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and Mark D. Wilkinson

Contents

1 Methods 2
1.1 Model architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Reference prediction model . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Comparison models: Linear regression and Multi-Layer Perceptron (MLP) 2

1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Computational requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Comparison with similar approaches 4

3 Supplementary Figures 6

1



1 Methods

Dataset: sample filtering

The initial number of OTUs from the study was 29,689, but the authors (Walters et al., 2018)
reduced this to 717 OTUs, corresponding to the OTUs shared in at least 80 percent of the
samples, and samples with at least 10000 reads. We further filtered-out approximately 100
bulk soil samples.

1.1 Model architectures

1.1.1 Reference prediction model

Our prediction model takes environmental features as input and returns a prediction of the
maize rhizosphere microbial composition. The model architecture is composed of two modules,
as Figure S0C shows, sharing an intermediate knowledge representation of the microbiome, in
a reduced code, called the microbiome latent space. Thus, the first module is a neural network
(NN) taking environmental features as input and returning a microbiome latent representation.
The second module is a decoder that takes that microbiome latent representation as input and
returns a whole microbial composition.
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Figure S0: Alternative model architectures.

The input of our reference or selected model are three environmental variables: temperature,
rain and plant age. The intermediate representation of our selected model is a OTU latent space
of size 10, which comes from just OTUs. The output is the whole microbial composition of size
717, i.e. the relative abundance prediction of 717 OTUs. The first module has a structure of
layers 3:128:64:32:16:10 (Input:IntermediateLayers:Output), while the second module, i.e. the
decoder, has 10:256:512:717. The detailed technical definition of the architecture is available
in the reference model predictions and analysis.ipynb Jupyter notebook on GitHub.

1.1.2 Comparison models: Linear regression and Multi-Layer Perceptron (MLP)

The input of the Linear Regression and Multi-Layer Perceptron models are subsets of the
environmental variables (as described in the first column of Table 1), depending on the latent
space model they are compared with. The output is the microbial abundances (Figure S0A
and S0B).

The architecture and hyperparameters of the MLP were selected similarly to the pre-
dictor model (i.e. from environmental features to latent space prediction) of the AEs the
MLP is compared with. The MLP has an architecture with 2 hidden layers of 128 and 512
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(the best one found empirically). The input layer has variable size (depending on the sub-
set of environmental features), and the output layer size is 717, i.e., the number of OTUs
(no.env.variables:128:512:717 architecture). The encoder from the environmental features for
the AE with combined latent space has an architecture no.env.variables:32:16:10 + decoder
(256:512:717). The encoder for the AE with OTU latent space architecture was described in
the previous section.

Additional details are provided in the Jupyter notebook documenting this study available
on GitHub (Notebooks/Auxiliary/model reference XdomainFeaturesXXX.ipynb files, for
example model reference 3domainFeatures.ipynb).

1.2 Normalization

We selected two normalization approaches suitable to 16S microbiome absolute abundance data
(Weiss et al., 2017), and satisfying the constraints of our DL model based on an autoencoder,
which requires inverse transformations to reconstruct the original input.

The first is Total-Sum normalization (TSS), i.e. relative abundances. This approach is
commonly used in DL (Oh and Zhang, 2020), although it brings with several disadvantages, in
that it does not remove compositionality (Aitchison, 1982). As such, several standard analyses
cannot be applied without bias, such as comparative analysis between groups; however, these
problems are distinct from how we use this approach in our study. For example, Gloor et
al., 2017 recommends to avoid the use of Pearson correlations in compositional datasets, but
this recommendation applies to computing the correlation between two features within the
same dataset, while we compute correlations between features in different datasets: the real
abundances and the predicted abundances. As such, this recommendation does not apply in
this case.

The second approach is TSS followed by Centered Log Ratio (CLR). A logarithmic transfor-
mation is recommended to remove the compositionality of microbiome data (Zhou and Gallins,
2019). Because of the incompatibility of OTU table microbiome data sparsity (i.e. a high num-
ber of zeros) and logarithmic analyses, a small positive value is added to all abundances (in our
case, pseudo-count = 1e−6). This normalization approach provides interesting advantages in
our DL architecture. Although CLR can return negative values, the autoencoder accepts these
as input, without substituting them with zeros (which, in other approaches, has the consequence
of confounding them with the original structural zeros). Our AE architecture requires an in-
verse function, and this is provided by CLR in the form of Softmax (Pawlowsky-Glahn et al.,
2015). Moreover, Softmax is a standard activation function in DL architecture used to provide
values similar to a probability distribution (all values add 1), simplifying the transformation of
our output.

1.3 Loss function

We have used different loss functions in our experiments to guide the training.

� Mean Squared Error (MSE). The MSE is commonly used in AE as one the basic recon-
struction error functions. It does not take into account information about the environ-
mental features and it only tries to minimize the difference between the input and the
output, giving more relevance to the bigger errors.

� Crossentropy. In our problem, it is more important to predict the proportions of each
OTU rather the concrete values. So, if we use relative frequencies for the OTUs we can
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use statistical distances as the Crossentropy. It has been used extensively for DL in the
last years. For some experiments, we decided that the output of the AE was the relative
frequency of the OTUs, which allowed us to use Crossentropy directly. For the AEs
where we used the CLR for the normalization we apply the Softmax transformation to
the output to get the relative frequencies.

� Bray-Curtis dissimilarity. Since we are analysing microbiome data, we also consider com-
munity ecology approaches as loss function, selecting a commonly used microbiome beta-
diversity (i.e. between-samples distance) metric - the Bray-Curtis dissimilarity. Other
metrics were considered to be the loss function but they are not differentiable.

1.4 Computational requirements

The experiments for hyper-parameter selection were run on a Linux server with two Nvidia
1080Ti GPUs with 11 GB of memory each, a Intel CPU 6900 with 16 cores and 32GB of
RAM. Typical running times for each model selection experiment was approximately 5 minutes
without full utilization of the GPU. We ran all experiments (more than 400 combinations) using
different methods for multiprocessing in order to use both GPUs at 100% usage. It took less
than 6 hours to run all hyper-parameter selection experiments. All other reported results were
generated via the Jupyter Notebooks available in the project GitHub.

2 Comparison with similar approaches

Larsen et al., 2012 explored how to predict microbial composition from environmental features;
specifically they predicted an oceanic microbiome from environmental variables and interactions
(between taxa and with the environment). One important difference when comparing that
study with this one is that they reduced the number of taxa at the Species level (hundreds
or thousands) by aggregating them at the Order level, resulting in 24 taxa. This resulted
in a workable number of output variables, eliminating the need to address the dimensionality
reduction problem. In our case, we are able to execute a similar analysis using hundreds of taxa,
as shown in Table 2. In contrast to Larsen et al., 2012, we use an Autoencoder architecture.
Their intermediate representation was a matrix of interactions between the taxa themselves
and between taxa and environmental features, retrieved with a Bayesian Network. The taxa
prediction was implemented with a classical Artificial Neural Network, rather than novel DL
techniques. Unfortunately, we cannot compare our results quantitatively because neither their
data nor their software are available for reproducibility studies.

Ladau et al., 2018 used regression models to establish the relationship between the abun-
dances of the 53 most abundant families in a microbiome, and historical and contemporary
climate variables. They concluded that climate change will increase diversity and change the
relative abundances of soil bacteria.

From the methodological point of view, Xie et al. (2017) designed a similar DL architec-
ture to ours. It is based on an Autoencoder, and is capable of making multiple regressions
simultaneously. It is distinct, however, in that it was designed for an entirely different goal: to
better understand the mechanisms involved in gene expression regulation. As such, we cannot
compare our system - neither quantitatively nor qualitatively - with theirs.

The study most similar to ours is DeepMicro (Oh and Zhang, 2020). Here, we predict a
microbiome code from environmental variables and then decode it to obtain the whole micro-
biome vector using an Autoencoder. DeepMicro also makes use of dimensionality reduction in
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microbiome data via an Autoencoder architecture; however, the main difference between the
approaches is their distinct goals. DeepMicro uses the code to predict human diseases, com-
pared to our approach of predicting the code itself from environmental features, and decoding
this code back to a microbiome. These distinct goals make it difficult to do a quantitative com-
parison of the two approaches. Additional differences include our representation of microbiome
composition using only a species-level relative abundance profile, applying different numerical
transformations (TSS or CLR), while DeepMicro also tested strain-level marker profiles (0/1
species absence/presence). Further, they use hundreds of samples, while we use thousands
in our model training, as is recommended for DL where the objective is to achieve a good
estimation of all the hyper-parameter values in the model architecture.
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3 Supplementary Figures

Figure S1
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Figure S1: Learning curves of autoencoder training. The figure shows both autoencoders,
with an OTU latent space and a combined latent space. Three environmental features of the
reference model: Temperature, rain, plant age. The two performance metrics used in the
current study are represented. In Pearson correlation, higher scores are better, because it is a
correlation metric. In Bray-Curtis dissimilarity, lower scores are better, as it is a dissimilarity
metric.

Multiple learning curves are represented in the pre-computed notebook results, in html files
(for example, https://github.com/jorgemf/DeepLatentMicrobiome/blob/master/Notebooks/
OutputNotebooks/model reference 3domainFeatures.html)
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Figure S2
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Figure S2: Performance of different hyperparameter values. Mean validation (5-fold
CV on the training set) grouped by hyperparameter values. In Pearson correlation, higher
scores are better, because it is a correlation metric. In Bray-Curtis dissimilarity, lower scores
are better, as it is a dissimilarity metric. In ’Learning Rate’ graph, k means constant.
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Given that Pearson and Bray-Curtis are usually ”mirrors” of one another, the best pa-
rameter value corresponds to those where the points in each graph-pair fall near the center
of the graph-pair. In Transformation, Center Log Ratio and TSS works similarly. Regarding
AE architectures, smaller autoencoders work better in general; however, we obtained the best
results using larger autoencoders (more layers, more nodes per layer). There is little difference
between the activation functions. The larger the latent space the better, although there is little
difference between 50 and 100. Batch size of 64 with Learning rate of 0.001 works better than
Batch size of 128 with Learning rate of 0.01.

8



Figure S3

Figure S3 shows that the performance of the reconstructed microbial composition (Y axes) is
very high in both Pearson correlation, with most of the points close to the maximum correlation
on the upper region, and Bray-Curtis dissimilarity, with most of the points close to the minimum
dissimilarity in the lower region. The reconstructed performance is better than the performance
of the microbial composition predicted from the environment, with points distributed over a
wider area in the X axis), although most of the points are concentrated in the corners associated
with the best performance in each measure (top-right and bottom-left, respectively).
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Figure S3: Performance reference model per sample in test set. Comparison of original
abundances with those reconstructed from the autoencoder (Y axes) and original abundances
with those predicted from the environmental features (X axes). In Pearson, higher scores are
better, because it is a correlation metric. In Bray-Curtis, lower scores are better, as it is a
dissimilarity metric. Both the autoencoder and the model from environmental features refer to
the reference model (OTU latent space) selected and described in section 3.2.
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Figure S4
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Figure S4: Prediction of microbial composition in different predicted climate change
conditions, at multiple plant ages. Outcomes are reported at the Class taxonomic level.
Each coloured point and dashed line indicates a sample in a different temperature/precipitation
condition. ‘actual’: 59°F and 1.5 inches of rain; ‘hot and dry’: 86°F and 0 inches of rain; ‘cold
and rain’: 50°F and 5 inches of rain. Note the difference in the maximum of relative abundance
between different radar charts.
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