.61 (s, 1H), 3.03 (t, *J* = 7.4 Hz, 2H), 2.54 (t, *J* = 7.4 Hz, 2H), 1.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.22, 169.92, 156.76, 156.19, 133.57, 133.29, 129.45, 128.67, 119.34, 119.25, 51.87, 43.17, 34.33, 30.42, 23.34; HRMS (ESI⁺) *m/z* calcd for C₁₉H₂₂NO₆S (M+H)⁺ 392.1162, found 392.1143.

Methyl 3-((4-(4-((2,2,2-trifluoroacetamido)methyl)phenoxy)phenyl)sulfonyl)propanoate (22d, C₁₉H₁₈F₃NO₆S). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.9 Hz, 2H), 7.29 (d, *J* = 8.5

Hz, 2H), 7.02 (d, J = 5.0 Hz, 2H), 7.00 (d, J = 4.8 Hz, 2H), 6.74 (br s, 1H), 4.48 (d, J = 5.9 Hz, 2H), 3.60 (s, 1H), 3.35 (t, J = 7.5 Hz, 2H), 2.69 (t, J = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.50, 162.43, 157.25 (q, J = 37 Hz), 154.84, 132.91, 132.17, 130.58, 130.03, 120.86, 117.93, 115.86 (J = 287 Hz), 52.39, 51.70, 43.24, 27.70; HRMS (ESI⁺) m/z calcd for C₁₉H₁₉F₃NO₆S (M+H)⁺ 446.0880, found 446.0872.

Synthesis of the sodium salt of sulfinic acid (24). To a round-bottom flask containing 22b (500 mg, 1.03 mmol) in methanol (5 mL) under an atmosphere of argon was added NaOMe (56 mg, 1.03 mmol). The reaction mixture was stirred overnight at room temperature, at which time the reaction had reached completion. The solvent was evaporated to dryness. The solid was triturated with two portions of Et_2O (20 mL, discarded) and collected by filtration. Formation of the sulfinate salt 24 was confirmed by LC-MS analysis.

S-(4-(4-(((*tert*-Butoxycarbonyl)amino)methyl)phenoxy)phenyl) benzothioate (27, $C_{25}H_{25}NO_4S$). To a dry flask under an atmosphere of argon were added sequentially toluene (20) mL), CuI (15 mg, 0.08 mmol), 1,10-phenanthroline (29 mg, 0.16 mmol), 19c (1.0 g, 2.35 mmol), thiobenzoic acid (663 g, 4.8 mmol), and DIPEA (1.033 g, 8 mmol). The reaction mixture was stirred at 100 °C overnight, at which time the reaction had reached completion. The mixture was cooled to room temperature and filtered through Celite. The Celite plug was washed with toluene. The combined toluene portion was evaporated to dryness. The residue was purified by silica-gel chromatography (8:2 hexanes/EtOAc) to give 27 as an off-white solid (1.13 g, 2.59 mmol, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 8.3, 1.2 Hz, 2H), 7.55 (tt, J = 7.4, 1.2 Hz, 1H), 7.43 (d, J = 7.9 Hz, 2H), 7.37 (tt, J = 8.8, 2.9 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 6.97 (tt, J = 8.7, 2.8 Hz, 2H)4H), 4.79 (br s, 1H), 4.25 (d, J = 5.6 Hz, 2H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 190.67, 159.01, 155.89, 155.36, 136.78, 136.55, 133.72, 129.11, 128.79, 127.50, 120.62, 119.96, 118.86, 44.12, 28.44; HRMS (ESI⁺) *m/z* calcd for C₂₅H₂₅NNaO₄S (M+H)⁺ 458.1396, found 458.1392.**S2**. The ¹H and ¹³C NMR Spectra of compounds

¹H NMR (CDCl₃) of (*R*)-*N*-(4-((4-((thiiran-2-ylmethyl)sulfonyl)phenoxy)benzyl)acetamide (9, M1)

¹H NMR (CDCl₃) of 4-(Allylthio)phenol (14)

$\begin{array}{l} < 7.2368 \\ < 7.2368 \\ < 6.07076 \\ < 6.6859 \\ < 6.6859 \\ < 6.6859 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7738 \\ < 5.7748 \\ < 5.7738 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ < 5.7748 \\ <$

¹H NMR (CDCl₃) of *tert*-Butyl 4-(4-(allylthio)phenoxy)benzoate (15)

¹H NMR (CDCl₃) of *tert*-Butyl 4-(4-((oxiran-2-ylmethyl)sulfonyl)phenoxy)benzoate (16)

¹H NMR (CDCl₃) of *tert*-Butyl 4-(4-((thiiran-2-ylmethyl)sulfonyl)phenoxy)benzoate (17)

¹H NMR (CDCl₃) of 4-(4-((Thiiran-2-ylmethyl)sulfonyl)phenoxy)benzoic acid (7, M3)

8.0090 7.19869 7.19869 7.19869 7.12084 7.11284 7.11284 7.11284 7.11284 7.1066 7.1064 7

¹H NMR (CDCl₃) of 4-(4-Bromophenoxy)benzonitrile (18a)

7.5516 7.5294 7.4557 7.4335 7.4335 7.4335 5.9454 5.9454 5.9231 5.8907 5.8885

¹H NMR (CDCl₃) of 4-(4-Iodophenoxy)benzonitrile (18b)

¹H NMR (CDCl₃) of Benzyl 4-(4-bromophenoxy)benzylcarbamate (19b)

7.3608 7.3387 7.3387 7.2368 7.2368 7.22681 7.22681 7.2472 7.2472 7.2472 7.2472 7.2472 7.2472 6.8706 6.8916 6.8043 6.7822	5.0036	$< \frac{4.2990}{4.2844}$
--	--------	---------------------------

¹H NMR (CDCl₃) of Benzyl 4-(4-iodophenoxy)benzylcarbamate (19d)

7.5435 7.5213 7.7.2669 7.7.2676 7.7.2678 7.7.2678 7.7.2678 7.7.2595 7.7.2395 7.7.72395 7.72395 7.725757 7.725757 7.725	5.0665 5.0041	$<^{4.2993}_{4.2845}$
--	---------------	-----------------------

¹H NMR (CDCl₃) of Methyl 3-((4-(4-((((benzyloxy)carbonyl)amino)methyl)phenoxy)phenyl)thio)propanoate (20b)

¹H NMR (CDCl₃) of Methyl 3-((4-((2,2,2-trifluoroacetamido)methyl)phenoxy)phenyl)thio)propanoate (21b)

7.3197 7.2979 7.2015 7.1894 6.9356 6.9142 6.85813 6.85813 6.85959 6.5930	4,4441	3.6129	3.0588 3.0588 3.0405 3.0219 2.5624 2.5439 2.5439
	\sim		$\vee \vee$

¹H NMR (CDCl₃) of Methyl 3-((4-(4-((((benzyloxy)carbonyl)amino)methyl)phenoxy)phenyl)sulfonyl)propanoate (22b)

¹H NMR (CDCl₃) of Methyl 3-((4-((2,2,2-trifluoroacetamido)methyl)phenoxy)phenyl)sulfonyl)propanoate (22d)

¹H NMR (DMSO-*d*₆) of 4-(4-(Aminomethyl)phenoxy)benzenesulfinic acid hydrochloride (6)

¹H NMR (CDCl₃) of S-(4-(4-(((*tert*-Butoxycarbonyl)amino)methyl)phenoxy)phenyl) benzothioate (27)

¹H NMR (DMSO-*d*₆) of 4-(4-Cyanophenoxy)benzenesulfonic acid (29)

