Supplementary Note 1: Variable importance and partial

dependence plots

Variable importance is a calculation of the positive effect of predictive performance *, and
allows us to “rank” variables by their contribution to the model. This can highlight variables
that are of particular importance to predictive accuracy. The variable importance for all
variables included in the full model, which comprises of every covariate in the dataset, is

shown for the model fit to human reports and non-human primate (NHP) reports.

As RF models allow for non-linear relationships, we can also calculate how individual
variables influence the outcome, a report of YF, over a range of values. This has been
calculated for each variable in the full model fit to human reports and NHP reports. Variables
related to the seasonality of agricultural activities (planting and harvesting) are plotted only at

two points, 0 (activity not occurring) or 1 (activity occurring).

All covariates were scaled through the following formula,

where z, is the standardised value, X, the pre-standardised value, |, the mean of the pre-
standardised values and a, the standard deviation of the values, to allow for direct

comparison of variable importance and partial dependence plot.
Variable importance for the best fit models

Here we have described the partial dependence plots (PDP) of the top 50% of variable
importance for the best performing model that included only seasonality of agriculture (model
7), seasonality of vegetation/climate (model 11) and the model which included both (model
15). Partial dependence plots show how these covariates influence the outcome across their

range of values (Supplementary Figure 1)

For model 15, generally, following an initial dip for the number of bean and corn farms,
increases in the number of farms are associated with increased probabilities of classifying a
municipality has possessing a YF reports in NHP’s and both human and NHP, with human
reports either remaining relatively unaffected or decreasing over the range of values. The
number of NHP species is associated with large increases in the probability of classifying a
municipality as reporting all report types of YF, apart from an initial dip in the probability of an
area being classed as reporting both human and NHP cases, but quickly plateaus around 8

species. An initial sharp reduction in the association with YF reports is seen for percentages



of the population working in agriculture followed by a slow and minimal increase, while the
logarithm of the rural population initially is associated with a decrease in YF reports, it peaks
and reduces as values increase, with most of this change due to areas classified as both
human and NHP YF report. The harvesting of rice and planting of peanuts is positively
associated with all types of YF reporting. As rainfall increases, the probability of YF reports
increases, most substantially in areas that report both human and NHP reports. Day
temperature’s effects on the probability of a report of YF is highest between 20 and 23°C and
37 to 45°C. Increasing night temperatures reduce the probability of a human NHP report, till
around 24 °C where it quickly rises. NHP and both human and NHP reports steadily rise over
the range of values. Increases in the range of diurnal/nocturnal temperature are negatively
associated with all reports until around 15 when it rises. Lower levels of EVI are more
positively associated with YF reports, with a slight raise at higher values. Generally, delayed
rainfall, temperatures, temperature ranges and EVI follow a similar pattern, with slight
deviations between the relative influences on the report classifications, with heightened levels

at low values and high values across the ranges.
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Supplementary Figure 1. Partial dependence plots for the covariates in the top 50% of variable
importance of the model that included all covariate groupings. The y axis on the left shows the
probability of No report, and the axis on the right the probability of human, NHP and Human
and NHP reports.

Supplementary Note 2: Agriculture output covariates

Three measures of agricultural output were available from the “2017 Agricultural, Forestry
and Aquaculture Census” 2, the number of farms (Supplementary Figure 2A), the area in
hectares (Supplementary Figure 2B) and the quantity in tonnes (Supplementary Figure 2C)
produced by each district.



While these measures change the rank in which crop’s are ordered by “highest output”, they

are highly correlated (Supplementary Figure 2D, Supplementary Table 1).
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Supplementary Figure 2. Total agricultural outputs for Brazil per crop type for the number of

farms (A), the quantity of crop produces in tonnes (B), the area in hectares occupied by

cropland (C) and the log of these values plotted against each other (D).

Supplementary Table 1. Correlation between the different measures of Brazil's agricultural

output

Pearson’s correlation

Agricultural output types

0.81
0.85
0.93

Quantity

Area

Area

Number of farms

Number of farms

Quantity




Supplementary Methods 1. Out-of-sample validation

through spatial block bootstrapping

Out-of-sample validation: Spatial block bootstrapping

To assess the out-of-sample predictive ability of our models we carried out a form of out-of-

sample validation called spatial block bootstrapping.

This was done by overlaying a grid of 5° x 5° longitude of latitude over the study area and
assigning provinces to a point based on their centroid coordinates (Figure 1). Following this,
random sampling with replacement was used to build a training set of 60-70% of the points
that contain an assigned province, the remaining unselected points were assigned to the

validation dataset. This was repeated 200 times to generate 200 training sets and 200

validation sets.
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Supplementary Figure 3. Examples of the training (blue) and validation (red) datasets as

i
”

chosen by random sampling of districts on a grid of 5° x 5° longitude and latitude.

Models were then trained on the training set and predicted to the validation set. These
predictions were assessed for model fit using the AUC. Out-of-sample performance was

ascertained by the mean model performance across all 200 runs.



Supplementary Tables

Supplementary Table 2. Table of covariates, monthly variation and the source

GROUPING

COVARIATE

MONTHLY
VARIATION

SOURCE

AGRICULTURAL
OUTPUT

HOST
DEMOGRAPHICS

SEASONALITY
AGRICULTURE

OF

SEASONALITY OF
VEGETATION/CLIMATE

Number of peanut farms
Number of rice farms
Number of oat farms
Number of bean farms
Number of castor bean
farms

Number of corn farms
Number of soya farms
Number of sorghum farms
Number of Wheat farms
% of population working
in agriculture

Number of NHP species
Logarithm of total
population

Wheat planting

Wheat harvesting

Bean planting

Bean harvesting

Corn planting

Corn harvesting

Rice planting

Rice harvesting

Peanut planting

Peanut harvesting
Castor bean planting
Castor bean harvesting
Sorghum planting
Sorghum harvesting
Soya planting

Soya harvesting
Rainfall

Day temperature

Night temperature
Diurnal/Nocturnal
temperature range

EVI

Rainfall delay by 1 month
Day temperature

delay by 1 month

Night temperature
delay by 1 month
Diurnal/Nocturnal
temperature

range delay by 1 month
EVI delay

by 1 month

No

Brazilian Ministry of
Health
3

Brazilian Ministry of
Health
4

Calculated

7

Calculated



Rainfall delay

by 2 months

Day temperature

delay by 2 months

Night temperature

delay by 2 months
Diurnal/Nocturnal
temperature

range delay by 2 months
EVI delay by 2 months

“

Calculated
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