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Supplemental Figures and Legends 

  

Figure S1. Distribution of normalized RD of srWGS for SVs supported by long reads. 

(A) Distribution of normalized RD for deletions (left), insertions (middle) and duplications (right) 

that were supported by VaPoR (red) and the 1Kb flanking regions of these SVs (grey).  

(B) Rate of true positive (red) and false positive (blue) of deletions (left), insertions (middle) and 

duplications (right) at different cutoffs of RD 

(C) Receiver operating characteristic (ROC) of RD for deletions (left), insertions (middle) and 

duplications (right). 



 

  

Figure S2. Distribution of aberrant PE and SRs from srWGS across high-confidence 

homozygous SVs, heterozygous SVs and likely false positive SVs. 

Distributions of (A) PE and (B) SRs metrics for homozygous (red), heterozygous (green) and false 

positive (blue) SVs for deletions (left), insertions (middle), and duplications (right). 

 



 

 

Figure S3. Proportion of SVs supported based on srWGS and lrWGS re-adjudication. 

(A) Proportion of Deletions (DELs) and Insertions (INSs) that were supported by the in silico re-

adjudication procedure. 

(B) Proportion of SVs concordant between technologies that were supported by the in silico re-

adjudication procedure. 

(C) Proportion of SVs uniquely discovered by srWGS or lrWGS that were supported by the in 

silico re-adjudication procedure. 



 

Figure S4. Concordance of SVs of different sizes between srWGS and lrWGS in Unique and 

RM sequences. 

(A-B)  Concordance of (A) deletions and (B) insertions and duplications in Unique + RM 

sequences that were supported by the in silico SV refinement procedure at different SV size 

ranges. Percentages represent the fraction of total variants shared between srWGS and lrWGS. 

Letters in panel B represent the type of srWGS SVs, DUP – duplications, INS – insertions. 



 

 

Figure S5. Recalibrating SVs in the repetitive SD + SR sequences based on read-level 

alignment signatures and concordance of the high-confidence SVs with supports between 

srWGS and lrWGS. 

 (A) In silico evaluation results from VaPoR on deletions (left), insertions (middle) and 

duplications (right). Deletions and insertions were reported in both srWGS and lrWGS callsets, 

and duplications were only reported in srWGS callset. 

(B) Distribution of normalized read depth of srWGS across deletions (left), insertions (middle) 

and duplications (right) that were supported by VaPoR (red), and the 1Kb genomic regions that 

flank each SV (grey). 



 

(C-D) Distribution of (C) aberrant srWGS read pairs and (D) split reads around deletions (left), 

insertions (middle) and duplications (right) that were either homozygous (red), heterozygous 

(green) or likely false positives (blue). The homozygous, heterozygous and likely false positive 

SV sets were selected using the criteria described in supplemental methods. 

(E-F) Concordance of (E) deletions and (F) insertions and duplications in SD + SR sequences that 

were supported by the in silico SV refinement procedure. Percentages represent the fraction of 

total variants shared between srWGS and lrWGS. 

 

 

 

 

 

Supplemental Tables 

Table S1. Expected and observed counts of SVs located within SD + SR, and in Unique 

+ RM sequences. 

 srWGS lrWGS 

 SR + SD Unique + RM SR + SD Unique + RM 

Expected 1056 9828 2408 22417 

Observed 5259 5625 17483 7342 

 

 

 

 



 

Table S2. Count and proportion of SVs per genome. 

 
srWGS lrWGS 

 
DEL DUP INS DEL INS 

Assessable by VaPoR 5,878(84.6%) 563(71.3%) 2,467(93.0%) 7,345(77.4%) 13,216(86.2%) 

Validated by VaPoR  3,644(62.0%) 227(40.3%) 2,150(87.1%) 4,789(65.2%) 10,318(78.1%) 

Supported by RD  1,265(18.2%) 336(42.6%) NA 2,293(24.2%) NA 

Supported by PE/SRs 1,175(16.9%) 126(16.0%) 624(23.5%) 1,470(15.5%) 2,192(14.3%) 

all SVs / genome 6,947 789 2,654 9,488 15,330 

Note:  Numbers in parenthesis represent the proportion of variants supported by the corresponding 

evidence; the VaPoR validation rate is calculated based on the SVs that were assessable by VaPoR.   

 

 

 

Table S3. PE and SRs cutoffs selected to discriminate the quality of SVs from lrWGS and 

srWGS callsets. 

 Selected Thresholds SVs Passing Thresholds in each Training Set (%) 

SV Type PE SRs Homozygous Heterozygous 
Predicted Type I 

Errors 

DEL 15 0 92.59% 97.52% 0.95% 

DUP 0 19 73.81% 57.14% 1.22% 

INS 0 30 42.87% 8.25% 0.94% 

 

 



 

 

Supplemental Material and Methods 

Samples, sequencing, and Structural Variation (SV) discovery 

In this study, we evaluated three parent-child trios from the 1000 Genomes Project that have been 

recently analyzed for SVs with both short-read whole genome sequencing (srWGS) and long-read 

whole genome sequencing (lrWGS) in the Human Genome Structural Variation Consortium  

(HGSVC).1 These trios were derived from Han Chinese (CHS), Puerto Rican (PUR) and Yoruban 

Nigerian (YRI) ancestry groups. The HGSVC generated srWGS and lrWGS data and 

corresponding SV callsets on these samples, which we used in this study. For srWGS, samples 

were sequenced with Illumina HiSeq 2500 to ~74.5X coverage per genome, and SVs were 

discovered using an ensemble approach that integrated 13 independent SV discovery algorithms 

(WHAMG,2 LUMPY,3 DELLY,4 ForestSV,5 Manta,6 Pindel,7 SVelter,8 novoBreak,9 MELT,10 

VariationHunter,11 dCGH,12 GenomeSTRiP,13 Tardis14). The callsets from different algorithms 

were combined based on breakpoint overlap and concordance with orthogonal technology. In brief, 

SVs from each srWGS algorithms were compared against lrWGS calls by requiring matching SV 

type and a minimum of 50% reciprocal overlap. Distances between breakpoints of srWGS SVs 

and their matching lrWGS SVs were collected to form a distribution, and 95% confidence interval 

(CI) of this distribution was calculated to represent the precision range of the algorithm (Supp Fig 

10, 11 of Chaisson et al1). Overlapping SVs from different algorithms were merged into a 

consensus SV call if the CI of their breakpoints overlapped. For lrWGS, samples were sequenced 

with Pacific Biosciences RS II to ~20.0X in the parental genomes and ~39.6X in the child genomes, 

and SVs were discovered using the integration of two genome assembly-based methods (Phased-

SV and MS-PAC1, 15, 16). From the Chaisson et al. data1 we combined srWGS duplications with 

https://paperpile.com/c/Cm3zzZ/rOJV
https://paperpile.com/c/Cm3zzZ/rOJV


 

insertions for sake of comparisons to lrWGS, which did not distinguish between insertions and 

duplications. 

 

SV annotation by repeat content 

We defined genomic repeat content to include Segmental Duplication (SD), Simple Repeat (SR) 

and other Repeat Masked regions (RM) based on GRCh38 annotations downloaded from the 

UCSC genome browser (https://genome.ucsc.edu; version 2018-08-1017). Regions in the RM track 

that overlapped any SR or SD elements were excluded from RM to avoid conflicting repeat types. 

Genomic regions falling outside of RM, SR and SD were annotated as “Unique” genomic 

sequences. We annotated SVs by first allocating their breakpoints to one of the repeat content 

classes and assigned each SV to one repeat category by prioritizing SR, followed by SD, RM and 

then Unique sequences, thus prioritizing overlap with annotated repeat sequences.   

 

Statistical test of SV distribution across genomic context 

We tested the distribution of SVs across different genomic context against the null hypothesis that 

SVs are evenly distributed across the genome regardless of the genomic context. Under the null 

hypothesis 1,056 of the 10,884 SVs from srWGS and 2,408 of the 24,825 SVs from lrWGS were 

expected in the highly repetitive SD and SR regions that consist 9.7% of the genome, while 5,259 

and 17,483 were observed in these regions from srWGS and lrWGS respectively. A chi-square test 

was performed (Table S1) to test the significance of observation against expectation. 

 

Comparison of SVs between technologies 

https://genome.ucsc.edu/


 

We applied different criteria to SVs based on variant class to assess concordance between srWGS 

and lrWGS. We considered deletions to be concordant if over 50% reciprocal overlap of the SV 

was observed between technologies. Insertions were considered concordant between srWGS and 

lrWGS if their predicted insertion sites were within 100 bp and the lengths of their inserted 

sequences were within 10 times of each other. As the lrWGS callset did not differentiate 

duplications from insertions, we also compared lrWGS insertions to srWGS duplications by either 

1) requiring >50% of the inserted sequences of lrWGS insertions to be covered by srWGS 

duplications or 2) requiring >50% reciprocal overlap between the srWGS duplication coordinates 

and the alignments of assembled lrWGS insertion sequences against the human reference genome 

(GRCh38) with BLAT(v35).18 Finally, given that SVs were strictly defined as ≥50bp in the 

original srWGS and lrWGS SV callsets, we avoided biasing our comparisons near the 50bp size 

threshold by including small insertions and deletions (indels) defined by both technologies that 

were between 30-50bp when assessing SV concordance. 

 

Evaluation and adjudication of SVs  

We designed an in silico re-adjudication procedure and applied it to all SVs to reduce the type I 

error rate of the original SV callsets. We examined orthogonal support from both lrWGS and 

srWGS data to quantify strength of evidence for each SV. These analyses are described below. 

 

First, to assess raw lrWGS evidence supporting each SV, we applied VaPoR,19 an algorithm 

designed to evaluate SV predictions by directly comparing lrWGS sequences with a reference 

genome through recurrence plots. We executed VaPoR with default settings and considered SVs 

with a positive genotype score (VaPoR GS >0) as having lrWGS support (Figure 2A, S5A). In 



 

order to maximize validation power, we also examined each SV in the parental lrWGS genomes 

(20.0X) with VaPoR and considered SV support in parent as valid. VaPoR is unable to make an 

evaluation in certain regions of the genome due to nearby sequence homology or low coverage. 

After taking this limitation into account, we were able to assess 85.4% and 82.8% SVs from 

srWGS and lrWGS respectively. Validation rates of 67.6% (N= 6,021/ genome) and 73.5% (N= 

15,107/genome) were achieved for SVs from srWGS and lrWGS respectively (Table S2). 

 

Second, for srWGS data, we focused on three SV signatures: normalized read depth (RD), aberrant 

paired-end reads (PE), and split reads (SRs). RD represents the copy state of a genomic region as 

relative to expected copy ratio of 1 (i.e. RD<1 indicates copy loss, and RD>1 indicates copy gain). 

We collected RD, PE and SRs evidence per sample using the software package svtk.20 For each 

SV in Unique + RM sequences, we assessed RD spanning the SV and RD of the 1Kb regions 

flanking the SV. We next trained an SV classifier using RD values from deletions that were 

supported by VaPoR as compared to their flanking RD values. For a given RD threshold, we 

defined the false discovery rate (FDR) as the proportion of flanking regions that had a lower RD 

threshold and defined the true positive rate (TPR) as the proportion of VaPoR-supported deletions 

that had a lower RD threshold. We selected a conservative RD cutoff for deletions at 0.35 copy 

state to keep FDR below 1% (Figure S1) with an understanding that this cutoff is optimal for 

rescuing high-confidence deletions misinterpreted by VaPoR despite excluding most heterozygous 

deletions. We applied the same method to duplications and calculated an optimal cutoff of 1.60. 

As expected, RD did not differentiate insertions from their flanking regions (Figure S1), and thus 

we did not consider RD when filtering insertions. Overall 18.2% srWGS deletions (N=1,265 / 



 

genome) and 43.6% (N= 336 / genome) srWGS duplications were supported by RD evidences 

(Table S2). 

 

We similarly determined srWGS PE and SRs thresholds to distinguish likely true SVs from false 

positives (Figure S2). We collected counts of PE reads that were within 100 bp of each breakpoint 

of an SV and collected SRs counts within 50bp from each SV breakpoint. For SVs with more than 

one breakpoint, we used the minimum PE and SRs counts for that SV. Like RD, we designed a 

classification model as follows. We first generated three training groups: high-confidence 

homozygous SVs, high-confidence heterozygous SVs, and likely false positive SVs. We defined 

high-confidence homozygous deletions as those genotyped as homozygous alternative (1/1) by 

VaPoR, had VaPoR support in both parental genomes, and had RD of 0. High-confidence 

heterozygous deletions were genotyped as heterozygous (0/1) by VaPoR, had VaPoR support in 

only one parental genome, and had RD between 0.45 and 0.5. Likely false positive deletions did 

not have VaPoR support in any genomes in the trio, had RD >1, and were labeled as de novo in 

the original callset for SVs from srWGS. High-confidence homozygous duplications had RD >1.6,  

were genotyped as 1/1 by VaPoR, and had VaPoR support in both parental genomes. High-

confidence heterozygous duplications displayed RD>1.6, were genotyped as 0/1 by VaPoR, and 

had VaPoR support in only one parental genome. Finally, duplications lacking VaPoR support in 

all trio genomes, had RD <1.6 and were labeled as de novo in the original srWGS callset were 

considered likely false positives. For insertions, we relied solely on VaPoR results to define 

srWGS training sets. We defined high-confidence homozygous insertions as those genotyped as 

homozygous by VaPoR and had support in both parental genomes. We defined high-confidence 

heterozygous insertions as those genotyped as heterozygous by VaPoR and had VaPoR support in 



 

only one parental genome. Finally, we defined likely false-positive insertions as those without 

VaPoR support in any genomes in the trio (Figure S1). 

 

After identifying the SV subsets defined above for srWGS PE/SRs classifier training, we assessed 

a range of potential thresholds for PE and SRs to seek optimal values for each type of SVs by 

restricting the FDR to <1%, defined as the proportion of likely false-positive SVs that have more 

PE and SRs support than the selected threshold, while maximizing the TPR, defined as proportion 

of high-confidence homozygous and heterozygous SVs that have higher PE and SRs support. As 

shown in Table S3, we selected PE and SRs thresholds of 15 and 0, respectively, for deletions, 

resulting in FPR of 0.95% and TPR of 92.59% for homozygous and 97.52% for heterozygous 

deletions observed. 16.9% and 15.5% deletions from srWGS and lrWGS respectively were 

supported by PE/SRs evidences with these thresholds. Comparable results are displayed for 

duplications and insertions in Table S3.  
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