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Appendix: Bayesian model of COVID-19 mortality risk in HCT volunteers

A-1 | INTRODUCTION

This short document is a technical appendix to the paper discussing COVID-19 risks in human challenge trial. Here,

we show how a Bayesianmodel can synthesise information onmany infection fatality risks (IFRs) into a single estimate.

This estimate is specific to certain age groups and can be further adjusted by e.g. co-morbidity status. The analysis

presented here is a form of Bayesian meta-analysis , in that our primary objective is to weigh sources of evidence in

a way that captures both variability (here, heterogeneity in real IFRs across different settings) and uncertainty (here,

the fact that we do not know the IFRs in each setting precisely).

The ultimate objective of this model is to characterise risk in a way that is useful for design of HCTs. Therefore,

as a minimum, we want to incorporate variability across different populations into our prediction. Even better would

be to understand how different factors can drive heterogeneity: a priori we hypothesise that the three main drivers

of differences in IFRs are time-specific, population-specific and otherwise country-specific.A1

To characterise differences in observed IFRs we first develop a Bayesian model and apply it to publicly available

summary data on IFRs from multiple countries and contexts, with particular focus on the impact of age. This is cov-

ered by Section 2. We then use a simple model to hypothesise reduction in risk that may be achieved by screening

individuals for comorbidities; this is Section 3. We summarise all results in Section 4.

A-2 | AGE-SPECIFIC RISK OF COVID-19 MORTALITY

A-2.1 | Bayesian evidence synthesis model

What follows is an adaptation of typical methods of Bayesian evidence synthesis to analysis of IFRs. IFR is the ratio

of deaths to infections in a given population. Early estimates of COVID-19 mortality risk, e.g. by Verity, Okell, et al.

(2020a), placed it at over 0.6%; however, it was also evident from data that IFR could be orders of magnitude higher

in particular high risk groups, especially in the elderly, than in the general population.A2

By definition, our data on IFRs is a combination of data on deaths with data on infections. Typically, these are

disjoint samples, in that numbers of infections are estimated (typically very imprecisely) on select subpopulation, while

deaths are recorded in the general population (at a level of country, administrative region etc.). There are clear reasons

to believe that IFRs will differ across studies (e.g. due to age, comorbidity status, time, genetic factors, quality of

healthcare etc.). To address this, we will use a Bayesian hierarchical modelling framework to assume that the setting-

specific estimates of I F Rk can differ from each other but are linked through some common parameters. (By k ’s we

denote different populations; note that sometimes we may have multiple I F R ’s from different age groups in the same

location.)

The most straight-forward and “canonical” way to implement such a Bayesian model is by modelling log odds of

the event.A3 Deeks (2002) present a general treatment of such approach in medical statistics. Note, that for very rare

A1The role of time may be due to new treatments, improvements over time in our ability to treat COVID-19 or selection pressures which

may lead to more benign versions of the virus. Country-specific or location-specific factors in IFR data may be driven by under-reporting,

health care factors (including access to health care services) or underlying distributions of known risk factors. Additionally, some unknown

risk factors (e.g. genetic) may also be operating, in which case controlling for age and co-morbidities will be not sufficient to account for

cross-location differences.

A2Various estimates published since suggested that the relationship of mortality risk to age is consistent across different countries.

A3It is also possible to work with I F Rk parameters and treat them as derived from Beta distribution with some “hyperparameters” α and β of
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events the odds of mortality are very similar to probability of mortality, but we model events on odds scale as a good

“generic” approach to modelling binary data (in this case death following infections).A4

Basicmodels for this type of analysis of binary data can be implemented using existing statistical analysis packages;

see, for example, metafor package in R or baggr by Więcek and Meager (2020). Such analysis would treat IFR as a

logit-normal parameter to meta-analyse. However, note that when no deaths are observed, analysis of IFR (equal to

observed deaths divided by modelled infections) is problematic. Therefore we propose a “custom” model that built in

Stan which treats deaths and prevalences (rather than the IFRs) as data.

Let dk denote observed deaths for data point k and assume that logit of corresponding prevalence estimate is

pk is a parameter (typically obtained from a statistical modelling papers, government reports etc.). Total population in

k -th setting is nk . Total number of estimates is K . Then the model likelihood is as follows:

dk ∼ Binomial(nk , pk I F Rk ) (5)

logit(pk ) ∼ N(µ
(p )

k
, (σ

(p )

k
)2) (6)

where σ
(p )

k
and µ

(p )

k
are parameters obtained from the literature (or converted from these parameters – see next

section). The k data points collected can span many locations (studies); we denote them by lock and the total number

of locations by K l oc (with K l oc < K ).

In this model we can also account for various covariates impacting the IFRs (let’s denote their total number by

Np ), such as age groups (which we identify with median age of the population being studied, MedianAgek ). We code

them in a design matrix X . To center our X at the value of interest in our model (risk in 20-30 year olds), we use

a transformation MedianAge/10 - 2.5 to construct our matrix X . We denote all of the covariates using a design

matrix X and denote by Np the number of columns in X . We assume the impact on IFR is on logit scale, same as in

the “canonical” logistic models of binary data that we mentioned above:

logit(I F Rk ) = θlock + Xβ , (7)

θj ∼ N(τ,σ2),where j = 1, . . . ,K l oc . (8)

This means θ spans location-specific (random) effects on IFR while β is Np dimensional vector of (fixed) covariate

effects.

We implement our model in Stan and assume very weakly informative priors on all parameters, with prior for τ

centered at 1 death per 10,000 cases.

model {

//Uncertain prevalence estimates (mu^p and sigma^p above):

logit_prevalence ~ normal(mean_prevalence, sd_prevalence);

//Likelihood of mortality (d_k = obs_deaths, p_k = prevalence):

Beta distribution, as done by e.g. Carpenter (2016). That approach, however, does not offer an easy way of modelling impact of covariates

(e.g. age and co-morbidities) on the rates.

A4Another advantage of such a model is that it can use either individual-level or summary data and work with covariates (such as gender, age,

time of the study, co-morbidities), captured as odds ratios or risk ratios. If only summary data are available, covariates can be defined as study

level distributions (e.g. % male)



Manheim and Więcek et al. A-3

obs_deaths ~ binomial(population, prevalence .* ifr);

//Hierarchical component of the model (location-specific theta):

//logit_ifr = theta_k[loc] + to_vector(X*beta);

theta_k ~ normal(tau, sigma);

//Priors:

tau ~ normal(logit(.0001), 5);

sigma ~ normal(0, 10);

beta ~ normal(0, 10);

}

A-2.2 | Data

We used estimates originally collected by Levin, Cochran, and Walsh (2020) to construct the first version of analysis

dataset, which we then supplemented with more values extracted from other studies.

We included all relevant data points from the Levin et al. study This meant sometimes including values that the

original study omitted. For example, Levin et al. exclude data points with seroprevalence indistinguishable from zero;

our model retains them. We systematically went through the included studies listed in Appendix I and Appendices

H.4 and H.5 of Levin et al. to ensure complete inclusion of all their data. In addition, in the course of this process we

because aware of either updates to the studies Levin et al. used or entirely new relevant studies. We have reviewed

and included them in our model as well.

The input data into our model consists of deaths (treated as known) and prevalences (treated as logit-distributed

parameter with known mean and SD) in all reported age groups in all studiesA5.

All of input data are given in Table 4. The analysis dataset contains 167 data points from 34 studies, each con-

taining between 2 and 11 different age groups. We made only minimal modifications to source data, by 1) imputing

the values from the Italian fatality data based on a seroprevalence survey, 2) imputing population size in Maranhao

(as ratio of the reported number of infections and the mean infection risk) which were not reported and 3) assuming

that uncertainty in prevalence 0-29 age group in Iceland is same as in the 30-39 age group since data were missing.

As mentioned, our model treats number of COVID-attributable deaths as measured without error (due to lack of

data) but accounts for uncertainty in infection risks, which are always model-based estimates extracted from various

available data sources. In preparing data, we assumed that logits of prevalence estimates from available studies are

normally distributed, which seems to reproduce majority of data very well, see Figure 7 in the Supplement. There are

some discrepancies with studies that allowed for prevalence estimates to be 0, something that our logit model does

not allow.

For each studywe construct a median age scalar defined by the average of the endpoints of each age range, rather

than attempting to calculate a population-weighted mean.

Our approach of regressing on themedian age and use of all available data (rather than the subset of data available

in younger adults only) is necessitated by data limitations: out of 167 data points comprising age-specific estimates

of prevalence (or IFR) and counts of deaths, 37 contain individuals aged 20-30 who are of primary interest to us.

However, the populations are mixed with regards to age, with typical age groupings such as 19-49, 20-49, 20-39, 0-

49 used instead. In fact, we find only one estimate out of 37 that is entirely specific to the 20-29 age group (Brazilian

state of Maranhao), while one more has median age falling between 20 and 30 but is not specific to that age group.

A5This basic approach potentially exaggerates uncertainty, as we treat different 95% intervals reported in the study as uncorrelated.
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A-2.3 | Results

There were no issues with convergence of the Bayesian model. We set number of iterations to 5,000 and used 4

chains, with max_treedepth option set to 15. There were no divergent transitions and effective sample size was

greater than 2310 for all of 538 modeled parameters (this number includes fitted prevalences, IFRs, θ’s and their

transformations into/from logit scales). For the three main parameters in the model we obtained the following:

## Inference for Stan model: ifr_with0.

## 4 chains, each with iter=5000; warmup=2500; thin=1;

## post-warmup draws per chain=2500, total post-warmup draws=10000.

##

## mean se_mean sd 2.5% 25% 50% 75% 98% n_eff Rhat

## tau -8.80 0 0.12 -9.05 -8.88 -8.80 -8.72 -8.56 10954 1

## sigma 0.66 0 0.09 0.51 0.59 0.65 0.72 0.87 11075 1

## beta[1] 1.12 0 0.01 1.10 1.11 1.12 1.12 1.13 2556 1

##

## Samples were drawn using NUTS(diag_e) at Wed Feb 17 17:43:34 2021.

## For each parameter, n_eff is a crude measure of effective sample size,

## and Rhat is the potential scale reduction factor on split chains (at

## convergence, Rhat=1).

The mean coefficient of beta 1.12 corresponds to 3.06-fold increase in mortality risk following an infection per

each extra decade of age (95% uncertainty interval is 3.01-3.11).

From these parameters we can predict average risks for subjects of any given age x , by using the posterior distri-

bution of τ + (10x + 2.5)β (where 2.5 and 10 refer to the transformation that we applied to MedianAge inputs).

A-2.4 | Average infection fatality risk in young subjects

Since we centered our MedianAge at 25 years in constructing our matrix X , we can now obtain model-estimated risk

for a typical HCT population (aged 20 to 30, with median 25) by ignoring the β coefficient and examining τ and σ

only. We find that the average IFR for this group (equal to
exp (τ )

exp (1+τ )
) is 1.51 × 10

−4 (with 95% interval from 1.18 × 10
−4

to 1.92 × 10
−4).

A-2.4.1 | Heterogeneity in IFRs

However, there is a considerable variability in IFRs across different locations/dataset that we should consider. To take

into account parameter σ , we can generate draws from the N(τ,σ2) distribution, corresponding to a hypothetical IFR

in a new source of data. 95% interval for such model runs from 3.94 × 10
−5 to 5.79 × 10

−4. Since the model works a

logistic scale, another way of interpreting the across-dataset variability is reporting the fold-impact of σ on the mean

IFR; here, we obtain on average a 3.82-fold increase (decrease) in IFR per 2σ increase (decrease).

The lower end of the 95% interval, 3.94 × 10
−5, is not extreme given input data, where the “crude” mean IFR

(based on mean prevalence only) is below 7 per 10,000 for all data except for South Florida, and as low as 0 for some

countries that did not record deaths (Belgium, New Zealand, Korea, Iceland) in various age groups including 20-29

year olds or 1.4 per 10,000 in Utah, in the population aged 19-44. (Please refer to Table 4 for complete list of inputs.)
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TABLE 1 Main parameters in the sensitivity analysis models using subsets of data.

Included data beta sigma tau IFR, 20-29 year olds (per 1,000)

All data (main model) -8.80 (0.12) 0.65 (0.09) 0.15 (0.02) 1.12 (0.01)

Median age between 10 and 75 -8.72 (0.14) 0.72 (0.11) 0.17 (0.02) 1.07 (0.01)

Median age over 10 -8.79 (0.12) 0.66 (0.09) 0.15 (0.02) 1.11 (0.01)

Median age under 75 -8.75 (0.13) 0.70 (0.11) 0.16 (0.02) 1.08 (0.01)

We can assess this heterogeneity by inspecting the distribution of random effects in the model transformed into

IFRs, i.e. the inverse logit transformation θ parameters. The largest (posterior mean) IFR value of θ is 5.09 × 10
−4 in

Castiglione d’Adda. The smallest posterior mean for 20-29 year olds is 4.67 × 10
−5 in France.

A-2.4.2 | Predictive checks for the model

We constructed posterior predictive distributions for number of deaths in each of the inputs by using the generated

quantities functionality of Stan. Figure 3 compares the posterior means and 95% intervals with observed deaths.

Out of 167 observations that were used to fit the model, 157 were within 95% intervals of the posterior predictive

distributions. We observed the largest discrepancies occurred in Spanish data. Overall, we conclude that the simple

binomial model we used here is flexible enough to capture both age-specific risk increases and heterogeneity in IFRs

across settings/countries.

A-2.5 | Sensitivity analyses

As a sensitivity analysis, we also considered the impact on the main model parameters of dropping some data from

our analysis. The result is summarised in a table containing parameters σ , β , τ and the mean IFR for the 20-29 year

olds age group.

We considered excluding data for the youngest and the oldest individuals, as well as excluding both at once. Our

hypothesis was that at extreme ends of age the assumption of log-linearity of IFRs may not hold and potentially lead

to a biased estimate of the IFR in the 20-29 and 20-39 age groups. However, as shown in the accompanying table,

we find no substantial effect of excluding data on the main model paramters.
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COVID−attributable fatality risk

F IGURE 3 Comparison of model estimates (black) with data on observed fatality risk (FR, red), compared on

logarithmic scale. FR is number of deaths divided by overall population size. Bars are 95% posterior interval; point is

the mean. For better clarity, we grouped the plot into four panels according to observed FR X axes on each panel

differ. For many low-risk populations (upper-left quadrant) no deaths were reported: we indicate this by plotting a

red point on the left-hand side of the panel plot.
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F IGURE 4 IFR as a function of age. Narrower ribbon corresponds to the 95% posterior interval of average

across all included studies (tau parameter in the meta-analysis model), while the wider band takes into account

heterogeneity (tau and sigma). Lines are means. Red points are model estimates of mean IFRs in partciular studies,

with bars representing 95% posterior intervals. Panel A is untransformed data. Panel B shows the same data on log

10 scale.
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F IGURE 5 Fatality risks as a function of age in OpenSAFELY data. Fatality risk is zero in the 0-10 and 10-20 age

groups.

A-3 | RISK REDUCTION IN HEALTHY INDIVIDUALS

We now turn our attention to the question of how much a human challenge trial designer could reduce the mortality

risk by using simple screening methods, as discussed in the main paper.

Data for this section has been provided byOpenSAFELY (https://opensafely.org/) andwas used byWilliamson

et al. (2020) to characterise COVID-19 mortality risk factors for 10,926 COVID-19 deaths in England. We group the

total of 21,444,863 individuals into a total population and a lower-risk sub-population, defined as non-smoker, non-

obese and without the comoribidities reported in the OpenSAFELY studyA6, most notably respiratory and cardiovas-

cular diseases and type I diabetes. For brevity we refer to the population without one of the pre-defined comorbidities

as “healthy”. In contrast to the cited publication, we include records of individuals under 18 in our assessment. Counts

grouped by age are presented in Table 2. Complete data (broken down by gender) are in Table 2 at the end of the

document.

As shown in Table 2, for the age group of 20-29 the crude risk ratio (of general population vs the healthy subset

only) is 1.53, but, due to low number of events in both healthy and general population, with a very wide 95% interval

from 0.6 to 5.65.A7 As data on relative risks in other age groups is clearly related to the relative risk in 20-29 age

group, we use another meta-analysis model to improve our estimate. Additionally, relative risks are higher in women

than in men – something that we can account for in our model too.

In our modelling we make a strong assumption that infection risks in population with comorbidities are the same

A6"asthma, other chronic respiratory disease, chronic heart disease, diabetes mellitus, chronic liver disease, chronic neurological diseases, com-

mon autoimmune diseases (Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE) or psoriasis), solid organ transplant, asplenia,

other immunosuppressive conditions, cancer, evidence of reduced kidney function, and raised blood pressure or a diagnosis of hypertension"

A7We obtain the interval using a simulation approach. Using normal approximation of log(RR) statistic we obtain a narrower 0.57 to 4.1, perhaps

due to poor quality of approximation for rare events.
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TABLE 2 Data from the OpenSAFELY database grouped by age.

Population Fatalities FR per 100k

Age group All Healthy All Healthy All Healthy RR

0 to 9 2,160,958 2,007,997 0 0 0.00 0.00 NaN

10 to 19 2,428,494 2,000,761 0 0 0.00 0.00 NaN

20 to 29 2,530,792 1,788,907 13 6 0.51 0.34 1.5

30 to 39 2,960,611 1,909,227 41 12 1.38 0.63 2.2

40 to 49 2,849,984 1,565,935 140 25 4.91 1.60 3.1

50 to 59 3,051,110 1,243,728 522 56 17.11 4.50 3.8

60 to 69 2,392,392 622,357 1,101 92 46.02 14.78 3.1

70 to Inf 3,070,522 317,238 9,109 318 296.66 100.24 3.0

as in the general population. In other words, we assume that denominator for IFR is same in both populations. We

then specify a generic partial pooling model of fatality risks (FR, defined as number of deaths in the entire population,

without regards to infection status) such that

logit(FRk ) ∼ N(αagek comorbk + βmalek + γagek ), (9)

αi ∼ N(µ,σ) for all i , (10)

where, for k -th observation, agek is the age group, and comorbk and malek are indicator variables. This means

that each age group is assigned different “baseline” fatality risks.

Note that the assumption of FRs varying across age groups that we just mentioned differs from the model of

age-specific IFRs in Section 2. This is because we hypothesised that infection risks (which are used as denominators

in the IFR model of Section 2) will vary across age groups. This is borne out by Figure 5.

Summary of the main model parameters is as follows:

## mean se_mean sd 2.5% 25% 50% 75% 98% n_eff Rhat

## mu 1.43 0.00278 0.190 1.05 1.33 1.43 1.53 1.81 4674 1

## sigma 0.36 0.00462 0.212 0.12 0.22 0.31 0.44 0.90 2115 1

## alpha[3] 1.33 0.00440 0.329 0.60 1.14 1.34 1.53 1.95 5577 1

## beta 0.40 0.00019 0.019 0.36 0.39 0.40 0.42 0.44 10314 1

## gamma[3] -13.05 0.00415 0.342 -13.76 -13.27 -13.04 -12.82 -12.43 6795 1

We find that the mean risk ratio between population with comorbidities and healthy sub-population in 20-29 age

group (exponent of α3 above) is 3.97, with wide 95% uncertainty interval of 1.81 to 7.05.A8

A8Using simplemodels that assumed identical risk ratios in all age groupswould lead to amean RR of similar magnitude but amuch less uncertain

estimate, due tomore rigid model assumptions; similarly, assuming some linear age structure on risks, such as in themainmeta-analysis model

above, would may lead to a different RR, but we do not think such an assumption is justified here. We do not include outputs of these models

in this short write-up.
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Next, using the posterior samples we calculate the event rate in total population (i.e. θ∗ = (θ1n1 +θ2n2)/(n1 +n2) ,

where subscripts 1 and 2 are healthy and comorbid sub-populations) and then divide it by ratio in healthy population

to obtain an estimate of risk reduction possible by selecting healthy volunteers only. The mean posterior value is 1.88,

with 95% uncertainty interval from 1.24 to 2.79. Due to use of Bayesian hierarchical model over many age groups,

the uncertainty interval is much narrower than on the risk reduction factor calculated on 20-29 age group only.

To validate the model, we conducted a simple posterior predictive check for numbers of deaths in different age

groups and genders. The graphical check is presented in Figure 6. Overall we find that the simple model has no

problem with reproducing observed data.
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F IGURE 6 Comparison of posterior predictive numbers of deaths from the fitted Bayesian model (mean and

95% uncertainty intervals) with data inputs (circles). For each age grouping we have 4 estimates: male/female and

healthy vs general population
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A-4 | CONCLUSION AND SUMMARY OF RESULTS

In conclusion, the implications of the model for the risk in healthy young subjects are as follows:

• We find that average IFR in 20-29 age group for the studies included in this analysis is 1.51 × 10
−4 with 95%

interval from 1.18 × 10
−4 to 1.92 × 10

−4.

– It is feasible that the mean IFR can be decreased as much as 3.82-fold (2σ impact on the IFR according to

hyper-SD parameter in the meta-analysis model).

– It is easy to argue that a HCT designer would be able to achieve IFR at least as low as within any of the

large-scale studies included in our sample of populations. The smallest posterior mean for 20-29 year olds is

4.67 × 10
−5, fitted to data from France.

– Extending the HCT population to also include 30-39 year olds would lead to mean IFR of 2.65×10−4 with 95%

interval from 2.06 × 10
−4 to 3.35 × 10

−4. Lowest mean IFR would then be 8.2 × 10
−5 (also in France).

• In the general population the risk rises by the factor or 3.06 per each decade of age, with 95% interval from 3.01

to 3.11.

• In healthy population (defined as lack of co-morbidities listed above), the average mortality risk in 20-29 year olds

is 1.88 times lower than in the general population, with 95% uncertainty interval from 1.24 to 2.79.

– Our 1.88 estimate is a bit higher than themean “crude” risk ratio of 1.53 becausewe use a Bayesian hierarchical

model that synthesises evidence across all age groups.

– Expanding to 20-39 year olds, the risk in healthy sub-population would be 2.04 times lower than in the general

population (95% interval from 1.24 to 2.79).

• Combining the smallest posterior IFR for 20-29 year olds with our estimated fold-reduction due to excluding

individuals with co-morbidities from the population would lead to a mean infection fatality risk of 2.6× 10
−5 with

95% Bayesian interval from 1.62 × 10
−5 to 3.89 × 10

−5.

– In 20-39 year old subjects the risk would be 4.09 × 10
−5 (2.88 × 10

−5 to 5.55 × 10
−5).
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A-5 | SUMMARY OF INCLUDED STUDIES AND COMPLETE INPUT DATA

We present two tables, one listing all study-level information and another breaking down information by age group.

References to all included studies are given in a separate bibliography at the end of this appendix. Below the table,

we provide a list that can be used to cross-reference study locations with their bibliographic references.

TABLE 3 Complete table of studies used by the meta-analysis model.

Study End date Age groups Deaths N IR per 100

Atlanta 2020-05-03 0-17, 18-49, 50-64, 65+ 366 1.8e+06 2.54

Australia 2020-06-12 0-39, 40-59, 60-69,

70-79, 80+

102 2.5e+07 0.06

Belgium 2020-05-16 0-24, 25-44, 45-64,

65-74, 75-84, 85+

4021 1.1e+07 6.10

Brazil Maranhao and Sao Luis NA 0-9, 10-19, 20-29, 30-39,

40-49, 50-59, 60-69, 70+

5026 7.0e+06 42.13

Castiglione d’Adda 2020-06-07 15-64, 65-74, 75-84, 85+ 62 4.1e+03 23.21

Connecticut 2020-05-03 0-19, 20-49, 50-59, 60+ 3867 3.6e+06 4.69

Diamond Princess 2020-02-20 0-49, 50-59, 60-69,

70-79, 80+

14 3.7e+03 16.72

England 2020-07-13 15-44, 45-64, 65-74, 75+ 30174 4.6e+07 5.99

England (ONS) 2020-07-26 15-49, 50-69, 70+ 50987 5.0e+07 5.30

France 2020-07-07 0-9, 44488, 20-29, 30-39,

40-49, 50-59, 60-69,

70-79, 80+

28802 6.5e+07 6.73

Gangelt 2020-04-06 35-54, 55-74, 75+ 9 7.8e+03 14.88

Geneva 2020-06-02 0-19, 20-49, 50-64, 65+ 274 4.8e+05 10.83

Iceland 2020-06-14 0-29, 30-39, 40-49,

50-59, 60-69, 70-79, 80+

10 3.4e+05 0.67

Indiana 2020-04-29 0-39, 40-59, 60+ 2032 6.7e+06 2.76

Ireland 2020-07-16 15-44, 45-64 112 3.2e+06 1.39

Italy 2020-07-27 0-19, 20-29, 30-49,

50-59, 60-69, 70+

34142 6.0e+07 2.08

Italy Report 2020-08-01 0-17, 18-34, 35-49,

50-59, 60-69, 70+

26123 6.0e+07 2.47

Korea 2020-07-11 0-29, 30-39, 40-49,

50-59, 60-69, 70-79, 80+

289 5.1e+07 0.05

Lithuania 2020-06-18 0-39, 40-49, 50-59,

60-69, 70-79, 80+

76 2.7e+06 0.15

Louisia. 2020-04-08 0-18, 19-49, 50-59, 60+ 1265 4.6e+06 5.71

Minneapolis 2020-05-12 0-18, 19-49, 50-59, 60+ 993 3.9e+06 2.68

Missouri 2020-04-26 0-19, 20-49, 50-59, 60+ 681 6.1e+06 2.67
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TABLE 3 Complete table of studies used by the meta-analysis model. (continued)

Study End date Age groups Deaths N IR per 100

Netherlands 2020-04-17 0-49, 50-59, 60-69,

70-79, 80+

4596 1.7e+07 3.54

New York 2020-04-28 0-19, 20-39 494 1.0e+07 14.60

New York 2020-05-23 40-49, 50-59, 60+ 28166 9.5e+06 13.97

New Zealand 2020-07-09 0-29, 30-39, 40-49,

50-59, 60-69, 70-79, 80+

22 4.8e+06 0.07

Ontario 2020-06-30 0-19, 20-59, 60+ 2723 1.5e+07 1.10

Philadelphia 2020-04-25 0-18, 19-49, 50-64, 65+ 2716 4.1e+06 3.03

Portugal 2020-07-08 0-9, 10-19, 20-39, 40-59,

60+

1660 1.0e+07 2.19

San Francisco Bay 2020-04-27 0-18, 19-49, 50-64, 65+ 424 7.7e+06 1.12

South Florida 2020-04-10 0-18, 19-49, 50-64, 65+ 1290 6.3e+06 1.84

Spain 2020-07-15 0-39, 40-44, 45-49,

50-54, 55-59, 60-64,

65-69, 70-74, 75-79,

80-84, 85+

40486 4.7e+07 3.79

Sweden 2020-06-18 0-19, 20-49, 50-69,

70-95

5053 1.0e+07 5.41

Utah 2020-05-03 19-44, 45-64, 65+ 98 2.2e+06 2.26

Western Washington 2020-04-01 0-19, 20-39, 40-59, 60+ 777 4.3e+06 1.14

Atlanta: Biggs et al. (2020); Australia: A. D. of Health (2020); Belgium: Herzog et al. (2020); Belgium: Molenberghs

et al. (2020); Brazil Maranhao and Sao Luis: Silva et al. (2020); Brazil Regional: Hallal et al. (2020); Cache County, UT:

Project (2020); Castiglione d’Adda: Pagani et al. (2020); Connecticut: Havers et al. (2020); Connecticut: Mahajan et

al. (2020); Diamond Princess: Mizumoto et al. (2020); England: Ward et al. (2020); England (ONS): England (2020);

France: Carrat et al. (2020); France: F. P. Health (2020); Gangelt: Streeck et al. (2020); Geneva: Perez-Saez et al.

(2020); Iceland: I. D. of Health (2020); Indiana: Menachemi et al. (2020); Ireland: HPSC (2020); Italy: Istat (2020);

Italy Deaths: Group (2020); Italy Report: Istat (2020); Korea: Control and Agency (2020); Lithuania: Registry (2020);

Lombardy: Paradisi and Rinaldi (2020); Louisia.: Havers et al. (2020); Minneapolis: Havers et al. (2020); Missouri:

Havers et al. (2020); Netherlands: RIVM (2020); New York: Rosenberg et al. (2020); New York State Comorbidity: N.

Y. S. D. of Health (2020); New Zealand: N. Z. M. of Health (2020); NYC JAMA: Richardson S (2020); Ontario: Health

Protection and Health Ontario) (2020); Philadelphia: Havers et al. (2020); Portugal: Saúde (2020); San Francisco Bay:

Havers et al. (2020); South Florida: Havers et al. (2020); Spain: Pastor-Barriuso et al. (2020); Sweden: Authority

(2020); Utah: Havers et al. (2020); Utah: Project (2020); Verity et al.: Verity, Okell, et al. (2020b); Washington County,

UT: Project (2020); Weber County, UT: Project (2020); West Salt Lake, UT: Project (2020); Western Washington:

Havers et al. (2020)
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50−500 deaths per million > 500 deaths per million

<5 deaths per million 5−50 deaths per million

0.001 0.010 0.100 0.001 0.010 0.100

1e−08 1e−05 1e−02 0.001 0.010 0.100

Atlanta.18−49
Australia.70−79
Belgium.25−44

Brazil Maran.0−9
Brazil Maran.10−19
Brazil Maran.20−29

England.15−44
England (ONS.15−49

France.30−39
France.40−49
Iceland.30−39
Indiana.0−39

Ireland.15−44
Italy.30−49

Italy Report.35−49
Korea.60−69
Korea.70−79

Lithuania.50−59
Lithuania.60−69

Louisia..19−49
Minneapolis.19−49

Missouri.20−49
New Zealand.60−69
New Zealand.70−79

Ontario.20−59
Philadelphia.19−49

Portugal.40−59
San Francisc.19−49
San Francisc.50−64
South Florid.19−49

Spain.0−39
Spain.40−44
Spain.45−49

Sweden.20−49
Utah.45−64

Western Wash.20−39

Atlanta.65+
Belgium.65−74
Belgium.75−84

Belgium.85+
Brazil Maran.50−59
Brazil Maran.60−69

Brazil Maran.70+
Castiglione .15−64
Castiglione .65−74
Castiglione .75−84

Castiglione .85+
Connecticut.60+

Diamond Prin.60−69
Diamond Prin.70−79

Diamond Prin.80+
England.65−74

England.75+
England (ONS.70+

France.70−79
France.80+

Gangelt.75+
Geneva.65+
Indiana.60+

Italy.70+
Italy Report.70+

Louisia..60+
Minneapolis.60+

Netherlands.70−79
Netherlands.80+
New York.50−59

New York.60+
Ontario.60+

Philadelphia.65+
Portugal.60+

South Florid.65+
Spain.65−69
Spain.70−74
Spain.75−79
Spain.80−84

Spain.85+
Sweden.70−95

Western Wash.60+

Atlanta.0−17
Australia.0−39

Australia.40−59
Australia.60−69

Belgium.0−24
Connecticut.0−19

Diamond Prin.0−49
Diamond Prin.50−59

France.0−9
France.20−29

France.44488.0
Gangelt.35−54
Gangelt.55−74

Geneva.0−19
Geneva.20−49

Iceland.0−29
Iceland.40−49
Iceland.50−59

Italy.0−19
Italy.20−29

Italy Report.0−17
Italy Report.18−34

Korea.0−29
Korea.30−39
Korea.40−49
Korea.50−59

Lithuania.0−39
Lithuania.40−49

Louisia..0−18
Minneapolis.0−18

Missouri.0−19
Netherlands.0−49

New York.0−19
New Zealand.0−29

New Zealand.30−39
New Zealand.40−49
New Zealand.50−59

Ontario.0−19
Philadelphia.0−18

Portugal.0−9
Portugal.20−39

Portugal.44488.0
San Francisc.0−18
South Florid.0−18

Sweden.0−19
Utah.19−44

Western Wash.0−19

Atlanta.50−64
Australia.80+

Belgium.45−64
Brazil Maran.30−39
Brazil Maran.40−49
Connecticut.20−49
Connecticut.50−59

England.45−64
England (ONS.50−69

France.50−59
France.60−69

Geneva.50−64
Iceland.60−69
Iceland.70−79

Iceland.80+
Indiana.40−59
Ireland.45−64

Italy.50−59
Italy.60−69

Italy Report.50−59
Italy Report.60−69

Korea.80+
Lithuania.70−79

Lithuania.80+
Louisia..50−59

Minneapolis.50−59
Missouri.50−59

Missouri.60+
Netherlands.50−59
Netherlands.60−69

New York.20−39
New York.40−49

New Zealand.80+
Philadelphia.50−64

San Francisc.65+
South Florid.50−64

Spain.50−54
Spain.55−59
Spain.60−64

Sweden.50−69
Utah.65+

Western Wash.40−59

Infection rate (95% interval)

F IGURE 7 Comparison of model-estimated prevalences (95% CI’s reported by modelling studies) collected by

Levin, Cochran, and Walsh (2020) and our distributional assumptions: additional circles show 95% CIs recreated by

assuming logit-normal distribution of prevalence. We group studies into 4 bands of mortality to mirror earlier figures.

Please note that this approach produces discrepancies in a number of US estimates where the confidence intervals

were skewed toward including 0. However, since we do not have access to source data, we decided to use the

logit-normal assumption for all estimates. This assumption may have an effect of overestimating mortality risk in

settings where prevalence was very low.
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TABLE 4 Complete table of inputs used by the meta-analysis model and crude IFR’s.

Infection rate (%)

Study location Age Deaths N Mean 2.5% 97.5% IFR/100k

Brazil Maranhao and Sao Luis 0-9 29 1.2e+06 42.60 51.30 33.80 6.0e-02

France 0-9 3 7.5e+06 5.90 10.20 1.60 1.0e-02

Portugal 0-9 0 8.4e+05 2.20 6.00 0.90 0.0e+00

Atlanta 0-17 1 4.0e+05 0.00 1.00 0.00 1.0e+05

Italy Report 0-17 5 9.6e+06 2.20 2.80 1.70 2.0e-02

Louisia. 0-18 1 1.1e+06 2.80 11.50 0.00 3.0e-02

Minneapolis 0-18 0 9.7e+05 5.80 14.30 0.00 0.0e+00

Philadelphia 0-18 1 9.4e+05 2.20 6.90 0.00 5.0e-02

San Francisco Bay 0-18 0 1.6e+06 1.70 7.70 0.00 0.0e+00

South Florida 0-18 0 1.3e+06 2.40 7.80 0.00 0.0e+00

Missouri 0-19 0 1.5e+06 1.40 4.10 0.00 0.0e+00

Italy 0-19 4 1.1e+07 1.80 2.40 1.30 2.0e-02

Connecticut 0-19 2 8.3e+05 0.80 2.90 0.00 3.0e-01

Geneva 0-19 0 8.0e+04 9.17 14.06 5.40 0.0e+00

New York 0-19 12 4.9e+06 14.60 16.10 13.10 2.0e-02

Ontario 0-19 1 3.1e+06 0.80 1.40 0.30 4.0e-02

Sweden 0-19 1 2.3e+06 5.73 7.00 4.45 1.0e-02

Western Washington 0-19 0 1.0e+06 0.70 2.50 0.00 0.0e+00

Belgium 0-24 0 3.2e+06 6.00 8.60 4.20 0.0e+00

Brazil Maranhao and Sao Luis 10-19 21 1.3e+06 43.00 52.40 33.50 4.0e-02

France 44488 3 7.9e+06 3.50 6.40 0.70 1.0e-02

Iceland 0-29 0 1.4e+05 0.41 0.60 0.28 0.0e+00

Korea 0-29 0 1.6e+07 0.06 0.08 0.03 0.0e+00

New Zealand 0-29 0 1.9e+06 0.06 0.08 0.03 0.0e+00

Portugal 10-19 0 1.0e+06 2.40 6.10 0.90 0.0e+00

Indiana 0-39 20 3.5e+06 3.05 4.30 1.90 1.8e-01

Spain 0-39 225 1.9e+07 3.73 4.60 2.93 3.1e-01

Australia 0-39 0 1.4e+07 0.06 0.09 0.03 0.0e+00

Lithuania 0-39 0 1.2e+06 0.15 0.22 0.07 0.0e+00

Italy 20-29 16 6.2e+06 1.70 2.00 1.30 1.5e-01

Brazil Maranhao and Sao Luis 20-29 47 1.3e+06 49.20 57.30 41.10 8.0e-02

France 20-29 21 7.4e+06 7.00 10.20 3.80 4.0e-02

Italy Report 18-34 43 1.1e+07 2.10 2.40 1.70 1.9e-01

Netherlands 0-49 40 1.0e+07 3.50 5.20 2.50 1.1e-01

England 15-44 524 2.1e+07 7.20 7.66 6.73 3.4e-01

Ireland 15-44 18 2.0e+06 1.50 2.70 0.30 6.1e-01

New York 20-39 482 5.4e+06 14.60 16.10 13.10 6.1e-01
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TABLE 4 Complete table of inputs used by the meta-analysis model and crude IFR’s. (continued)

Study location Age Deaths N Mean 2.5% 97.5% IFR/100k

Portugal 20-39 4 2.3e+06 0.90 5.30 0.10 1.9e-01

Western Washington 20-39 8 1.3e+06 1.30 2.30 0.70 4.6e-01

Philadelphia 19-49 51 1.4e+06 5.90 9.80 2.40 6.0e-01

Utah 19-44 3 1.2e+06 1.80 3.50 0.60 1.4e-01

England (ONS) 15-49 1035 2.5e+07 6.10 7.50 4.90 6.8e-01

Atlanta 18-49 20 8.7e+05 3.30 6.40 1.60 7.0e-01

Louisia. 19-49 85 1.9e+06 7.40 10.00 4.70 6.1e-01

Minneapolis 19-49 18 1.6e+06 2.30 4.20 0.80 4.8e-01

San Francisco Bay 19-49 25 3.4e+06 1.10 2.60 0.00 6.7e-01

South Florida 19-49 61 2.5e+06 0.90 2.20 0.20 2.7e+00

Missouri 20-49 18 2.3e+06 3.40 5.50 1.40 2.3e-01

Belgium 25-44 18 3.0e+06 5.90 8.30 4.20 1.0e-01

Brazil Maranhao and Sao Luis 30-39 163 1.1e+06 44.40 51.40 37.40 3.4e-01

Connecticut 20-49 75 1.3e+06 6.10 9.30 3.10 9.2e-01

Diamond Princess 0-49 0 1.2e+03 8.26 8.28 8.24 0.0e+00

France 30-39 84 8.0e+06 3.40 5.80 1.00 3.1e-01

Geneva 20-49 1 2.2e+05 13.12 17.00 9.75 3.0e-02

Iceland 30-39 1 4.7e+04 1.00 1.50 0.70 2.1e+00

Korea 30-39 2 7.1e+06 0.04 0.07 0.02 6.4e-01

New Zealand 30-39 0 6.2e+05 0.08 0.12 0.04 0.0e+00

Sweden 20-49 63 3.9e+06 6.50 7.84 5.16 2.5e-01

Ontario 20-59 122 8.0e+06 1.00 1.30 0.70 1.5e+00

Italy 30-49 369 1.6e+07 2.00 2.40 1.70 1.1e+00

Castiglione d’Adda 15-64 4 3.1e+03 19.10 23.24 14.86 6.9e+00

Italy Report 35-49 334 1.3e+07 2.40 2.80 2.10 1.1e+00

Spain 40-44 78 4.0e+06 3.80 4.60 3.00 5.1e-01

Brazil Maranhao and Sao Luis 40-49 290 8.0e+05 32.20 41.00 23.40 1.1e+00

France 40-49 231 8.3e+06 7.70 10.90 4.60 3.6e-01

Gangelt 35-54 0 3.6e+03 14.00 18.00 12.00 0.0e+00

Iceland 40-49 0 4.3e+04 1.50 2.00 1.10 0.0e+00

Korea 40-49 3 8.2e+06 0.04 0.06 0.02 8.8e-01

Lithuania 40-49 1 3.6e+05 0.18 0.29 0.10 1.6e+00

New York 40-49 1026 2.4e+06 15.30 17.00 13.70 2.8e+00

New Zealand 40-49 0 5.9e+05 0.07 0.11 0.04 0.0e+00

Spain 45-49 196 3.9e+06 4.10 5.20 3.30 1.2e+00

Indiana 40-59 148 1.7e+06 3.14 5.00 1.90 2.8e+00

Australia 40-59 3 6.4e+06 0.06 0.10 0.04 7.8e-01

Portugal 40-59 75 3.1e+06 2.60 6.60 1.00 9.4e-01
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TABLE 4 Complete table of inputs used by the meta-analysis model and crude IFR’s. (continued)

Study location Age Deaths N Mean 2.5% 97.5% IFR/100k

Western Washington 40-59 69 1.1e+06 0.90 1.90 0.30 6.9e+00

Spain 50-54 230 3.6e+06 4.20 5.20 3.30 1.5e+00

Italy 50-59 1186 9.4e+06 2.70 3.10 2.30 4.7e+00

England 45-64 4657 1.4e+07 6.18 6.58 5.78 5.2e+00

Louisia. 50-59 126 5.9e+05 8.30 11.90 4.50 2.6e+00

Minneapolis 50-59 47 5.2e+05 0.70 2.80 0.00 1.3e+01

Missouri 50-59 43 8.0e+05 2.00 3.80 0.50 2.7e+00

Philadelphia 50-64 290 1.1e+06 0.80 2.80 0.00 3.4e+01

Utah 45-64 24 6.3e+05 2.90 5.20 0.90 1.3e+00

Belgium 45-64 280 3.1e+06 6.20 8.30 4.70 1.5e+00

Brazil Maranhao and Sao Luis 50-59 533 6.0e+05 39.10 46.10 32.10 2.3e+00

Connecticut 50-59 157 5.2e+05 8.10 11.60 4.80 3.7e+00

Diamond Princess 50-59 0 4.0e+02 14.82 14.90 14.70 0.0e+00

France 50-59 860 8.6e+06 9.70 13.10 6.40 1.0e+00

Iceland 50-59 0 4.2e+04 0.80 1.30 0.50 0.0e+00

Ireland 45-64 94 1.2e+06 1.20 2.10 0.30 6.4e+00

Italy Report 50-59 1196 9.6e+06 3.10 3.50 2.70 4.0e+00

Korea 50-59 15 8.5e+06 0.06 0.08 0.03 3.2e+00

Lithuania 50-59 3 4.2e+05 0.17 0.33 0.10 4.2e+00

Netherlands 50-59 137 2.5e+06 4.30 5.80 3.10 1.3e+00

New York 50-59 2764 2.6e+06 16.00 17.50 14.60 6.6e+00

New Zealand 50-59 0 6.3e+05 0.08 0.12 0.04 0.0e+00

Atlanta 50-64 51 3.3e+05 4.90 12.90 1.80 3.2e+00

San Francisco Bay 50-64 66 1.5e+06 0.70 2.40 0.00 6.4e+00

South Florida 50-64 169 1.3e+06 2.00 4.00 0.30 6.6e+00

Geneva 50-64 16 9.9e+04 10.45 14.11 7.31 1.6e+00

Spain 55-59 758 3.4e+06 3.90 4.90 3.10 5.7e+00

England (ONS) 50-69 7118 1.6e+07 4.80 5.80 4.00 9.4e+00

Sweden 50-69 504 2.4e+06 4.81 5.98 3.64 4.4e+00

Spain 60-64 1249 2.9e+06 3.50 4.60 2.70 1.2e+01

Gangelt 55-74 0 3.1e+03 17.00 23.00 12.00 0.0e+00

Italy 60-69 3433 7.3e+06 2.20 2.50 1.70 2.1e+01

Australia 60-69 13 2.7e+06 0.09 0.13 0.05 5.4e+00

Brazil Maranhao and Sao Luis 60-69 1155 3.9e+05 40.30 51.40 29.10 7.3e+00

Diamond Princess 60-69 1 9.2e+02 19.18 19.30 19.10 5.6e+00

France 60-69 2204 7.8e+06 10.00 13.50 6.50 2.8e+00

Iceland 60-69 2 3.8e+04 0.50 1.00 0.30 1.1e+01

Italy Report 60-69 3274 7.5e+06 2.60 2.90 2.10 1.7e+01
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TABLE 4 Complete table of inputs used by the meta-analysis model and crude IFR’s. (continued)

Study location Age Deaths N Mean 2.5% 97.5% IFR/100k

Korea 60-69 41 6.5e+06 0.05 0.08 0.03 1.2e+01

Lithuania 60-69 12 3.5e+05 0.13 0.20 0.08 2.6e+01

Netherlands 60-69 454 2.1e+06 3.50 5.00 2.50 6.1e+00

New Zealand 60-69 3 5.2e+05 0.07 0.10 0.04 8.3e+00

Spain 65-69 1905 2.4e+06 4.10 5.30 3.10 1.9e+01

Castiglione d’Adda 65-74 17 5.4e+02 31.30 37.30 25.40 1.0e+02

England 65-74 5663 5.6e+06 3.16 3.66 2.67 3.2e+01

Belgium 65-74 663 1.1e+06 4.10 7.20 2.30 1.4e+01

Connecticut 60+ 3633 8.8e+05 4.20 6.00 2.30 9.9e+01

Ontario 60+ 2600 3.4e+06 1.60 2.10 1.10 4.7e+01

Indiana 60+ 1864 1.5e+06 1.65 2.40 1.00 7.5e+01

Louisia. 60+ 1053 1.0e+06 4.40 8.00 1.50 2.3e+01

Minneapolis 60+ 928 8.1e+05 1.00 3.20 0.00 1.1e+02

Missouri 60+ 620 1.5e+06 3.20 4.60 1.90 1.3e+01

Spain 70-74 3230 2.2e+06 3.80 5.10 2.80 3.9e+01

Western Washington 60+ 700 8.7e+05 1.70 2.70 0.90 4.7e+01

New York 60+ 24376 4.5e+06 12.10 13.10 11.20 4.4e+01

Portugal 60+ 1581 3.0e+06 2.70 5.40 1.20 2.0e+01

Australia 70-79 31 1.8e+06 0.08 0.12 0.04 2.1e+01

France 70-79 5650 5.7e+06 5.90 8.70 3.10 1.7e+01

Geneva 65+ 257 8.4e+04 6.82 10.53 3.83 4.5e+01

Netherlands 70-79 1539 1.6e+06 3.00 5.30 1.70 3.2e+01

New Zealand 70-79 7 3.6e+05 0.04 0.07 0.02 4.4e+01

Atlanta 65+ 294 2.3e+05 0.70 4.50 0.10 1.9e+02

Diamond Princess 70-79 8 1.0e+03 23.05 23.20 23.00 3.5e+01

Iceland 70-79 3 2.3e+04 0.30 1.30 0.27 4.3e+01

Korea 70-79 84 3.6e+06 0.05 0.07 0.03 4.8e+01

Lithuania 70-79 23 2.2e+05 0.09 0.14 0.05 1.1e+02

Philadelphia 65+ 2374 6.8e+05 1.60 3.50 0.30 2.2e+02

San Francisco Bay 65+ 333 1.2e+06 0.90 2.50 0.20 3.0e+01

Utah 65+ 71 3.7e+05 2.70 5.00 0.90 7.2e+00

South Florida 65+ 1060 1.2e+06 3.00 4.50 1.70 2.9e+01

Spain 75-79 6175 1.8e+06 3.40 5.00 2.40 1.0e+02

England (ONS) 70+ 42834 8.8e+06 3.90 5.20 3.00 1.3e+02

Sweden 70-95 4485 1.5e+06 3.12 4.12 2.13 9.4e+01

Italy 70+ 29134 1.0e+07 2.10 2.50 1.70 1.3e+02

Castiglione d’Adda 75-84 25 4.0e+02 36.60 44.90 28.30 1.7e+02

Belgium 75-84 1182 6.9e+05 7.00 11.70 4.20 2.4e+01
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TABLE 4 Complete table of inputs used by the meta-analysis model and crude IFR’s. (continued)

Study location Age Deaths N Mean 2.5% 97.5% IFR/100k

Brazil Maranhao and Sao Luis 70+ 2788 3.4e+05 34.30 42.90 25.70 2.4e+01

England 75+ 19330 4.8e+06 3.30 4.08 2.53 1.2e+02

Gangelt 75+ 9 1.2e+03 12.00 27.00 6.00 6.4e+01

Italy Report 70+ 21271 1.1e+07 2.50 2.90 2.10 8.1e+01

Spain 80-84 5192 1.3e+06 3.90 6.10 2.40 1.0e+02

Diamond Princess 80+ 5 2.2e+02 25.00 25.10 24.90 8.6e+01

Iceland 80+ 4 1.3e+04 0.20 2.50 0.10 1.6e+02

Korea 80+ 144 1.9e+06 0.06 0.09 0.03 1.3e+02

New Zealand 80+ 12 1.9e+05 0.04 0.06 0.02 1.5e+02

Lithuania 80+ 37 1.7e+05 0.13 0.19 0.07 1.7e+02

Netherlands 80+ 2426 8.4e+05 2.80 7.30 0.90 1.0e+02

Australia 80+ 55 1.1e+06 0.05 0.07 0.03 1.0e+02

France 80+ 19746 4.0e+06 7.30 10.30 4.20 6.7e+01

Spain 85+ 21248 1.6e+06 2.85 5.60 1.56 4.6e+02

Castiglione d’Adda 85+ 16 1.5e+02 42.10 53.10 31.10 2.6e+02

Belgium 85+ 1878 3.3e+05 13.20 19.60 8.90 4.4e+01
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