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1. Scheme of experimental protocol and photograph of the robot hand
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Figure S1: (A) Scheme of the experimental protocol showing the time of various data

collection as well as the training therapy. The dashed block means the EEG and fMRI

data were collected simultaneously. (B) Photograph of the robot hand used in the study.

The robot hand could provide 55 and 65 degrees range of motion (ROM) for

metacarpophalangeal (MCP) and interphalangeal (PIP) finger joints respectively from

fully extended position to fully flexed position. It took around 2 seconds to finish fully

open or close movement under empty load. The subjects were instructed to keep their

shoulders naturally flexed and abducted, elbow flexed at 90 degrees, arm pronated but

wrist positioned naturally without any flexion or extension.

2. Data Analysis

2.1. fMRI Preprocessing

The resting-state fMRI data were preprocessed using the Data Processing Assistant for

Resting-State fMRI (DPARSF) toolbox [1] based on Statistical Parametric Mapping

(SPM12) (http://www.fil.ion.ucl.ac.uk/spm). The first 10 volumes were discarded to

assure the remaining volumes of fMRI data were at magnetization steady state. The

remaining volumes were corrected with slice timing and realigned for head motion

correction. Nuisance variables were then regressed out, including white matter,

cerebrospinal fluid (CSF), global mean signal, and Friston 24 head motion parameters

[2]. To further control for head motion, the scrubbing process was performed for the

volumes with frame-wise displacement value exceeding 0.3 [3]. If over 25% of all the

volumes exceed the frame-wise displacement threshold, the data for this subject would

be discarded, and no subject was discarded in resting-state fMRI analysis. Then the

functional dataset was aligned to the anatomical dataset. Detrending and temporal

band-pass filtering (0.01-0.1 Hz) [4, 5] were performed to remove higher frequency

physiological noise and lower frequency scanner drift. Subsequently, the functional

images were spatially normalized to the Montreal Neurological Institute (MNI) template,

resliced to 2×2×2 mm3 voxels, and smoothed with a Gaussian kernel with a full-

width at half-maximum (FWHM) of 6 mm. In the statistical analysis, subjects



3

with left-hemispheric lesions were flipped along the midsagittal plane using MRIcron

(www.mccauslandcenter.sc.edu/mricro/mricron). This procedure was also adopted in

previous studies [6, 7], so that the lesions of all subjects were in the right hemisphere.

(Corresponding to step 10 in Figure 1.)

2.2. EEG Preprocessing

EEG data were mainly preprocessed with EEGLAB [8], Fieldtrip toolbox [9], Matlab

signal processing toolbox and custom-made codes (Mathworks Natick, MA, USA).

The EEG signal had a relatively low signal-to-noise ratio (SNR) when simultaneously

collected with fMRI due to the switching of magnetic field gradients. Therefore, a

principal component analysis (PCA)-based optimal basis set (OBS) algorithm [10] was

utilized to remove the MRI gradient artifact. The triggers marking the onset of each

fMRI volume were also provided to better select and extract the artifactual features.

In our study, the missing triggers for two subjects were repaired manually by an expert

radiographer. The resulting EEG signal was inspected again to ensure no massive

residual gradient artifact was observed. Ballistocardiographic (BCG) artifact related

to heart pulse was another source distorting the EEG. To remove the artifact, the

QRS complexes of each heart pulse were initially automatically determined with an

R-peak detection algorithm. Then, a strategy developed by Liu and colleagues, which

combined independent component analysis (ICA), OBS and an information-theoretic

rejection criterion, was adopted to eliminate the BCG artifact channel-wisely [11].

After gradient and BCG artifact removal, the EEG signals were resampled to 250

Hz and further band-pass filtered with a 2-40 Hz Butterworth non-causal filter. Bad

channels with extensive artifacts were removed and reconstructed through spherical

spline interpolation with neighbor electrodes. All data were then common average

referenced. Subsequently, the EEG data were segmented into non-overlapping two-

second epochs according to the triggers from MRI scanner. The first and last four

epochs were dropped, considering the signal instability. The remaining epochs were

inspected visually accompanied by statistical metrics (e.g., z-score, variance, min and

max, etc.), and bad epochs were rejected. Finally, an adaptive mixture independent

component analysis (AMICA) algorithm [12] was utilized to wipe off the components

potentially related to residual artifacts induced by MRI scanning, eye movements, and

muscle contraction. The time courses of remaining components were projected back

to all channels. To run appropriately the group-level analysis, EEG data for patients

with left-hemispheric lesions were left-right flipped along the middle line before signal

processing procedures. (Corresponding to step 5 in Figure 1.)

2.3. EEG distributed source estimation

The preprocessed EEG data were reconstructed into the distributed source space using

Brainstorm software [13]. First, EEG electrode positions were manually co-registered

to the individual T1 images based on the standard 10-20 EEG electrode locations and
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polygon models of the cortical surface were constructed. The three realistic layers (scalp,

inner and outer skull) were extracted from individual MRI data to generate the boundary

element model (BEM) surface. The gain matrix, called the lead field, representing the

linear relationship projecting the source time courses on the cortical surface to the

measurements on EEG channels, was computed using OpenMEEG [14]. The Tikhonov-

regularized minimum-norm algorithm was adopted to perform EEG source localization

[15], with Tikhonov parameter which regularized the smoothness of the images set to

10% of maximum singular value of the lead field. Herein, one constraint was imposed

that only a single current dipole was assumed at each vertex point and oriented normally

to the cortical surface based on the anatomical observation. The noise covariance matrix

was calculated over a long period of recordings, as recommended by Tadel and colleagues

[13]. (Corresponding to step 6 in Figure 1.)

To investigate the neural activities from primary motor areas, two spherical seeds

with a radius of 5 mm at ipsilesional M1 (iM1) and contralesional M1 (cM1) were

determined. The iM1 and cM1 seeds were set at (38,-22,56) and (-38,-22,56) in the

MNI space, respectively. The standard seeds in MNI space were wrapped to subject

individual cortex space and the time series of vertices within the seed were averaged.

The extracted time series from iM1 and cM1 seeds were mainly explored in further

analysis. (Corresponding to step 7 in Figure 1.)

2.4. EEG-informed fMRI analysis

The extracted EEG source time courses in iM1 seed for each subject were further used

in EEG-informed fMRI analysis [16, 17]. Time-frequency power spectrum was estimated

for each extracted EEG source time course using short-time Fourier transform and the

length of the sliding window was 2 seconds without overlap between adjacent windows.

The EEG bands were defined as theta (4-7 Hz), alpha (8–12 Hz), and beta (13–30 Hz).

Band power signals were calculated by averaging the power spectrum within each EEG

band. The band power signals were further convolved with the hemodynamic response

function (HRF) in SPM12, to obtain the EEG regressors of interest in partial correlation

analysis [18, 19]. (Corresponding to step 12 in Figure 1.)

For each EEG band and each subject, general linear models (GLM) were fitted

for every voxel in the brain with the corresponding EEG regressor and six motion

parameters in fMRI analysis as covariables to control the effects of head motion. The

GLM model was formed as follows [20]:

Y = Xβ + ε (1)

where Y represented the measured fMRI signal of a single voxel. X was the design

matrix. In this study, the first column of X was EEG regressor and the remaining ones

were composed of six motion parameters. β was the weighting vector which was to be

estimated and the entry corresponding to the EEG regressor would be treated as the

partial correlation for this voxel. ε was the random error term. The map of partial
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correlation would be produced after traversing all voxels. (Corresponding to step 11 in

Figure 1.)

2.5. Conventional seed-based fMRI connectivity analysis

Except for EEG-informed fMRI analysis, conventional seed-based fMRI functional

whole-brain connectivity analysis was also performed. The same seeds of iM1 in MNI

space were used, and the average time course of the BOLD signal within the seeds

was calculated as the regressors. Following that, functional connectivity maps were

generated.

2.6. Fractal Analysis

The fractal analysis on the iM1 and cM1 source time series was characterized by

fractal dimension (FD) [21], a measure which has been shown to be able to capture

the non-linear information on scale-free properties and to extend the understanding of

brain mechanisms at system levels [22, 23]. Usually, brain damage could result in less

complexity of the underlying neuronal activity, which is indicated in the decrease of

FD value. Plenty of algorithms are available to calculate the FD and box-counting

method [24] is a classical one among them. In our study, we adopted a strategy similar

to Raghavendra and Dutt [25] to increase the box size from the finest time resolution

to the maximum coarse time resolution with the increasing factor equal to two. The

FD values were calculated in the 10-second sliding time windows with 50% overlap and

averaged over all windows.

The balance of homologous motor regions is of importance in rehabilitation

for stroke patients with motor impairment. In order to investigate the complexity

unbalance, FDasymmetry was computed to characterize the interhemispheric asymmetry

of motor areas as follows:

FDasymmetry =
FDcM1 − FDiM1

FDcM1 + FDiM1

(2)

where FDcM1 and FDiM1 are FD values for cM1 and iM1 respectively. In this

study, we utilized the pre-post change of FD asymmetry to characterize the process

of interhemispheric rebalance after the training intervention. (Corresponding to step 8

in Figure 1.)

2.7. DTI analysis

Diffusion-weighted images before the training were used for further analysis and first

preprocessed using FMRIB Software Library (FSL), including correction for eddy-

current effect and brain extraction. Diffusion tensors were then estimated from the

preprocessed diffusion images. Fractional anisotropy (FA) [26], a measure quantifying

the degree of anisotropic diffusion, was calculated from the diffusion tensors of each

voxel. All the diffusion images were registered to MNI space. To assess the transcallosal
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connections between two hemispheres, especially the reserved connection between

primary motor areas, a recently published standard template TCATT (Transcallosal

Tract Template) [27] was used to map the structural integrity. Average FA values

within the M1-M1 tract were computed as the structural integrity between the bilateral

motor cortex. (Corresponding to step 1, 2 and 3 in Figure 1.)

3. Extraction of contralesional frontal-parietal network and sensorimotor

network

The contralesional frontal-parietal network and sensorimotor network were extracted

using independent component analysis (ICA). All fMRI scans from all sessions

were combined and run in a group ICA using the temporal concatenation method

implemented in MELODIC [28], constrained to identify 30 components. An initial

analysis of the population using model order estimation was used to calculate the

appropriate number of components. The contralesional frontal-parietal network and

sensorimotor network were chosen based on previous studies [29].

4. Interhemispheric asymmetry before and after training

Figure S2: The interhemispheric asymmetry values before and after training for each

individual subject.

5. EEG-informed fMRI analysis using surface-based method

MRI data were preprocessed using the fMRIPrep software version 1.5.0 [30]. T1-

weighted images were corrected for intensity non-uniformity [31] and skull-stripped using

ANTS 2.2.0 [32]. High resolution cortical surfaces were reconstructed with FreeSurfer

6.0.1 [33] based on T1-weighted images, and then registered to the fsaverage5 template
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[34]. Functional data was slice-time corrected using 3dTshift [35], motion corrected using

MCFLIRT [36], distortion corrected, and then resampled to the fsaverage5 template

based on boundary-based registration [37]. Nuisance variables were then regressed out,

including white matter, cerebrospinal fluid (CSF), global mean signal, and Friston 24

head motion parameters [2]. The surface data were further smoothed within 6 vertices.

Similar EEG-informed fMRI analysis as the volume-based analysis was performed

on the preprocessed surface data. The two-way ANOVA with time (pre and post)

and frequency bands as factors were performed. Vertex-level threshold was set at

p < 0.005. No significant interaction result was found for iM1 seed. To compare

with the volume-based results, paired t-tests were performed between pre and post

training for 3 frequency bands (theta, alpha, and beta) and two hemispheres. Vertex-

level threshold was set at p < 0.005. Significant clusters were only observed for alpha-

band and theta-band for the iM1 seed. Consistent with the volume-based results,

significant increased partial correlation was observed in the contralesional superior

frontal area for alpha-band, and significant decreased partial correlation was observed

in the ipsilesional supramarginal gyrus for theta-band. Besides, significant increased

partial correlation was also observed in the contralesional superior frontal area for the

theta-band. (illurstrated in Figure S3)

𝒕𝒉𝒆𝒕𝒂 𝒂𝒍𝒑𝒉𝒂

Figure S3: The brain regions which showed significant partial correlation change before

and after training using surface-based method, given the regressor embedding spectral

information (including theta, alpha frequency bands) derived from EEG source time

course of iM1.
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