Supporting Information A Benchmark of Electrostatic Method Performance in Relative Binding Free Energy Calculations

Yunhui Ge,[†] David F. Hahn,[‡] and David L. Mobley^{*,†,¶}

†Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA

‡Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, Beerse

B-2340, Belgium

¶Department of Chemistry, University of California, Irvine, CA 92697, USA

E-mail: dmobley@mobleylab.org

Molecular Dynamics Simulations

The simulations were performed using GROMACS (2021-dev-20200320-89f1227-unknown) with a patch optimizing PME performance on GPU (https://gerrit.gromacs.org/c/gromacs/+/13382).

For each perturbation, two sets of simulations were prepared: solvated ligands and ligandprotein complexes. The initial ligand and protein structures were obtained from a previous published work.¹

The ligand was parameterized using Open Force Field version 1.0.0 (codenamed "Parsley").² Hybrid structures and topologies for the ligand pairs were generated using $pmx^{3,4}$ following a single topology approach. The workflow established a mapping between atoms of two ligands based on the maximum common substructure and conformational alignment while minimizing perturbation and stabilizing the system.

The AMBER ff99sb*ILDN force field^{5–7} was used for protein parameterization. Dodecahedral boxes were filled with TIP3P explicit solvent model solvated ligand pairs/ligandprotein complexes and counterions (150 mM NaCl).

For each perturbation, two states were prepared for both in-solution/bound state ligands: state A and state B, representing ligand 1 and ligand 2, respectively. An energy minimization was first performed, followed by a 10 ps NVT equilibration at 298K. Then the production equilibrium simulation (in the NPT ensemble) was performed for 6 ns at 298 K and a pressure of 1 bar. 80 snapshots were extracted from the production simulation. For each snapshot, a non-equilibrium transformation from state A to B (and vice versa) was performed during 50 ps. For each perturbation, 3 replicas of the series of simulations described above were performed leading to a total of 60 ns simulation data to calculate the free energy differences for the ligands in their in-solution/bound states.

The stochastic dynamics thermostat was used to control the temperature in the simulations. The Parrinello-Rahman barostat⁸ was applied to keep the pressure constant. All bond lengths were constrained using the LINCS algorithm.⁹ The van der Waals interactions were smoothly switched off between 1.0 and 1.1 nm. A dispersion correction for energy and pressure was used. The non-bonded interactions for the alchemical transitions were treated with a modified soft-core potential.¹⁰

Two different methods implemented in GROMACS were used to treat long-range electrostatic interactions: Particle Mesh Ewald (PME) and Reaction Field (RF). For simulations using PME, a direct space cutoff of 1.1 nm and a Fourier grid spacing of 0.12 nm were used. For simulations using RF, a dielectric constant (ϵ_{rf}) of 78.3, the dielectric constant of water at 298 K was used.¹¹

Supporting Tables

Ligand1	Ligand 2	No. atoms (ligand-only)	No. atoms (protein-ligand)
ejm-44	ejm-55	5954	62290
ejm-49	ejm-31	6521	62288
ejm-31	ejm-46	5888	62281
jmc-28	jmc-27	5886	62282
ejm-42	ejm-48	6014	62290
ejm-31	ejm-43	5950	62286
ejm-50	ejm-42	5630	62272
ejm-42	ejm-55	5633	62275
jmc-23	ejm-46	5884	62277
ejm-31	ejm-45	5638	62283
ejm-55	ejm-54	5729	62278
ejm-45	ejm-42	5639	62284
ejm-31	ejm-48	5960	62284
ejm-47	ejm-31	5906	62290
ejm-47	ejm-55	5915	62290
ejm-44	ejm-42	5956	62295
jmc-23	jmc-27	5886	62276
ejm-43	ejm-55	5951	62281
jmc-23	jmc-30	5884	62277
jmc-28	jmc-30	5887	62286
ejm-42	ejm-54	5640	62282
ejm-49	ejm-50	6517	62290
jmc-23	ejm-55	5887	62289
ejm-31	jmc-28	5889	62291
jmc-23	jmc-27	5886	62276

Table S1: Simulated perturbations of TYK2 and the number of particles.

Ligand1	Ligand 2	No. atoms (ligand-only)	No. atoms (protein-ligand)
22	1h1r	4978	106892
1oiu	26	5885	106905
26	1h1q	5762	106902
17	1h1q	4987	106904
10iy	10i9	5675	106908
17	21	4984	106895

Table S2: Simulated perturbations of CDK2 and the number of particles.

Table S3: Calculated $\Delta\Delta G$ values (kcal/mol) and the experimental measured values of simulated perturbations of TYK2. The uncertainty estimates were performed by 1000 boot-strapping trials and are reported as $x_{x_{low}}^{x_{high}}$ where x is the mean value, x_{high} and x_{low} indicate 95% confidence intervals.

Ligand1	Ligand 2	$\Delta\Delta G$	$\Delta\Delta G$	$\Delta\Delta G$	$\Delta\Delta G$	$\Delta\Delta G$
		(CPU-	(GPU-	(CPU-RF)	(GPU-RF)	(EXP)
		PME)	PME)			
ejm-44	ejm-55	-4.40 ± 0.44	-4.54 ± 0.73	-3.88 ± 0.55	-4.79 ± 0.70	-1.79
ejm-49	ejm-31	-0.89 ± 0.13	-0.57 ± 0.09	-0.81 ± 0.20	-0.59 ± 0.36	-1.79
ejm-31	ejm-46	-0.25 ± 0.21	-0.96 ± 0.17	-0.71 ± 0.07	-0.68 ± 0.11	-1.77
jmc-28	jmc-27	-0.71 ± 0.06	-0.63 ± 0.06	-0.91 ± 0.11	-1.00 ± 0.08	-0.30
ejm-42	ejm-48	$0.83 {\pm} 0.23$	1.22 ± 0.26	1.01 ± 0.11	1.25 ± 0.24	0.78
ejm-31	ejm-43	$1.87 {\pm} 0.11$	$1.94{\pm}0.12$	$1.58 {\pm} 0.63$	1.58 ± 0.41	1.28
ejm-50	ejm-42	-0.24 ± 0.13	0.07 ± 0.12	-0.16 ± 0.11	0.12 ± 0.13	-0.80
ejm-42	ejm-55	-1.17 ± 0.12	-0.95 ± 0.10	-1.05 ± 0.07	-1.07 ± 0.12	0.57
jmc-23	ejm-46	-0.04 ± 0.18	-0.31 ± 0.19	0.13 ± 0.13	$0.30 {\pm} 0.13$	0.39
ejm-55	ejm-54	-1.10 ± 0.31	-0.86 ± 0.10	-0.99 ± 0.19	-1.22 ± 0.07	-1.32
ejm-45	ejm-42	$0.57 {\pm} 0.07$	0.12 ± 0.11	$0.45 {\pm} 0.12$	$0.50 {\pm} 0.18$	-0.22
ejm-31	ejm-48	$0.63 {\pm} 0.34$	1.12 ± 0.43	$0.94{\pm}0.30$	$0.65 {\pm} 0.72$	0.54
ejm-47	ejm-31	-0.12 ± 0.34	-0.27 ± 0.72	-0.30 ± 0.22	-0.20 ± 0.26	0.16
ejm-47	ejm-55	-0.91 ± 0.11	-0.77 ± 0.24	-0.63 ± 0.17	-0.82 ± 0.24	0.49
ejm-44	ejm-42	-2.22 ± 0.11	-2.12 ± 0.36	-2.39 ± 0.64	-1.86 ± 0.27	-2.36
jmc-23	jmc-27	$0.07 {\pm} 0.21$	0.13 ± 0.16	0.11 ± 0.19	$0.28 {\pm} 0.06$	0.42
ejm-43	ejm-55	-2.40 ± 0.30	-2.60 ± 0.26	-2.08 ± 0.33	-2.23 ± 0.37	-0.95
jmc-23	jmc-30	-0.38 ± 0.09	-0.29 ± 0.06	-0.22 ± 0.10	-0.06 ± 0.13	0.76
jmc-28	jmc-30	-1.00 ± 0.17	-1.06 ± 0.48	-1.14 ± 0.23	-1.40 ± 0.19	0.04
ejm-42	ejm-54	-1.33 ± 0.17	-1.36 ± 0.18	-1.43 ± 0.11	-1.54 ± 0.12	-0.75
ejm-49	ejm-50	-1.28 ± 0.28	-1.18 ± 0.32	-1.75 ± 0.11	-1.38 ± 0.41	-1.23
jmc-23	ejm-55	$0.35 {\pm} 0.33$	-0.13 ± 0.17	0.12 ± 0.38	0.09 ± 0.21	2.49
ejm-31	ejm-45	$0.47 {\pm} 0.31$	$0.54{\pm}0.22$	$0.49 {\pm} 0.29$	$0.61 {\pm} 0.11$	-0.02
ejm-31	jmc-28	-0.58 ± 0.24	-0.56 ± 0.17	-0.15 ± 0.41	0.18 ± 0.30	-1.44
RMSE		$1.09^{1.43}_{0.77}$	$1.16^{1.56}_{0.82}$	$1.04_{0.76}^{1.35}$	$1.20^{1.61}_{0.83}$	
M	UE	$0.86_{0.61}^{1.14}$	$0.93_{0.66}^{1.27}$	$0.86_{0.64}^{1.10}$	$0.94_{0.66}^{1.27}$	

Simulation complex ligand-only
Simalation compton ingaina only
CPU-PME 2838.2±328.1 288.1±27.6
GPU-PME 185.4±4.12 69.0±3.8
CPU-RF 1903.7 ± 334.2 211.6 ± 20.5
GPU-RF 204.7 \pm 5.9 66.0 \pm 4.8

Table S4: Simulation wallclock time (min) of TYK2.

Table S5: Simulation wallclock time (min) of CDK2.

Simulation	complex	ligand-only
CPU-PME	4447.3 ± 423.7	252.8 ± 24.7
GPU-PME	$326.8 {\pm} 6.5$	83.1 ± 3.8
CPU-RF	$3143.0{\pm}204.5$	210.2 ± 21.9
GPU-RF	325.9 ± 11.9	77.2 ± 4.3

References

- Gapsys, V.; Pérez-Benito, L.; Aldeghi, M.; Seeliger, D.; van Vlijmen, H.; Tresadern, G.; de Groot, B. L. Large Scale Relative Protein Ligand Binding Affinities Using Non-Equilibrium Alchemy. *Chem. Sci.* 2020, *11*, 1140–1152.
- (2) Qiu, Y.; Smith, D. G. A.; Boothroyd, S.; Jang, H.; Wagner, J.; Bannan, C. C.; Gokey, T.; Lim, V. T.; Stern, C. D.; Rizzi, A.; Lucas, X.; Tjanaka, B.; Shirts, M. R.; Gilson, M. K.; Chodera, J. D.; Bayly, C. I.; Mobley, D. L.; Wang, L.-P. Development and Benchmarking of Open Force Field v1.0.0, the Parsley Small Molecule Force Field. *ChemRxiv* 2020,
- (3) Seeliger, D.; de Groot, B. L. Protein Thermostability Calculations Using Alchemical Free Energy Simulations. *Biophys. J.* 2010, 98, 2309–2316.
- (4) Gapsys, V.; Michielssens, S.; Seeliger, D.; de Groot, B. L. Pmx: Automated Protein Structure and Topology Generation for Alchemical Perturbations. J. Comput. Chem. 2015, 36, 348–354.
- (5) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. *Proteins: Struct., Funct., Bioinf.* **2006**, *65*, 712–725.
- (6) Best, R. B.; Hummer, G. Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides. J. Phys. Chem. B 2009, 113, 9004–9015.
- (7) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved Side-Chain Torsion Potentials for the Amber ff99SB Protein Force Field: Improved Protein Side-Chain Potentials. *Proteins: Struct., Funct., Bioinf.* 2010, 78, 1950–1958.

- (8) Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190.
- (9) Hess, B.; Bekker, H.; Berendsen, H. J. C. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472.
- (10) Gapsys, V.; Seeliger, D.; de Groot, B. L. New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 2373–2382.
- (11) Malmberg, C. G.; Maryott, A. A. Dielectric Constant of Water From 0-Degrees-C to 100-Degrees-C. J. Res. Natl. Bur. Stand. (U. S.) 1956, 56, 1–8.