GABPα and CREB1 binding to double nucleotide polymorphisms of their consensus motifs and cooperative binding to the composite ETS⇔CRE motif (ACCGGAAGTGACGTCA)

Nima Assad¹, Desiree Tillo¹, Sreejana Ray¹, Alexa Dzienny¹, Peter C. FitzGerald², Charles Vinson^{1,*}

¹Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

²Genome Analysis Unit, Genetics Branch, National Cancer Institute, National Institutes of Health, Building 37, Bethesda, MD 20892.

*To whom correspondence should be addressed

Tel: 1-301-496-8783, Fax: 1-301-496-8419, E-mail: vinsonc@mail.nih.gov

Supporting Figure Captions

Category	Solvent - Variable 36-mer Constant 24-mer - Glass	GABPa Intensity	CREB1 Intensity	Cooperativity
Shorten Constant Region	TCCTCAAGA ACCGGAAGTGACGTCA GACTCAGGTG GGACACACTTTAACACATGGAGAG CCTCAAGA ACCGGAAGTGACGTCA GACTCAGGTG GGACACACTTTAACACATGGAGAG	4,300 4,700	50,000 48,000	1.7 1.6
	ACCGGAAGTGACGTCAGACTCAGGTG GGACACACTTTAACACATGGAGAG ACCGGAAGTGACGTCAACTCAGGTG GGACACACTTTAACACATGGAGAG ACCGGAAGTGACGTCACTCAGGTG GGACACACTTTAACACATGGAGAG ACCGGAAGTGACGTCA GGACACACTTTAACACATGGAGAG	1,700 1,600 1,500 2,400	56,000 53,000 63,000 45,000	3.0 3.2 3.1 2.4
Slide Consensus Motif	ACCGGAAGTGACGTCAGTCCTCAAGAGACTCAGGTG GGACACACTTTAACACATGGAGAG GACCGGAAGTGACGTCATCCTCAAGAGACTCAGGTG GGACACACTTTAACACATGGAGAG GTCCTCAAGAGACTCAGGTGACCGGAAGTGACGTCA GGACACACTTTAACACATGGAGAG	1,000 3,000 3,600	49,000 57,000 59,000	3.0 1.9 1.6
Delete Consensus Motif	GTCCTCAAGA CCGGAAGTGACGTCA GACTCAGGTG GGACACACTTTAACACATGGAGAG GTCCTCAAGA CGGAAGTGACGTCA GACTCAGGTG GGACACACTTTAACACATGGAGAG GTCCTCAAGAGACTCAGGTG GGACACACTTTAACACATGGAGAG	4,500 700 400	50,000 44,000 1,400	1.6 3.6 0.6
TRE	GTCCTCAAGA ACCGGAAGTGA<u>G</u>TCA GACTCAGGTG GGACACACTTTAACACATGGAGAG	5,400	3,400	0.7
	GTCCTCAAGA ACCGGAAGTGACTCA GACTCAGGTG GGACACACTTTAACACATGGAGAG	5,200	3,200	0.7
	GTCCTCAAGA TGA<u>C</u>TCACTTCCGGT GACTCAGGTG GGACACACTTTAACACATGGAGAG	4,400	9,700	1.0
	GTCCTCAAGA TGAGTCACTTCCGGT GACTCAGGTG GGACACACTTTAACACATGGAGAG	5,200	8,700	0.8

Table S1. ETS \Leftrightarrow **CRE DNP Microarray Control Probes.** The control microarray DNA probes varying the probe length, the composite motif position, sequentially removing nucleotides from the composite motif, and replacing the CRE with the TRE consensus sequence. The 117 control features examine several parameters: 1) probe length, 2) motif position, 3) deletion of the motif, and 4) binding to the ETS \Leftrightarrow TRE composite motif (ACCGGAAGTGA^C/_GTCA) which is a one pair deletion of the ETS \Leftrightarrow CRE. 40 control probes sequentially shorten the 60-mer to a 40-mer, maintaining an intact ETS \Leftrightarrow CRE or CRE \Leftrightarrow ETS 16-mer and a constant 24-mer primer. 42 control probes systematically slide the ETS \Leftrightarrow CRE or CRE \Leftrightarrow ETS 16-mer along the variable 36-mer portion of the 60-mer DNA. 31 control probes sequentially remove nucleotides from the ETS \Leftrightarrow CRE or CRE \Leftrightarrow ETS 16-mer along the variable 36-mer portion of the 60-mer DNA. 31 control probes replace the CRE (GTGACGTCA) motif with the TRE motif (GTGA^C/_GTCA) to produce the composite ETS \Leftrightarrow TRE (ACCGGAGTGA^C/_GTCA) motif in both orientations. Binding of GABP α -GST, CREB1-GST, and cooperative binding is shown. When the ETS \Leftrightarrow CRE motif, GABP α binding intensity remains at 5,000. Binding of CREB1-GST is reduced 12-15 fold. The ETS \Leftrightarrow TRE motif diminishes cooperative binding between GABP α and CREB1.

References

[1] X. He, K.S. Syed, D. Tillo, I. Mann, M.T. Weirauch, C. Vinson, GABPαlpha Binding to
Overlapping ETS and CRE DNA Motifs Is Enhanced by CREB1: Custom DNA Microarrays, G3
(Bethesda), 5 (2015) 1909-1918.

Fig S1. GABPα-GST binding to the ETS⇔CRE motif and SNPs with varying amounts of CREB1. GABPα-GST binding intensity to ETS-CRE motif and SNPs in a background of (**A**) 0 ng, (**B**) 200 ng, (**C**) 66 ng, (**D**) 20 ng CREB1-PT5

Fig S2. Duplicate GABPα-GST PBM experiments. (**A**) Histogram of raw intensity values for 570ng GABPα-GST binding to central ETS-CRE probes, including the consensus ETS-CRE, SNPs, and DNPs. (**B**) Same as in (A) with a zoomed-in y-axis to emphasize outliers. (**C-D**) Same as (A-B) for duplicate data. (**E**) Scatterplot comparing all probes from the above two duplicate datasets. (**F**) Scatterplot comparing median 16-mer intensities for each of the 24 occurrences of each probe from the above two duplicate datasets.

Fig S3. Duplicate GABPα-GST and CREB1-PT5 PBM experiments. (**A**) Histogram of raw intensity values for 570ng GABPα-GST plus 66ng CREB1-PT5 binding to central ETS-CRE probes, including the consensus ETS-CRE, SNPs, and DNPs. (**B**) Same as in (A) with a zoomed-in y-axis to emphasize outliers. (**C-D**) Same as (A-B) for duplicate data. (**E**) Scatterplot comparing all probes from the above two duplicate datasets. (**F**) Scatterplot comparing median 16-mer intensities for each of the 24 occurrences of each probe from the above two duplicate datasets.

Fig S4. Duplicate CREB1-GST PBM experiments. (**A**) Histogram of raw intensity values for 570ng CREB1-GST binding to central ETS-CRE probes, including the consensus ETS-CRE, SNPs, and DNPs. (**B**) Same as in (A) with a zoomed-in y-axis to emphasize outliers. (**C-D**) Same as (A-B) for duplicate data. (**E**) Scatterplot comparing all probes from the above two duplicate datasets. (**F**) Scatterplot comparing median 16-mer intensities for each of the 24 occurrences of each probe from the above two duplicate datasets.

Fig S5. Binding to control probes. Histograms of binding intensity for (**A**) GABPa-GST, (**B**) CREB1-GST, and (**C**) GABPa-GST and CREB1-PT5 binding probes varying the probe length (top), the composite ETS \Leftrightarrow CRE motif position (middle), and deleting the ETS \Leftrightarrow CRE motif (bottom).

Fig S6. CREB1-GST binding ETS \Leftrightarrow CRE SNPs at 6 positions. Histograms of CREB1-GST binding to the ETS \Leftrightarrow CRE motif and SNPs at the (A) solvent, (B) central, and (C) glass positions on the ETS \Leftrightarrow CRE DNP array. Intensity values for binding to the canonical ETS \Leftrightarrow CRE motif are indicated with an arrow at the far left of each histogram and are shown with purple dashed lines. (D-F) Same as (A-C) for the CRE \Leftrightarrow ETS orientation of the motif.

Fig S7. Observed vs. expected DNP Z-score for 34 mouse Ets domain proteins. Z-score of the consensus is shown as an orange spot.

Fig S8A. Observed vs. expected DNP Z-score for mouse bZIP domain proteins. DNPs at different locations of the consensus are indicated. The Z-score of the consensus is shown as an orange spot. Plots are separated by consensus motif: (A) CRE $(T^{-4}G^{-3}A^{-2}C^{-1}G^{1}T^{2}C^{3}A^{4})$

Fig S8B-C. Observed vs. expected DNP Z-score for mouse bZIP domain proteins. DNPs at different locations of the consensus are indicated. The Z-score of the consensus is shown as an orange spot. Plots are separated by consensus motif: **(B)** TRE $(T^{-4}G^{-3}A^{-2}C^{0}T^{2}C^{3}A^{4})$, **(C)** C/EBP $(T^{-4}T^{-3}G^{-2}C^{-1}G^{1}C^{2}A^{3}A^{4})$

Fig S8D. Observed vs. expected DNP Z-score for mouse bZIP domain proteins. DNPs at different locations of the consensus are indicated. The Z-score of the consensus is shown as an orange spot. Plots are separated by consensus motif: (**D**) PAR $(T^{-4}T^{-3}A^{-2}C^{-1}G^{1}T^{2}A^{3}A^{4})$

Fig S9. Cooperative binding of GABP α and CREB1 to Central ETS \Leftrightarrow CRE, SNPs, and position 7 DNPs. (A) Histogram of GABP α and CREB1 binding cooperativity, defined as the ratio of GABP α binding in the presence of CREB1 to binding in the absence of CREB1, to central ETS-CRE (indicated with arrow) and SNPs. A purple dashed line across the histogram represents the binding cooperativity to the canonical ETS-CRE motif. Histograms of GABP α and CREB1 binding cooperativity to central ETS-CRE SNPs and DNPs at position G^7 for (B) A^7 (red), (C) C^7 (blue), and (D) T^7 (green). A purple dashed line across the histogram represents the binding cooperativity to the canonical ETS \Leftrightarrow CRE motif. Error bars represent standard error from mean for the 24 occurrences of each sequence on the microarray.

