

Figure S1: Scheme of *F. novicida* T6SS encoding genes (FPI, *clpB* and T6SS dependent secreted components *opiA* and *opiB*₁₋₃). Gene functions are assigned based on literature cited in the main text. *Francisella* and canonical T6SS nomenclature is shown. In black: genes that are not discussed in this study. In red: genes of interest, which were deleted in-frame deleted for this study. In blue: *pdpB*, in-frame deletion of this gene was used as T6SS negative control. Green represents fluorophore sfGFP, which was used to visualize sheath component *iglA*. Genes are drawn in scale.

Figure S2: Individual survival curves for Figure 2. Individual survival curves of three individual experiments. Black: replicate 1, grey: replicate 2, blue: replicate 3. State of larvae was monitored every 12 h. Pupating larvae were censored (dashes). *G. mellonella* larvae (n_0 =10) were treated with **A**) PBS and infected with **B-D**) *F. novicida* U112 *iglA-sfGFP* (**parental strain**), **E-G**) $\Delta pdpB$ (**T6SS negative control**) and **H-J**) $\Delta c/pB$ with a calculated infection inocula of **B**, **E**, **H**) 10⁶ CFU, **C**, **F**, **I**) 10⁴ CFU and **D**, **G**, **J**) 10² CFU. **K**) CFU concentrations of the used infection inocula at OD₆₀₀ of 1 for the individual experiments.

Figure S3: Individual survival curves for Figure 3. Individual survival curves of three individual experiments. Black: replicate 1, grey: replicate 2, blue: replicate 3. State of larvae was monitored every 12 h. Pupating larvae were censored (dashes). *G. mellonella* larvae (n_0 =10) were treated with **A**) PBS and infected with **B**) *F. novicida* U112 *iglA-sfGFP* (parental strain), **C**) Δ*pdpB* (T6SS negative control), **D**) Δ*pdpC*, **E**) Δ*pdpD*, **F**) Δ*anmK*, **G**) Δ*opiA*, **H**) Δ*opiB*₁₋₃ and **I**) Δ*pdpC* Δ*pdpD*. **J**) CFU concentrations of the used infection inocula at OD₆₀₀ of 1 for the individual experiments.

Figure S4: Individual survival curves for Figure 4. Individual survival curves of three individual experiments. Black: replicate 1, grey: replicate 2, blue: replicate 3. State of larvae was monitored every 12 h. Pupating larvae were censored (dashes). *G. mellonella* larvae ($n_0=10$) were treated with **A**) PBS and infected with **B**) *F. novicida* U112 *iglA-sfGFP* (parental strain), **C**) $\Delta pdpB$ (T6SS negative control), **D**) $\Delta pdpD \Delta anmK \Delta opiA \Delta opiB_{1-3}$ (*pdpC*), **E**) $\Delta pdpC \Delta anmK \Delta opiA \Delta opiB_{1-3}$ (*pdpD*), **F**) $\Delta pdpC \Delta pdpD \Delta opiA \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiA_{1-3}$ (*pdpD*), **F**) $\Delta pdpC \Delta pdpD \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*opiA*), **H**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$ (*anmK*) $\Delta pdpC \Delta pdpD \Delta anmK$) (*opiA*), **H**) $\Delta pdpC \Delta pdpD \Delta anmK$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK$ (*anmK*), **G**) $\Delta pdpC \Delta pdpD \Delta anmK$ (*anmK*) $\Delta pdpC \Delta pdpD \Delta anmK$) (*anmK*) $\Delta pdpC \Delta pdpD \Delta anmK$) (*anmK*) (*bpiB*₁₋₃), **L**) CFU concentrations of the used infection inocula at OD₆₀₀ of 1 for the individual experiments.

Supplemental movies

• Movie S1: Functional T6SS dynamics in parental strain and mutants. T6SS dynamics (IgIA-sfGFP) was monitored in *F. novicida* U112 *iglA-sfGFP* (parental strain), $\Delta pdpB$ (T6SS negative control), $\Delta clpB$, $\Delta pdpC$, $\Delta pdpD$, $\Delta anmK$, $\Delta opiA$, $\Delta opiB_{1-3}$, $\Delta pdpC$ $\Delta pdpD$, $\Delta pdpD$ $\Delta anmK$ $\Delta opiA$ $\Delta opiB_{1-3}$ (*pdpC*), $\Delta pdpC$ $\Delta anmK$ $\Delta opiA$ $\Delta opiB_{1-3}$ (*pdpD*), $\Delta pdpC$ $\Delta pdpD$ $\Delta opiA$ $\Delta opiB_{1-3}$ (*anmK*), $\Delta pdpC$ $\Delta pdpD$ $\Delta anmK$ $\Delta opiB_{1-3}$ (*opiA*), $\Delta pdpC$ $\Delta pdpD$ $\Delta anmK$ $\Delta opiA$ (*opiB*₁₋₃), $\Delta pdpC$ $\Delta pdpD$ $\Delta opiB_{1-3}$ (*anmK opiA*), $\Delta pdpC$ $\Delta pdpD$ $\Delta opiA$ (*anmK opiB*₁₋₃) and $\Delta pdpC$ $\Delta pdpD$ $\Delta anmK$ (*opiA opiB*₁₋₃) for 5 min at a frame rate of 2 frames per minute. Two representative time-lapse image series (merge of phase contrast and GFP channel) for each strain are shown. Fields of view are 39 x 26 µm. Scale bars represent 5 µm. Videos play at a frame rate of 5 frames per second.

• Movie S2: Detailed examples of individual T6SS assemblies in parental strain and mutants. T6SS dynamics (IglA-sfGFP) was monitored in *F. novicida* U112 *iglA-sfGFP* (parental strain), $\Delta pdpB$ (T6SS negative control), $\Delta clpB$, $\Delta pdpC$, $\Delta pdpD$, $\Delta anmK$, $\Delta opiA$, $\Delta opiB_{1-3}$, $\Delta pdpC$ $\Delta pdpD$, $\Delta pdpD$ $\Delta anmK$ $\Delta opiA$ $\Delta opiB_{1-3}$ (*pdpC*), $\Delta pdpC$ $\Delta anmK$ $\Delta opiA$ $\Delta opiB_{1-3}$ (*pdpD*), $\Delta pdpC$ $\Delta pdpD$ $\Delta opiB_{1-3}$ (*anmK*), $\Delta pdpC$ $\Delta pdpD$ $\Delta anmK$ $\Delta opiB_{1-3}$ (*pdpC*), $\Delta pdpC$ $\Delta pdpD$ $\Delta anmK$ $\Delta opiA$ (*opiB_{1-3</sub>*), $\Delta pdpC$ $\Delta pdpD$ $\Delta opiB_{1-3}$ (*anmK opiA*), $\Delta pdpC$ $\Delta pdpD$ $\Delta opiA$ (*anmK opiB_{1-3}*) and $\Delta pdpC$ $\Delta pdpD$ $\Delta anmK$ (*opiA opiB_{1-3}*) for 5 min at a frame rate of 2 frames per minute. Two representative time-lapse image series (merge of phase contrast and GFP channel) for each strain are shown. Fields of view are 3.3 x 3.3 µm. Scale bars represent 1 µm. Videos play at a frame rate of 5 frames per second.

Т	able S1: Strains	used in this study	r, related to Mat	erial and methods

Organism	Genotype	Plasmid	Relevant features	Source
Francisella novicida U112	iglA-sfGFP		C-terminal chromosomal fusion of sfGFP to iglA (parental strain)	(1)
	iglA-sfGFP ΔpdpB iglA-sfGFP ΔiglC iglA-sfGFP ΔclpB		In-frame deletion of $pdpB$ (T6SS negative control) In-frame deletion of $iglC$ (negative control for α -IglC antibody) In-frame deletion of $clpB$	(2) (3) (2)
	$iglA$ -sfGFP $\Delta pdpC$		In-frame deletion of <i>pdpC</i>	(2)
	$iglA$ -sfGFP $\Delta pdpD$		In-frame deletion of <i>pdpD</i>	(2)
	iglA-sfGFP ∆anmK		In-frame deletion of <i>anmK</i>	(2)
	$iglA$ -sfGFP $\Delta opiA$		In-frame deletion of <i>opiA</i>	This study
	$iglA$ -sfGFP $\Delta opiB_{1-3}$		In-frame deletion of $opiB_1, opiB_2$ and $opiB_3$	This study
	$iglA$ -sfGFP $\Delta pdpC \Delta pdpD$		In-frame deletion of $pdpC$ and $pdpD$	(2)
	$iglA$ -sfGFP $\Delta pdpD \Delta anmK \Delta opiA \Delta opiB_{1-3}$		In-frame deletion of <i>pdpD</i> , <i>anmK</i> , <i>opiA</i> and <i>opiB</i> ₁₋₃ (<i>pdpC</i>)	This study
	$iglA$ - $sfGFP \Delta pdpC \Delta anmK \Delta opiA \Delta opiB_{1-3}$		In-frame deletion of <i>pdpC</i> , <i>anmK</i> , <i>opiA</i> and <i>opiB</i> ₁₋₃ (<i>pdpD</i>)	This study
	$iglA$ - $sfGFP \Delta pdpC \Delta pdpD \Delta opiA \Delta opiB_{1-3}$		In-frame deletion of <i>pdpC</i> , <i>pdpD</i> , <i>opiA</i> and <i>opiB</i> ₁₋₃ (anmK)	This study
	$iglA$ - $sfGFP \Delta pdpC \Delta pdpD \Delta anmK \Delta opiB_{1-3}$		In-frame deletion of <i>pdpC</i> , <i>pdpD</i> , <i>anmK</i> and <i>opiB</i> _{1.3} (<i>opiA</i>)	This study
	iglA-sfGFP $\Delta pdpC \Delta pdpD \Delta anmK \Delta opiA$		In-frame deletion of <i>pdpC</i> , <i>pdpD</i> , <i>anmK</i> and <i>opiA</i> (<i>opiB</i> ₁₋₃)	This study
	$iglA$ - $sfGFP \Delta pdpC \Delta pdpD \Delta opiB_{1-3}$		In-frame deletion of <i>pdpC</i> , <i>pdpD</i> and <i>opiB</i> ₁₋₃ (anmK opiA)	This study
	iglA-sfGFP $\Delta pdpC \Delta pdpD \Delta opiA$		In-frame deletion of <i>pdpC</i> , <i>pdpD</i> and <i>opiA</i> (<i>anmK opiB</i> ₁₋₃)	This study
	iglA-sfGFP $\Delta pdpC \Delta pdpD \Delta anmk$		In-frame deletion of <i>pdpC</i> , <i>pdpD</i> and <i>anmK</i> (<i>opiA opiB</i> ₁₋₃)	(2)
	$iglA$ -sfGFP $\Delta pmrA$		In-frame deletion of <i>pmrA</i>	This study

Table S2: Plasmids and primers used to generate mutants, related to Material and Methods.

Plasmid Name	Peptide scar [amino acids]	Primers	Sequence 5'-3' [base pairs]
	MKNFEVIRKDFFSHLCNLLN*	dFTN_0131_Xho1_1.FOR	TCAGTACTCGAGAGTTTATTTTTAATCCACATAAGC
		dFTN_0131_1.REV	TACGCAAAGATTTTTCTCATTTGTGTAATTTGTTG
nDMK2 April		dFTN_0131_2.FOR	AAATGAGAAAAATCTTTGCGTATTACTTC
рымкэ дорга		dFTN_0131_Not1_2.REV	TCAGTAGCGGCCGCGTCAACCATATAACAAAGGC
		dFTN_0131_Det.FOR	TCCGGAAAATATCGTTGGAGT
		dFTN_0131_Det.REV	TGGCAGTCTTTAGAGGAGCT
	MAIDLLKLQKSNGLPGFLL*	dFTN_1069-71_Xho1_1.FOR	TCAGTACTCGAGATAATTTATAGTCCTAGTAAAGTTACT
		dFTN_1069-71_1.REV	AAAACTACAAAAAAGTAATGGATTACCAGGA
"DMR2 4;D		dFTN_1069-71_2.FOR	GTAATCCATTACTTTTTGTAGTTTTAATAGATCAATAGC
pDMK3 210p1B1-3		dFTN_1069-71_Not1_2.REV	TCAGTAGCGGCCGCAATATCATCTTGAGTTATCGG
		dFTN_1069-71_Det.FOR	TTCGTGATCAGCTACAAGGC
		dFTN_1069-71_Det1.REV	AGCTTTGTAAACCTCCAAGTTCT
	MRILLAEDDLFVQKDKVIK*	dFTN_1465_1_Xho1.FOR	TCAGTACTCGAGATATTTTACCCCTTTTGACTG
		dFTN_1465_1.REV	CTTTTGTACAAAAAGATCATCTTCAGCCA
DMK2 Annual		dFTN_1465_2.FOR	GAAGATGATCTTTTTGTACAAAAGGATAAAGTAATTAAG
pDMK5 2pmrA		dFTN_1465_2_Not1.REV	TCAGTAGCGGCCGCATGACAAAGTATTGACCTGC
		dFTN_1465_Det.FOR	GGGCGATTGTAGCAAGAAAG
		dFTN_1465_Det.REV	CATCCCAGCGAACCTTTTTA

References

- 1. Clemens DL, Ge P, Lee B-Y, Horwitz MA, Zhou ZH. 2015. Atomic Structure of T6SS Reveals Interlaced Array Essential to Function. Cell 160:940–951.
- 2. Brodmann M, Dreier RF, Broz P, Basler M. 2017. Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nat Commun 8:15853.
- 3. Brodmann M, Heilig R, Broz P, Basler M. 2018. Mobilizable Plasmids for Tunable Gene Expression in Francisella novicida. Front Cell Infect Microbiol 8.