The American Journal of Human Genetics, Volume 108

Supplemental information

A computational approach for detecting

physiological homogeneity

in the midst of genetic heterogeneity

Peng Zhang, Aurélie Cobat, Yoon-Seung Lee, Yiming Wu, Cigdem Sevim Bayrak, Clémentine Boccon-Gibod, Daniela Matuozzo, Lazaro Lorenzo, Aayushee Jain, Soraya Boucherit, Louis Vallée, Burkhard Stüve, Stéphane Chabrier, Jean-Laurent Casanova, Laurent Abel, Shen-Ying Zhang, and Yuval Itan

Supplemental Figures

Figure S1. PCA plot of the European individuals studied here. HSE cases: 122 individuals, Controls: 490 individuals, Simulations: 893 individuals, and the other 7,958 individuals in our inhouse HGID database.

Figure S2. The PPI network of 20 Hippo pathway genes in the background biological interaction network. The eight genes selected for the simulation study are shown in pink. The REACTOME Hippo signaling pathway is accessible via <u>https://reactome.org/content/detail/R-HSA-2028269</u>.

Figure S3. Simulation study for the null hypothesis test. We performed 100 simulations of the NHC method on the randomly sampled 100 individuals with different severe infectious diseases. (A) The number of significant class-I gene clusters obtained in each simulation, where the red line indicates the three class-I gene clusters generated in the HSE study. (B) Cluster-level *p*-value of the top-ranked gene cluster in each simulation, in which the node size represents the number of genes in each top-ranked cluster, and the red line is the *p*-value (=0.00125) of the top-ranked cluster in the HSE study (the HSE study is presented later in the results section.)

Figure S5. The genes/variants overlapping between different results. The known HSE-causing variants and their genes, the genes/variants identified in the NHC top-ranked gene cluster, and the genes/variants significantly enriched in the SKAT-O test.

Supplemental Tables

#	Control-Embedded Pathways	Occurrence
1	REACTOME_SIGNALING_BY_RECEPTOR_TYROSINE_KINASES	77
2	REACTOME_RRNA_PROCESSING	72
3	REACTOME_CHROMATIN_MODIFYING_ENZYMES	66
4	REACTOME MITOCHONDRIAL TRANSLATION	61
5	REACTOME CELL CYCLE	58
6	REACTOME DNA REPAIR	57
7	REACTOME MRNA SPLICING	51
8	KEGG CELL CYCLE	49
0	REACTOME TRANSCRIPTIONAL REGULATION OF WHITE ADIPOCYTE DIFF	10
9	ERENTIATION	49
10	REACTOME METABOLISM OF RNA	44
11	KEGG PATHWAYS IN CANCER	41
12	REACTOME CELL CYCLE MITOTIC	39
13	REACTOME RESPIRATORY ELECTRON TRANSPORT	38
14	REACTOME FORMATION OF RNA POL II FLONGATION COMPLEX	33
15	KEGG FOCAL ADHESION	32
16	REACTOME REGULATION OF LIPID METABOLISM BY PPARALPHA	23
17	PEACTOME_REGULATION_OF_END_METABOLISM_DT_TTAKALITIA	23
17	DEACTOME_DEDE_CITELE_CITECKIONUIS	22
10	REACTOME_FROCESSING_OF_CAFFED_INTRON_CONTAINING_FRE_MIKINA	22
19	REACTOME_CROSS_PRESENTATION_OF_SOLUBLE_EAUGENOUS_ANTIGENS_	21
20	ENDUSURIES DEACTOME DNA, DOLVMEDAGE, IL TDANGCDIDTION	21
20	REACTOME_KNA_POLIMEKASE_II_IKAN5CKIPTION	21
21	KEACTOME_IKANSCKIPTION_OF_IHE_HIV_GENOME	20
22	KEACTOME_KNA_POLYMEKASE_II_IKANSCKIBES_SNKNA_GENES	18
23	REACTOME_TRANSCRIPTIONAL_REGULATION_BY_TP53	18
24	REACTOME_EUKARYOTIC_TRANSLATION_INITIATION	16
25	REACTOME_HATS_ACETYLATE_HISTONES	15
26	KEGG_APOPTOSIS	14
27	REACTOME_NEDDYLATION	14
28	REACTOME_INTRACELLULAR_SIGNALING_BY_SECOND_MESSENGERS	13
29	KEGG_PROTEASOME	12
30	REACTOME_CLATHRIN_MEDIATED_ENDOCYTOSIS	12
31	REACTOME_HIV_TRANSCRIPTION_INITIATION	12
32	REACTOME_EPIGENETIC_REGULATION_OF_GENE_EXPRESSION	11
33	REACTOME_DNA_REPLICATION	10
34	REACTOME_G2_M_CHECKPOINTS	10
35	REACTOME_M_PHASE	10
36	KEGG_ENDOCYTOSIS	9
27	REACTOME_COOPERATION_OF_PDCL_PHLP1_AND_TRIC_CCT_IN_G_PROTEI	0
57	N_BETA_FOLDING	0
38	REACTOME_COPI_INDEPENDENT_GOLGI_TO_ER_RETROGRADE_TRAFFIC	8
39	REACTOME_MITOTIC_G1_PHASE_AND_G1_S_TRANSITION	8
40	REACTOME_MITOTIC_SPINDLE_CHECKPOINT	8
41	REACTOME RRNA MODIFICATION IN THE NUCLEUS AND CYTOSOL	8
42	REACTOME_CELLULAR_RESPONSES_TO EXTERNAL STIMULI	7
43	REACTOME SEPARATION OF SISTER CHROMATIDS	7
44	REACTOME SIGNALING BY VEGF	7
45	KEGG ERBB SIGNALING PATHWAY	6
46	REACTOME CIRCADIAN CLOCK	6
47	REACTOME EUKARYOTIC TRANSLATION ELONGATION	6
48	REACTOME INTRAFLAGELLAR TRANSPORT	6
49	KEGG ENDOMETRIAL CANCER	5
50	KEGG MTOR SIGNALING PATHWAY	5
51	KEGG SNARE INTERACTIONS IN VESICULAR TRANSPORT	5
51	REGO_01111L_111LINTCTIO10_111_1E0ICULAR_TRAINOLORI	5

52	KEGG_SPLICEOSOME	5
53	REACTOME_APC_C_MEDIATED_DEGRADATION_OF_CELL_CYCLE_PROTEINS	5
54	REACTOME_HIV_INFECTION	5
55	REACTOME_MTOR_SIGNALLING	5
56	REACTOME_PI3K_AKT_SIGNALING_IN_CANCER	5
57	REACTOME_PROCESSING_OF_INTRONLESS_PRE_MRNAS	5
58	REACTOME_REGULATION_OF_TP53_ACTIVITY	5

Table S1: Control-embedded pathways identified by running the NHC method on 100 randomlyselected controls versus the remaining 390 controls, for 100 simulations.

Gene	Chrom	Position	Ref Allele	Alt Allele	Consequence	CADD
LATS1	6	150023233	А	Т	stop-gained (p.Tyr10*)	35
MOB1A	2	74399864	AG	TC	stop-gained (p.Ser10*)	38
MOB1B	4	71816524	G	Т	stop-gained (p.Glu9*)	35
SAVI	14	51134658	С	А	stop-gained (p.Glu10*)	37
STK3	8	99895955	GGT	TTA	stop-gained (p.Thr10*)	22.8
STK4	20	43595237	CC	TA	stop-gained (p.Pro10*)	36
WWTR1	3	149375064	GAG	TTA	stop-gained (p.Leu10*)	36
YAP1	11	101981607	С	Т	stop-gained (p.Gln10*)	29.4

Table S2. The artificially created stop-gained mutations of eight genes from the Hippo pathway.

Simulation	# Total Clustons	# Class-I Clusters	Top Gene Cluster				
Simulation	# Total Clusters	(<i>p</i> -value ≤ 0.01)	<i>p</i> -value	# Genes	# Cases		
simul_1	107	1	3.82E-03	4	7		
simul_2	109	1	2.30E-03	3	8		
simul_3	104	0	NA	NA	NA		
simul_4	106	1	3.85E-03	11	21		
simul_5	111	0	NA	NA	NA		
simul_6	102	0	NA	NA	NA		
simul_7	96	0	NA	NA	NA		
simul_8	90	0	NA	NA	NA		
simul_9	99	0	NA	NA	NA		
simul_10	105	0	NA	NA	NA		
simul_11	113	1	6.37E-03	4	10		
simul_12	99	0	NA	NA	NA		
simul_13	111	0	NA	NA	NA		
simul_14	100	0	NA	NA	NA		
simul_15	108	2	6.55E-05	23	39		
simul_16	110	0	NA	NA	NA		
simul_17	110	0	NA	NA	NA		
simul_18	109	1	3.95E-04	4	11		
simul_19	105	0	NA	NA	NA		
simul_20	103	0	NA	NA	NA		
simul_21	97	1	1.51E-04	19	37		
simul_22	108	0	NA	NA	NA		
simul_23	107	0	NA	NA	NA		
simul_24	107	0	NA	NA	NA		
simul_25	111	0	NA	NA	NA		
simul_26	127	0	NA	NA	NA		
simul_27	111	0	NA	NA	NA		
simul 28	119	0	NA	NA	NA		
simul_29	103	1	1.04E-04	8	16		
simul_30	110	1	4.70E-03	9	16		
simul_31	105	0	NA 1 (2E 02	NA	NA		
simul_32	104	1	1.63E-03	3	10		
simul_33	119	1	4.12E-03	8	15		
simul_34	105	1	5.80E-03	4			
simul_35	104	0	NA	NA	NA		
simul 36	106	0	NA	NA NA	NA		
simul 37	113	0	NA NA	NA	NA		
simul_38	108	0		12 NA			
simul_39	110	1	0.00E-03	15	50		
simul 40	115	1	8.00E-04	12	30		
simul 42	109	1	1.03E-05	12 NA	NA		
simul 42	110	0	INA NA	INA NA	NA NA		
simul 43	102	0	1 41E 02	12	1NA 20		
simul 45	102	2	1.41E-05 NA	12 NA			
simul 45	112	0					
simul 40	110	0	NA	NA	NA NA		
simul 47	10	0					
simul 40	101	0			NA NA		
simul 50	106	0	NA NA	NA NA	NA NA		
simul 50	110	0					
simul 57	117	0					
simul 52	109	2	1NA 4 50E 02		51		
simul 57	100	1	2 68E-03	40	15		
simul 55	107	0	2.00E-05	<i>)</i> NA	NA		
sinui 33	101	U	IN/A	11/1	11/1		

: 1.56	115	0	3.7.4	314	3.7.4
simul 56	117	0	NA	NA	NA
simul 57	101	<u> </u>	3.32E-05	15	29
simul_58	110	0	NA	NA	NA
simul_59	99	0	NA	NA	NA
simul_60	105	2	2.99E-05	12	25
simul_61	102	2	2.35E-04	36	49
simul_62	111	3	3.47E-03	19	32
simul_63	100	0	NA	NA	NA
simul_64	94	1	4.25E-04	10	17
simul_65	106	1	6.12E-04	12	19
simul_66	108	0	NA	NA	NA
simul_67	105	0	NA	NA	NA
simul_68	114	1	1.65E-03	7	12
simul 69	103	1	6.70E-04	25	38
simul_70	102	1	4.95E-04	4	9
simul_71	117	0	NA	NA	NA
simul 72	97	1	6.20E-03	6	15
simul 73	118	1	5.02E-03	7	12
simul 74	98	0	NA	NA	NA
simul 75	115	1	5.67E-03	5	8
simul 76	95	0	NA	NA	NA
simul 77	113	0	NA	NA	NA
simul 78	112	1	6.44E-03	6	9
simul 79	110	0	NA	NA	NA
simul 80	114	0	NA	NA	NA
simul 81	114	0	NA	NA	NA
simul 82	104	1	7.44E-03	12	18
simul 83	113	1	6.83E-03	22	27
simul 84	106	0	NA	NA	NA
simul 85	112	0	NA	NA	NA
simul 86	100	0	NA	NA	NA
simul 87	108	2	4.83E-03	46	54
simul 88	110	1	3.82E-03	4	7
simul 89	106	0	NA	NA	NA
simul 90	116	2	2.07E-04	5	8
simul 91	102	0	NA	NA	NA
simul 92	92	0	NA	NA	NA
simul 93	115	0	NA	NA	NA
simul 94	101	0	NA	NA	NA
simul 95	101	1	7.42E-04	7	14
simul 96	100	0	NA	NA	NA
simul 97	103	0	NA	NA	NA
simul 98	107	0	NA	NA	NA
simul 99	109	0	NA	NA	NA
simul 100	98	1	4.95E-04	4	9

Table S3. Gene clusters generated in the simulation study for the null hypothesis test. We performed the NHC method on 100 randomly sampled individuals with different severe infectious diseases, for 100 times. The number of output gene clusters (after merging the gene clusters from the initial output), the number of significant class-I clusters, and the top-ranked gene clusters are shown.

	Simulation on I	Hinno Pathway	Hippo-Cluster					
	Simulation on I	inppo i atnway	(the gene cluster that is most enriched in Hippo pathway)					
Simulation	# Simulated	# Mutated	Cluster			Hippo		
	Cases	Genes	Rank	# Genes	# Cases	<i>p</i> -value	Pathway	
					1.5	P	<i>p</i> -value	
simul_l	5	4	#1	7	17	1.93e-05	9.74e-13	
simul_2	5	4	#4	7	11	5.47e-03	1.26e-09	
simul_3	5	4	#5	8	12	2.18e-02	3.37e-09	
simul_4	5	5	#8	7	10	1.40e-02	9.74e-13	
simul_5	5	4	#4	7	12	1.32e-02	1.26e-09	
simul_6	5	3	#4	1	13	7.15e-04	9.74e-13	
simul_/	5	5	#1	6	11	3.87e-03	1.40e-13	
simul_8	5	5	#1	9	14	1.15e-03	1.20e-14	
simul_9	5	5	#1	8	20	8.34e-07	2.6/e-15	
simul_10	5	3	#4	10	15	1.64e-03	3.99e-14	
simul_11	5	4	#1	7	16	4.47e-04	1.26e-09	
simul_12	5	5	#1	7	16	4.47e-04	9.74e-13	
simul_13	5	5	#1	8	16	3.88e-05	2.6/e-15	
simul_14	5	5	#1	9	19	8.81e-05	1.20e-14	
simul_15	5	4	#1	8	18	9.58e-06	2.6/e-15	
simul_16	5	5	#1	6	19	1.65e-07	1.40e-13	
simul_1/	5	4	#1	8	20	8.34e-07	2.6/e-15	
simul 18	5	4	#1	/	16	2.14e-04	9.74e-13	
simul 19	5	4	#1	10	27	7.62e-09	3.99e-14	
simul_20	5	4	#1	9	1/	4./8e-05	1.20e-14	
simul_21	5	3	#1	8	21	6.89e-06	3.3/e-09	
simul_22	5	5	#1	9	1/	1.09e-04	1.20e-14	
simul 23	5	3	#1	10	21	1.81e-06	3.99e-14	
simul_24	5	4	#1	8	23	4./4e-09	2.6/e-15	
simul 25	5	4	#1	9	23	1.0/e-06	1.16e-11	
simul 26	10	8	#2	10	1/	8./5e-04	3.99e-14	
simul 27	10	1	#5	9	14	1.15e-03	1.20e-14	
simul 28	10	6	#1	8	21	1.33e-07	2.6/e-15	
simul 29	10	3	#1	0	16	8.38e-06	4.0/e-0/	
simul 30	10	7	#1	8	17	6.36e-08	2.6/e-15	
simul 31	10	1	#1	6	1/	4.15e-06	1.40e-13	
simul 32	10	6	#1	9	21	6.89e-06	1.20e-14	
simul 33	10	6	#1	8	23	4./4e-09	2.6/e-15	
simul 34	10	6	#1	/	25	1.33e-10	3.34e-16	
simul 35	10	8	#1 #1	10	24	1.23e-06	3.996-14	
simul_30	10	5	#1 #1	9	21	4.03e-07	1.20e-14	
simul_37	10	6	#1 #1	<u> </u>	20	1.29e-10	3.89e-12	
simul 30	10	0	#1 #1	0	21	3.286-10	1.09e-13	
simul 40	10	6	#1	9	21	5.00e-15	1.20e-14	
simul 40	10	5	#1	10	20	5 280 10	3.99e-14	
simul 41	10	3	#1 #1	9	29	3.386-10	1.20e-14	
simul 42	10	6	#1 #1	9	28	2.146-14	1.20e-14	
simul 43	10	6	#1 #1	10	30	1.956-17	3.996-14	
simul 44	10	6	#1 #1	10	29	1.010-09	3.990-14	
simul 45	10	6	#1	7	20	2.140-14 5 0/a 1/	3 3/2 16	
simul 40	10	6	#1 #1	/	20	6 162 10	3.346-10 1 20° 14	
simul 4/	10	0 7	#1 #1	9	39	1 202 21	1.20e-14	
simul 48	10	/ 	#1	9	40	1.290-21	1.200-14	
sinui 49	10	0	#1	<u>ð</u>	22	J.750-15	2.0/0-13	
simul_50	20	0 0	#1 #1	0	20	7.210.00	2.0/0-13	
sinui 31	20	ð 0	#1	ð 10	21	/.510-08	2.0/e-13	
simul_52	20	ð	#1	10	∠0	4.326-08	3.996-14	

simul 53	20	7	#1	8	24	1.15e-09	2.67e-15
simul 54	20	8	#1	10	26	4.52e-08	3.99e-14
simul 55	20	6	#1	6	24	2.46e-11	1.40e-13
simul 56	20	7	#1	10	30	2.43e-10	3.99e-14
simul 57	20	8	#1	9	29	3.04e-10	1.20e-14
simul 58	20	7	#1	9	29	6.38e-12	1.20e-14
simul 59	20	7	#1	10	37	1.02e-16	3.99e-14
simul 60	20	7	#1	8	33	1.07e-15	2.67e-15
simul 61	20	8	#1	9	38	9.37e-16	1.20e-14
simul 62	20	7	#1	9	37	1.89e-17	1.20e-14
simul 63	20	6	#1	7	37	4.48e-19	3.34e-16
simul 64	20	7	#1	9	37	1.89e-17	1.20e-14
simul 65	20	8	#1	9	45	4.41e-24	1.20e-14
simul 66	20	8	#1	9	41	7.13e-18	1.20e-14
simul 67	20	8	#1	10	43	5.39e-19	3.99e-14
simul 68	20	8	#1	8	49	1.92e-27	2.67e-15
simul 69	20	8	#1	9	51	1.07e-28	1.20e-14
simul 70	20	7	#1	10	51	9.23e-28	3.99e-14
simul 71	20	8	#1	9	42	1.34e-18	1.20e-14
simul 72	20	8	#1	9	50	2.61e-28	1.20e-14
simul 73	20	8	#1	9	48	1.15e-25	1.20e-14
simul 74	20	6	#1	11	54	5.95e-27	1.09e-13
simul 75	20	7	#1	7	46	2.33e-26	3.34e-16
simul 76	30	8	#1	8	29	9.13e-11	2.67e-15
simul 77	30	8	#1	9	34	2.68e-15	1.20e-14
simul 78	30	8	#1	10	33	1.93e-12	3.99e-14
simul 79	30	8	#1	10	36	2.14e-14	3.99e-14
simul 80	30	8	#1	7	35	1.46e-17	3.34e-16
simul 81	30	8	#1	9	46	1.87e-24	1.20e-14
simul 82	30	8	#1	7	40	2.04e-21	3.34e-16
simul 83	30	8	#1	9	39	3.58e-18	1.20e-14
simul 84	30	8	#1	8	48	1.44e-27	2.67e-15
simul 85	30	8	#1	8	46	6.59e-25	2.67e-15
simul 86	30	8	#1	9	44	4.35e-20	1.20e-14
simul 87	30	7	#1	9	47	3.62e-23	1.20e-14
simul 88	30	8	#1	9	53	2.62e-27	1.20e-14
simul 89	30	8	#1	9	57	1.07e-31	1.20e-14
simul 90	30	8	#1	9	51	1.07e-28	1.20e-14
simul 91	30	8	#1	9	56	1.07e-32	1.20e-14
simul 92	30	8	#1	7	58	2.59e-37	3.34e-16
simul 93	30	8	#1	8	63	1.51e-40	2.67e-15
simul 94	30	7	#1	10	59	3.53e-32	3.99e-14
simul 95	30	8	#1	9	66	4.51e-43	1.20e-14
simul 96	30	7	#1	9	58	4.42e-35	1.20e-14
simul 97	30	7	#1	10	66	2.25e-39	3.99e-14
simul 98	30	8	#1	8	64	1.43e-41	2.67e-15
simul 99	30	8	#1	7	67	1.40e-46	3.34e-16
simul 100	30	8	#1	9	72	9 24e-47	1 20e-14

Table S4. Identification of the Hippo-cluster in simulation study II for the detection of simulated disease signals. We performed the NHC method on 100 random cases, in which a random subgroup of 5, 10, 20, or 30 cases was randomly assigned any of the eight simulated mutations of genes from the Hippo pathway. We identified the gene clusters most enriched in the Hippo pathway.

Rank	Enriched Pathway						
1	KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY	3.21e-15					
2	REACTOME_TOLL_LIKE_RECEPTOR_CASCADES	8.88e-15					
3	REACTOME_INNATE_IMMUNE_SYSTEM	1.85e-13					
4	REACTOME_TICAM1_DEPENDENT_ACTIVATION_OF_IRF3_IRF7	3.40e-13					
5	REACTOME_DDX58_IFIH1_MEDIATED_INDUCTION_OF_INTERFERON_ALPHA_ BETA	7.47e-13					
6	REACTOME_TOLL_LIKE_RECEPTOR_4_TLR4_CASCADE	2.35e-12					
7	REACTOME_ACTIVATION_OF_IRF3_IRF7_MEDIATED_BY_TBK1_IKK_EPSILON	2.89e-12					
8	REACTOME_NEGATIVE_REGULATORS_OF_DDX58_IFIH1_SIGNALING	3.11e-12					
9	REACTOME_MYD88_INDEPENDENT_TLR4_CASCADE	6.83e-12					
10	REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM	8.39e-12					
11	REACTOME_TRAF3_DEPENDENT_IRF_ACTIVATION_PATHWAY	1.41e-10					
12	KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY	1.20e-09					
13	REACTOME_TRAF6_MEDIATED_IRF7_ACTIVATION	9.84e-09					
14	REACTOME_DISEASES_OF_IMMUNE_SYSTEM	3.07e-07					
15	KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY	5.51e-07					
16	KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY	1.19e-06					
17	REACTOME_INTERFERON_SIGNALING	7.78e-06					

Table S5. The significantly enriched pathways of the top-ranked gene cluster from the HSE cohort.

Cluster	# Genes	# Variants Hom Het	# Cases	Cluster <i>p</i> -value	Most Enriched Pathway (p-value)				
Class-I									
#1	27	0 42	37	0.00176	KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_P ATHWAY (6.73e-14)				
#2	5	0 13	12	0.00261	REACTOME_HDR_THROUGH_SINGLE_STRAN D ANNEALING SSA (9.676e-10)				
#3	6	0 14	14	0.00445	REACTOME_PEROXISOMAL_PROTEIN_IMPOR T(7.262e-11)				
#4	15	0 28	26	0.00841	REACTOME_RETROGRADE_TRANSPORT_AT_ THE_TRANS_GOLGI_NETWORK (1.106e-14)				
				Class	3-II				
#5	30	0 46	41	0.00041	REACTOME_MITOCHONDRIAL_TRANSLATIO N (1.121e-57)				
#6	9	0 22	20	0.00199	REACTOME_PROCESSING_OF_INTRONLESS_P RE_MRNAS (8.875e-15)				
-	This class-I	cluster is just a	above the cl	luster-level	significance cutoff, but functionally interesting				
#7	6	0 26	24	0.01023	KEGG_REGULATION_OF_AUTOPHAGY (3.144e- 06)				

Table S6. The six significant gene clusters (*p*-value ≤ 0.01) detected by NHC in the HSE cohort of 109 cases of unknown disease etiology, and one gene cluster with a p-value of 0.01023, just above the cutoff, but nevertheless functionally interesting.

Rank	Pathway	# Genes	Gene List	<i>p</i> -value
1	REACTOME_TRAFFICKING_AND_P ROCESSING_OF_ENDOSOMAL_TL R	13	CNPY3, CTSB, CTSK, CTSL, CTSS, CTSV, HSP90B1, LGMN, <u>TLR3</u> , TLR7, TLR8, TLR9, <u>UNC93B1</u>	0.000247
2	REACTOME_TICAM1_DEPENDENT _ACTIVATION_OF_IRF3_IRF7	13	<u>IKBKE, IRF3</u> , IRF7, RPS27A, <u>TANK, TBK1, TICAM1, TLR3,</u> <u>TRAF3</u> , UBA52, UBB, UBC	0.000635
3	REACTOME_ZBP1_DAI_MEDIATED _INDUCTION_OF_TYPE_I_IFNS	21	CHUK, DHX9, DTX4, IKBKB, IKBKG, <u>IRF3</u> , MYD88, NFKB1, NFKB2, NFKBIA, NFKBIB, NKIRAS1, NKIRAS2, NLRP4, RELA, RIPK1, RIPK3, <u>TBK1</u> , <u>TICAM1</u> , <u>TLR3</u> , ZBP1	0.000691
4	KEGG_RIBOFLAVIN_METABOLISM	16	ACP1, ACP2, ACP3, ACP4, ACP5, ACP6, ENPP1, ENPP3, FLAD1, MTMR1, MTMR2, MTMR6, MTMR7, PHPT1, RFK, TYR	0.000854
5	REACTOME_CROSSLINKING_OF_C OLLAGEN_FIBRILS	18	BMP1, COL1A1, COL1A2, COL4A1, COL4A2, COL4A3, COL4A4, COL4A5, COL4A6, LOX, LOXL1, LOXL2, LOXL3, LOXL4, PCOLCE, PXDN, TLL1, TLL2	0.000992

Table S7. The significant pathways (*p*-value < 0.001) identified by running our own scripted pathway-informed SKAT-O test on the HSE cohort. The genes in the list underlined with a solid line are the genes harboring the known HSE-causing mutations, and those underlined with a wavy line are the candidate genes that we selected from the top-ranked NHC gene cluster.

Cluster	#Genes	#Var Hom Het	#Cases	Cluster <i>p</i> -value	#Pathways	Top Pathway	#BP	Тор ВР	#MF	Top MF	
Class-I											
#1	28	4 55	49	3.12e-05	16	KEGG_TOLL_LIKE_R ECEPTOR_SIGNALIN G_PATHWAY (3.594e-16)	11	GO:0035666:TRIF -dependent toll-like receptor signaling pathway (1.029e- 16)	0		
#2	5	0 14	13	0.00274	11	REACTOME_HDR_T HROUGH_SINGLE_S TRAND_ANNEALIN G_SSA (9.676e-10)	4	GO:1901796:regul ation of signal transduction by p53 class mediator (2.108e-07)	0		
#3	6	0 15	15	0.00564	3	REACTOME_PEROXI SOMAL_PROTEIN_I MPORT (7.262e-11)	2	GO:0006625:protei n targeting to peroxisome (2.81e- 11)	0		
						Class-II					
#4	26	1 44	44	6.44e-05	2	REACTOME_MITOC HONDRIAL_TRANSL ATION (7.58e-50)	4	GO:0070125:mitoc hondrial translational elongation (4.128e- 55)	2	GO:0003735:s tructural constituent of ribosome (1.993e-34)	
#5	9	0 23	22	0.00143	6	REACTOME_PROCES SING_OF_INTRONLE SS_PRE MRNAS (5.327e-18)	6	GO:0006378:mRN A polyadenylation (4.458e-17)	0		

Table S8: NHC-boost detected the same number of significant gene clusters in the HSE cohort of 122 individuals, but with slightly fewer genes in clusters #1, #4 and #5 (see Table 2 for comparison), in a significantly shorter computation time: 5 minutes, versus 40 minutes for the original NHC code.