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Table S1.  Comparison of the individual gene annotation resources with the merged gene set. The topmost row contains the priority we assigned to that source, 
with a numerically lower value indicating higher confidence. Our general guideline behind the assigned confidence levels were to give higher priority (i) to 
resources annotating protein-coding genes, in order to avoid confusion of the overall clear boundaries of coding genes with the less clear boundaries of non-
coding genes or structures, (ii) to the more recent resource, (iii) and to prefer expert curated or literature review resources over computational ones. We 
considered resources with equal priorities to be equally trustworthy, such that we joined their annotations with the union of the coordinates. 

description BSGatlas 
RefSeq BsubCyc RefSeq Rfam screen BsubCyc Dar et al Rfam screen Nicolas et al. 

Coding Coding Non-Coding (conservative) Non-Coding term-seq (medium) predictions  

Resource Priority - 0 1 2 2 3 3 4 4 

Protein Coding Genes 4332 4325 4188 - - - - - -  

     putative/predictions 79 (2%) 88 (2 %) 1210 (29 %) - - - - - -  

Hypothetical status removed - 9 (0 %) 1204 (29 %) - - - - - -  

Merging refined coordinates 
of - 1 (0 %) 49 (1 %) - - - - - -  

Resource specific genes - 144 (3 %) 8 (0 %) - - - - - -  

Non-Coding RNAs 408 - - 212 214 183 82 230 153 

     putative/predictions 137 (34 %) - - 22 (10 %) 0 (0 %) 28 (15 %) 0 (0 %) 0 (0 %) 153 (100 %)  

known ncRNA types - - - 190 (90 %) 214 (100 %) 155 (85 %) 82 (100 %) 230 (100 %) 0 (0 %)  

     ribosomal RNA (rRNA) 30 (7 %) - - 30 (14 %) 30 (14 %) 30 (16 %) 0 (0 %) 30 (13 %) 0 (0 %)  

     transfer RNA (tRNA) 86 (21 %) - - 86 (41 %) 86 (40 %) 86 (47 %) 0 (0 %) 86 (37 %) 0 (0 %)  

     small regulatory RNA 
(sRNA) 37 (9 %) - - 14 (7 %) 29 (14 %) 9 (5 %) 0 (0 %) 31 (13 %) 0 (0 %)  

     regulatory antisense RNA 
(asRNA) 8 (2 %) - - 3 (1 %) 2 (1 %) 2 (1 %) 0 (0 %) 4 (2 %) 0 (0 %)  

     riboswitch 104 (25 %) - - 55 (26 %) 63 (29 %) 26 (14 %) 82 (100 %) 73 (32 %) 0 (0 %)  

     self-splicing intron 3 (1 %) - - 0 (0 %) 1 (0 %) 0 (0 %) 0 (0 %) 3 (1 %) 0 (0 %)  

     other (ribozyme, SRP, 
tmRNA) 3 (1 %) - - 2 (1 %) 3 (1 %) 2 (1 %) 0 (0 %) 3 (1 %) 0 (0 %)  

Coordinate refined - - - 145 (68 %) 99 (46 %) 144 (79 %) 54 (66 %) 107 (47 %) 21 (14 %)  

Hypothetical status removed - - - 17 (8 %) 0 (0 %) 28 (15 %) 0 (10 %) 0 (0 %) 19 (12 %)  

Reclassified as coding - - - - - - - - 1 

Resource specific genes - - - 10 (5 %) - - 27 (33 %) 8 (3 %) 133 (87 %) 
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Table S2.  Comparison of the coordinates from each gene annotation resource (column 1) with the 
coordinates of the resulting genes after merging. Shown are the amount of refinements in bp (column 
2) and the number of annotations that changed in interval bins (columns 3-7). The comparison under 
consideration of the gene lengths is shown in Figure S3. 
 

Resource (Priority) No difference [1,10] (10,50] (50,100] (100,250] (250,500] 

RefSeq Coding (0) 4,324 0 0 0 1 0 

BsubCyc Coding (1) 4,139 18 13 12 6 0 
RefSeq Non-Coding (2) 67 143 1 1 0 0 
Rfam, conservative (2) 115 88 7 2 2 0 
BsubCyc Non-Coding (3) 39 137 4 2 1 1 
Dar et al. riboswitches (3) 28 6 15 27 6 0 
Nicolas et al.predictions (4) 132 0 11 4 3 1 
Rfam, medium (4) 123 92 10 2 2 1 

 
 
 
Table S3.  Distances in bp to the nearest annotation in the merged gene set compared to the Nicolas et 
al. predicted UTRs and intergenic regions. Overlapping closest genes are listed as such. Because 
Nicolas et al. separate UTRs into non-overlapping elements, we added the lengths of the fragments to 
better convey the length of the biological region. 
 

distance to closest gene 3’ UTR 5’ UTR intergenic Internal UTR 

Overlapping 24 (10%) 74 (11%) 18 (6%) 12 (6%) 
[0, 100] 40 (16%) 210 (31%) 78 (24%) 81 (44%) 

(100, 500] 87 (35%) 337 (50%) 166 (52%) 83 (45%) 

(500, 1,000] 53 (21%) 40 (6%) 35 (11%) 8 (4%) 

(1,000, 2,000] 38 (15%) 8 (1%) 18 (6%) 2 (1%) 

2,000+ 7 (3%) 7 (1%) 4 (1%) 0 

 

  



4 

 

 

Table S4.  Overlap based comparison of our computed UTRs without those annotated by Nicolas et al. 
including their intergenic regions.  Nicolas et al. annotated various types of UTRs (columns). The first 
row stated the number of annotations from Nicolas et al. The first column indicates the type of UTR 
annotations form the BSGatlas or a combination of UTRs (separated by comma) for which overlaps 
occurred (with single bp, no cut-off).  
 

Overlapping BSGatlas UTRs 
 3'UTR 

3'UTR (unclear 
termination) 5'UTR intergenic 

 
intragenic 

# in Nicolas et al. 125 124 676 186 319 

3'UTR 96 56 1 3 94 
3'UTR,5'UTR 2 1 12 4 11 
3'UTR,5'UTR,internal UTR 1 0 7 3 4 
3'UTR,internal UTR 7 0 0 19 14 
5'UTR 1 0 566 7 10 
5'UTR,internal UTR 0 0 61 12 3 
Internal UTR 0 1 2 104 64 
without overlap 18 66 27 34 119 
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Figure S1.  Outline of the annotation creation procedure. For the details refer to the main manuscript. 
(a) Gene annotation merging. Shown are two genes (red) for which the annotation resources provide 
differing coordinates (blue, orange, black). The merged coordinates are taken from the resource with 
the highest priority (left), or the union if there are multiple (right). (b) Distances that are used to 
determine the transcription start sites (TSSs) and terminator sites (TTSs) map. The TSS (arrow) 
distances are relative to the 5’ end of a gene, for a TTS (stop sign) to the 3’. Instead of a single nucleotide 
position, TTSs annotated a region that forms the terminating hairpin, such that the distances are 
computed as shown. The orange highlighted distances are notated as a negative value. (c) Computation 
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of untranslated regions (UTRs), novel transcriptional units (TUs), and transcripts. Given a TSS/TTS 
map (arrow, stop sign, black numbers), 5’ and 3’ UTRs (orange with blue numbers) were placed in the 
space between them and the associated up-/down-stream gene (blue arrow). Internal UTRs (green with 
blue numbers) were implied by known TUs (black bar with gene regions highlighted). Novel TUs are 
implied by a TSS or TTS that is associated with a gene, which is either not the first or last gene in 
direction of transcription. Each TSS, TTS, UTR, gene is a unique element (colored numbers) that is 
present as a node in the directed transcription path. The full isoform list is inferred from all paths 
between TSSs and TTSs, which we derived from a graph. (d) Operon inference. We derived operons 
by finding connected components (red circles) in a graph with the transcripts (green numbers) and genes 
(blue) as nodes and edges (orange) indicating which genes are transcribed by which transcript. (e) 
Bacterial operons in GFF3. The GFF3 format models bacterial operons as shown: Each 
operon/UTR/gene/structure is an entry in the file, although each gene also has an extra entry to represent 
the transcribed region. The relationships between the entries are noted as indicated by the arrows. 
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Input: 

• n ∈ ℤ+ gene annotations N = {x1, …, xn} 
• Each annotation has a start/end position, a strand, and a 
putative biotype 

• Jaccard Index of two annotations i, j ∈ ℤ+ is JI(xi, xj) 
Note: For same strand overlapping annotations JI > 0 

• Priority of the resource an annotation comes from p(xi) 

Merging procedure: 
Let E be an empty set 
// Investigate all pair-wise overlaps 
For all i, j ∈ ℤ+ with i < j and JI(xi, xj) > 0: 
 If xi and xj are a riboswitch and a coding sequence: 
  // do not consider for merging 
  continue 
 If JI(xi, xj) ≥ 0.8: 
  Add (xi, xj) to E 
 If both xi and xj are non-coding annotations: 
  If JI(xi, xj) ≥ 0.5 : 
   Add (xi, xj) to E 
  If annotation xi fully contains xj or vice versa: 
   Add (xi, xj) to E 
Let G(N, E) be an undirected graph 
Let R be an empty set 
For all connected components Ck of G: 
 Let Ck := {x’1, …, x’m} be the annotations in the component 
 //Compute max priority and the corresponding genes 
 Let pmax := max({p(x'i) : x’i ∈ Ck}) 
 Let cmax := {x’i : x’i ∈ Ck if p(x’i) = pmax} 
 // The merged annotation is the union of all annotations 
 // of same priority 
 Let r be annotation with  
 * start(r) := min({start(x’i) : x’i ∈ cmax}) 
 * end(r) := max({end(x’i) : x’i ∈ cmax}) 
 * strand(r) := {strand(x’i) : x’i ∈ cmax} // is single value 
 Add r to R 
Return R 

Figure S2: Pseudo-code describing in detail how the gene annotations were merged. 
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Figure S3.  Shown are empirical cumulative distribution of distances for (A) two closest neighboring 
pairs of two TSS (left) or terminators (right) annotations within the resources BsubCyc (black), DBTBS 
(orange), and Nicolas et al. (light blue). (B) Distribution of closest pair of annotation between two 
resources (columns) for terminator and TSS annotations (rows). The red horizontal line indicates the 
90% of annotations threshold. 
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Figure S4.  (A) Cumulative distribution of TSSs and TTSs relative to the closest 5’/3’ end of genes. 
The red vertical lines represent the genes 5’/3’ position, with negative distances indicating a before/up-
stream TSS/Terminator position. The distribution is separated by TSS/terminator annotations that are 
from DBTBS/BsubCyc and Nicolas et al. with an associated transcribed regions (blue) or without. 
(orange). (B) Distribution of lengths of our obtained UTRs in comparison to those found in Nicolas et 
al.’s tiling-array study. The UTRs of the latter resources have a minimal length of 47, which is indicated 
with the red line. 
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Figure S5. The color scheme for each type of the different annotated bio types (genes, structures, 
binding sites). Elements that are on located on the reverse strand are shown in a slightly darker color. 
We use this color coding across the different annotation visualizations that we offer in the UCSC 
browser hub, the GFF3 file, and the quick browser on the gene detail pages. Similar looking pairs of 
color or possibly for color blindness disadvantageous were avoided by putting these on separate 
browser tracks. 
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Figure S6.  Distribution of Jaccard Indices between all overlapping pairs of genes from the collective 
annotation, separated by resource and (a) coding-coding gene pairs, (b) coding and non-coding, (c) non-
coding – non-coding gene pairs. 
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Figure S7.  Comparison of the coordinates from each gene annotation resource with those from 
resulting genes after merging. Shown are the distributions of Jaccard similarity for various ranges of 
absolute coordinate differences in nucleotides. The numbers of how often a refinement in absolute 
numbers occurred are stated in Table S2. 
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Figure S8.  Distributions of the various features, such as the number of genes and internal TSSs / TTSs, 
for our computed operons in B. subtilis. 
 

  

1396

0

200

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Number of features in operons

C
ou

nt
 o

f o
cc

ur
en

ce
s

Genes in operons
internal TSS
internal TTS



14 

 

 

 

 

 

Figure S9. Coverage of annotations by tiling-array signal. We computed for various annotations 
(colors in legend) the average coverage by the maximal log2 of the Nicolas et al. tiling-array (see 
methods). Shown are the cumulative distribution of these average coverages. For control purposes we 
also added the average coverage of gaps in the BSGatlas (regions without annotation).  
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