
 1

High accuracy capillary network representation in digital rock
reveals permeability scaling functions
Rodrigo F. Neumann1*, Mariane Barsi-Andreeta2, Everton Lucas-Oliveira2, Hugo
Barbalho1†, Willian A. Trevizan3, Tito J. Bonagamba2 and Mathias Steiner1*

1 IBM Research, Rio de Janeiro, RJ, 22290-240, Brazil
2 São Carlos Institute of Physics, University of São Paulo, PO Box 369, São Carlos, SP, 13560-970, Brazil
3 CENPES/Petrobras, Rio de Janeiro, RJ, 21941-915, Brazil
† Present address: Dell EMC R&D Center, Rio de Janeiro, RJ, 21941-907, Brazil
* Corresponding authors: rneumann@br.ibm.com and mathiast@br.ibm.com

Supplementary Information

Image-processing method parameters

Supplementary Table S1: Image-processing parameters for rock image cubes. Prior to segmentation, the contrast
enhancement filter cut off the grayscale histogram at the described cut-off level and rescaled all grayscale levels to [0, 255].
Finally, after running the non-local means filter, the grayscale image was segmented using a threshold level calculated by the
IsoData algorithm.

Sample Name Cut-off level Threshold level
A Bandera Gray 93 81
B Parker 63 72
C Kirby 61 75
D Bandera Brown 73 80
E Berea Sister Gray 90 54
F Berea Upper Gray 101 48
G Berea 71 59
H Castlegate 156 81
I Buff Berea 62 73
J Leopard 76 72
K Bentheimer 200 71

Computed porosity and permeability

Supplementary Table S2: Experimental and computed results for porosity and permeability. Porosity results compare
experimental measurements to values computed from microtomography data. Permeability results compare experimental
values to Pore Network Model (PNM), Reduced Max Ball Model (RMB) and Capillary Network Model (CNM) values. We
estimate the experimental error to be ±0.5% for porosity and ±10% for permeability, respectively [15].

Sample Name Porosity (%) Permeability (mD)
 Exp. µCT Exp. PNM RMB CNM
A Bandera Gray 18.10 20.56 9 40 29 26
B Parker 14.77 13.00 10 13 8 11
C Kirby 19.95 21.35 62 154 93 76
D Bandera Brown 24.11 20.93 63 67 45 38
E Berea Sister Gray 19.07 19.57 80 138 79 86
F Berea Upper Gray 18.56 19.38 85 122 66 70
G Berea 18.96 21.43 121 186 106 102
H Castlegate 26.54 24.50 269 450 234 249

 2

I Buff Berea 24.02 22.50 274 471 230 267
J Leopard 20.22 19.28 327 226 126 153
K Bentheimer 22.64 26.56 386 973 480 538

Capillary network extraction algorithm

A commonly used formal definition of the centerline, which is agnostic to the extraction algorithm,
requires these four properties to be obeyed:

1. Connected: There must have at least one path between any two voxels of the centerline.
2. Centered: Any voxel of the centerline must be centered with respect to the object’s boundary.
3. Thin: Centerline should be only 1-voxel thick.
4. Insensitive to boundary noise: Small surface details should not produce large twists or

numerous small branches in the centerline.

In the following, we outline a novel adaptation of the Dijkstra shortest path algorithm to extract the
centerline, or CNM, from a rock tomography image cube. The algorithm uses a penalization function
and gradient vector for building a centerline with minimal centerline property violation, while
detecting and connecting image voxels that form cycles in the image.

The main procedure of our algorithm is detailed in Algorithm 1. A graph G(V, A) is given to this
algorithm representing the rock. The set V denotes the voxels v and A denotes the set of directed arcs
(vout, vin) that leaves a vertex vout and arrives at neighbor voxel vin. On top of G, in line 1, every voxel v
in V has its distance to the closest boundary of the rock computed and the weight of all arcs arriving
at v set accordingly to its distance. Then, in line 2, the source voxels located at the rock’s face are
identified. These voxels will be used by the shortest path algorithm in the next steps. Subsequently,
an empty set with all centerlines and an empty set of voxels visited by a centerline are initialized in
lines 3 and 4, respectively. The loop that starts at line 5 iterates over the source voxels of the facet
and, if a voxel was not yet visited by any other centerline of a previous iteration, the adaptation of the
Dijkstra’s algorithm is performed in line 7. The centerline in represented by a subgraph of G, namely
Dcenterline. Next, in line 8, the voxels in centerline Dcenterline, denoted by V(Dcenterline), are marked as visited.
In line 9, the computed centerline is stored in the set all_centerlines. Throughout the rest of this
section, a detailed explanation of the methods in lines 1, 2, and 7 will be provided.

 Algorithm 1: Centerline-Extraction (Graph: G (V, A))
1 distances, local_maxima = Compute-Distance-Map(G)
2 source_voxels = Identify-Source-Voxels(G, distances)
3 all_centerlines = { }
4 visited_voxels = { }
5 For each voxel ∈ source_voxels:
6 If voxel ∉ visited_voxels:
7 Dcenterline = Compute-Centerlines(G, distances, source = voxel, targets= source_voxels,

local_maxima)
8 visited_voxels = visited_voxels U V(Dcenterline)
9 all_centerlines = all_centerlines U Dcenterline

10 return all_centerlines

 In the first method, the algorithm establishes the distance map of the object by computing for each
pore space voxel its closest distance to the boundary. The distance is determined by the recursive
function dmin(v) that calculates for a given voxel v the distance from v to the closest boundary voxel.

 3

The boundaries voxels vb are set as the base case of the recursion; dmin(vb) = 0. For all other voxels v,
their distance from the closest boundary voxel is defined as dmin(v) = min t ∈ N(v) {dmin(t) + E(v,t)}, where
N(v) is the set of v’s neighbor voxels and E(v,t) is the Euclidian distance between v and t. In the
definition of neighborhood applied here, voxels v and t are neighbors if they share a Face, Edge or
Vertex, leading to Euclidian distances of 1, √2 or √3, respectively.

The algorithm uses a priority list as its main data structure for iteratively computing dmin(v) for every
voxel v. First, boundary voxels vb are added to the list with their priority set to 0. Then, in the main
loop, the voxel t with lowest priority (voxel index is used as tiebreaker) is picked from the list and the
distance to its neighbor voxel v (that were not yet picked from the list) is set as follow:

• dmin(v) = dmin(t) + E(v,t) and included into the list, if visited for the first time; or
• dmin(v) = min{dmin(t) + E(v,t), dmin(v)}, if already visited.

The process finishes once the priority list is empty. In addition, voxels v for which dmin(v) is greater or
equal to dmin with regards to all adjacent voxels are annotated as local maxima leading to the creation
of labeled, local voxel clusters. The main differentiator of our algorithm with regards to published
works [42, SR1, SR2] is that the source and targets voxels of the centerline to be used in the Dijkstra
shortest path algorithm are placed in the face of the cube that represents the image.

 Algorithm 2: Compute-Distance-Map (Graph: G (V, A))
1 priority_list = { }
2 finished = { }
3 distances = { }
4 For every boudary voxel v:
5 priority_list.add(v,0)
6 While priority_list not empty:
7 v, dist = priority_list.pop_lowest_priority()
8 finished.add(v)
9 For vn ∈ neighbors(v) – finished: # all neighbors except those already set as finished

10 If vn ∉ distances or dist + E(v,vn) < distances[vn]:
11 distances[vn] = dist + E(v,vn)
12 priority_list.add_or_update(vn , distances[vn])
13 local_maxima = { }
14 For every v ∈ V(G):
15 If distance[v] >= max{distance[vn] for vn in neighbours(v)}:
16 local_maxima.add(v)
17 return distances, local_maxima

For identifying those source voxels, a depth-first search (DFS) algorithm [SR3] is executed for every
voxel residing in the faces of the cube. The DFS algorithm will run multiple times, once for each cluster
of connected voxels in the face. We visualize the outcome of DFS application in Supplementary Figure
S1, in which the voxels with the highest values of dmin(v) in a cluster (in black) are selected and
highlighted (in red).

 4

Supplementary Figure S1: Diagram of the rock sample tomography showing the rock (solid) voxels in gray and porous (void)
voxels in black. For each face, a depth-first search algorithm identifies the most central voxel in each cluster (depicted in red).
These voxels are then used as the source and target voxels for the Dijkstra shortest path algorithm. Simple diagram created
using Microsoft® PowerPoint for Mac v16.46 software.

 Algorithm 3: Identify-Source-Voxels (Graph: G (V,A), distances)
1 visited = { }
2 source_voxels = { }
3 For v ∈ V(G):
4 If v ∉ visited and v is at a cube face:
5 visited_dfs = DFS(G, v) # returns the set of face voxels visited in DFS starting at voxel v
6 source = argmax{ distances[t] | t ∈ visited_dfs } # visited voxel in DFS with maximum

distance
7 source_voxels = source_voxels U {source}

8 visited = visited U visited_dfs
9 return source_voxels

Once the process is completed for all faces, one of the selected voxels is set as source voxel and the
others are considered target voxels for application of the Dijkstra shortest path algorithm [SR4]. The
output of this algorithm is an acyclic connected graph (tree) consisting of pathways that connect the
source voxel to target voxels. The centerline is then built by taking the subset of these pathways that
connects source voxel to the target voxels.

In the following, we briefly outline the Dijkstra shortest path algorithm for computing the pathways
and the penalization function for minimizing a centerline’s property violations. The algorithm relies
on two auxiliary data structures (see Algorithm 4): one that stores the cost of shortest path from the
source voxel s to each voxel v; cmin(v); and another one that stores the predecessor voxel of each voxel
v; pred(v), associated with its respective shortest path to the source voxel. The cost function cmin(v) in
the original Dijkstra shortest path algorithm is accumulative, that is, it represents the cost of the entire
path starting from the source voxel to the target voxel v. To compute the centerline, the Dijkstra
shortest path algorithm version adapted here only accumulates the penalty cost from the previous

 5

step. As a result, the algorithm connects voxel v to the neighbor that better suits the definition of the
centerline by being “most centered” rather than the “shortest” path.

Similar to the original version of the algorithm, we use a priority list to iteratively compute the path
from voxel s to each target voxel v that best fits the centerline definition. In each iteration, after voxel
t is picked up from the priority list, the cost of the path of each of its neighbor voxel v that were not
yet picked up from the priority list is updated as follow:

• cmin(v) = penalty(t,v) and included into the list, if visited for the first time; or
• cmin(v) = min {1 + penalty(pred(t), t) + penalty(t,v) + (1/ dmin (v)) * 1E3, cmin(v)}, if already visited.

In the first case, in which a known path from source to v does not exist, the path cost to traverse the
graph from source to voxel v and the predecessor voxel of v are updated (pred(v) = t). In the second
case, in which a path from the source to v is known, the path cost and the predecessor voxel are
updated if, according to the penalty function, the connection between voxel t and v better represents
the centerline than the existing connection between pred(v) and v.

The penalty function is vital for the algorithm to heuristically produce pathways matching the
centerline definition as close as possible. For avoiding image boundaries, the penalty function takes
into account a normalized gradient vector computed for every voxel based on distance
transformation. The gradient vectors indicate which direction keeps the centerline away from the
boundaries. The penalty of going from t to v depends on the angle α formed by the line that connects
voxel t to v and the gradient vector at voxel t; penalty(t,v) = 0.5 + (sin2(α)+1) / dmin (v). However, inside
a cluster of voxels annotated as local maximum, we use an alternative penalty function that sets a
straight pathway.

Finally, we note that typical 3D rock tomography images contain centerlines with cycles. However, the
centerline produced by the algorithm described above is acyclic. Therefore, we detect during the
centerline algorithm potential pairs of voxels forming centerline cycles. A pair of neighbor voxels t and
v is set to form a potential cycle when the voxel v is removed from the priority list has its neighbor t
that was already removed from the queue and satisfies the following conditions: (1) sin2(α) < 0.1,
where α is the angle between the line from t to v and the gradient vector of v and, (2), the resultant
cycle forms an LMpath [SR2].

 Algorithm 4: Compute-Centerlines (Graph: G (V, A), dmin, V: source, V: targets,
local_maxima)

1 priority_list = { }
2 finished = { }
3 cmin = { }
4 pred = { }
5 end_points = targets
6 priority_list.add(source,0)
7 While priority_list not empty:
8 t, dist = priority_list.pop_lowest_priority()
9 finished.add(v)

10 For v ∈ neighbors(v) – finished: # all neighbors except those already set as finished
11 If v ∉ cmin:
12 cmin[v] = penalty(t, v)
13 priority_list.add(v , cmin[v])
14 pred[v] = t
15 Else:

 6

16 dist = 1 + penalty(pred[t], t) + penalty(t, v) + (1/ dmin (v)) * 1E3
17 If dist < cmin[v]:
18 cmin[v] = dist
19 priority_list.update(v , cmin[v])
20 pred[v] = t
21
22 # Finding new end points
23 For v ∈ neighbors(v) ∩ finished:
24 α = gradient(t,v)
25 If sin(α) < 0.1and LMpath(t, v, pred, local_maxima):
26 end_points = end_points U { t, v}
27 centerlines = build_centerlines(end_points, pred)
28 return centerlines

REV determination

For obtaining the Representative Elementary Volume, we have simulated permeabilities for Berea (G)
sample volumes with varying number of voxels in the cube, while keeping the voxel resolution at 2.25
µm. Specifically, we have analyzed 1000 samples with 1003 voxels, 512 samples with 1253 voxels, 125
samples with 2003 voxels, 64 samples with 2503 voxels, 8 samples with 5003 voxels, and 5 samples
with 10003 voxels. In Supplementary Figure S2, we show the resulting simulated permeability values
as function of cube side length. We observe that the simulated permeabilities converge towards the
experimental value. For a sample size of 1000 voxels (L = 2250 µm), the mean simulated permeability
value matches the experimental permeability.

Supplementary Figure S2: Mean simulated permeability for Berea (G) as function of sample size. Error bars represent the
standard error of the mean. The horizontal line indicates the measured permeability and the shaded area the experimental
uncertainty. A match is achieved at a cube size of 2250 µm.

 7

Distribution of capillary diameters and microscopic flow speeds

We have investigated the capillary diameter distributions of two representative samples in the set.
Supplementary Figures S3(a) and S3(c) show the Parker (B) and Bentheimer (K) samples, respectively.
Both Parker and Bentheimer exhibit a peak at around 10-15 µm in their capillary diameter
distributions. However, Bentheimer distribution is broader with higher mean diameter of 30 µm, as
compared to 16 µm for Parker.

To analyze the flow behavior, we plot the volume-weighted flow speed distribution for Parker and
Bentheimer samples in Supplementary Figures S3(b) and S3(d), respectively. Both distributions are
bimodal, however, with varying peak positions and relative weights. While the first peak occurs at
negligible flow speeds, of the order of pm/s, the second peak exhibits flow speeds of the order of
µm/s. In Parker, there is a larger fraction of the fluid volume at rest, leading to a small volume-
weighted average flow speed of 2 µm/s. In contrast, Bentheimer has a much higher volume-weighted
average flow speed of 23 µm/s. The comparison of flow speed distributions reveals that the
connection between porosity and permeability is not straightforward: the near-zero-velocity peak
represents the volume fraction of the porous medium that, despite being fully connected, does not
contribute significantly to permeability.

Supplementary Figure S3: Capillary diameter and flow speed distribution, respectively, obtained by CNM. Capillary diameter
distribution of (a) Parker and (b) Bentheimer rock samples investigated in this study, together with visualizations of their
capillary network as inset graphs. Darker colors (purple) represent smaller capillary diameters while lighter colors (yellow)
represent larger diameters. (c), (d) Volume-weighted flow speed distribution of same the samples shown in (a) and (b),
respectively.

 8

In Supplementary Figure S4, we plot visual maps of the functional dependence of flow speed on
capillary diameter obtained for four representative rock samples. All capillary diameter distributions
are unimodal, while the flow speed distributions are bimodal. A weak correlation exists between the
positions of the peaks, such that the peak at lower flow speed is more prominent for lower diameters
and the peak at higher flow speeds is more prominent for higher diameters. Nevertheless, for any
given diameter we observe both slower and faster flow speed components in the graphs.

Supplementary Figure S4: Visualizing flow speeds versus capillary diameters for representative rock samples. 2D-false-color
plots depicting (a) the least porous, (b) the least permeable, (c) the most porous and (d) the most permeable sample of this
study, respectively.

Supplementary References

SR1. Bitter, I., Kaufman, A. E. & Sato, M. Penalized-Distance Volumetric Skeleton Algorithm. IEEE
Trans. Vis. Comput. Graph. 7, 195–206 (2001).

SR2. Zhou, Y., Kaufman, A. & Toga, A. W. Three-Dimensional Skeleton and Centerline Generation
Based on an Approximate Minimum Distance Field. Vis. Comput. 14, 303–314 (1998).

SR3. Tarjan, R. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1, 146–160
(1972).

SR4. Dijkstra, E. W. A Note on Two Problems in Connexion With Graphs. Numer. Math. 1, 269–
271 (1959).

