iScience, Volume 24

Supplemental information

A critical role for MSR1 in vesicular stomatitis

virus infection of the central nervous system

Duomeng Yang, Tao Lin, Cen Li, Andrew G. Harrison, Tingting Geng, and Penghua Wang

4 Figure S1 Msr1-deficiency renders mice resistant to VSV intranasal infection,

Related to Figure 1. The disease scores of WT and *Msr1^{-/-}* mice inoculated with VSV
intranasally. The mice were inoculated intranasally with 1×10⁷ PFU of VSV per mouse
in a 25-µl volume. The disease scores from WT and *Msr1^{-/-}* were then recorded on a
scale of 0-5, as previously described in the detailed methods (N=10 mice/group). The
data are presented as mean n ± SD and statistical significances are analyzed by nonparametric Mann-Whitney U test, ** *P*<0.01.

Figure S2 Msr1 is dispensable for systemic VSV dissemination and innate immune responses, Related to Figure 2. a) The viremia of WT mice, $Msr1^{+/-}$ and $Msr1^{-/-}$ littermates infected with 1×10⁶ PFU/mouse of VSV by retro-orbital injection, assessed by quantitative RT-PCR, N=8-9 mice/group for WT and $Msr1^{-/-}$, N=5 mice/genotype for $Msr1^{+/-}$ and $Msr1^{-/-}$ littermates. b) The mRNA levels of *Ifna*, *Tnfa*, *Il6* and *Cxc110*

in leukocytes of WT and *Msr1^{-/-}* mice after VSV infection, assessed by quantitative RTPCR, N=6 mice/group. All the data are presented as mean ± S.E.M. and statistical
significance are analyzed by non-parametric Mann-Whitney U test.

- 24
- 25
- 26
- 27
- 28

a Design of MSR1 fragments

b MSR1 pulldown with live VSV-GFP particles

29 30

Figure S3 The domain structure of MSR1 protein and workflow of MSR1 pulldown with live VSV-GFP virions, Related to Figure 5 and Figure 6. a) Amino residues 1-50: cytoplasmic N-tail, 1-80: cytoplasmic N-tail plus transmembrane, and 51-end: extracellular domains including the collagen, scavenger receptor cysteine-rich (SRCR) and the transmembrane domains. b) The procedure of MSR1 pulldown with live VSV-GFP particles.

- 37
- 38
- 39 40

41 42

Figure S4 Generating LDLR^{-/-} single clonal trophoblast by CRISPR-Cas9 system, Related to Figure 4. a) Generating knockout of LDLR in trophoblasts using CRISPR-Cas9 method. LDLR band size: 120 kDa, 150 kDa. b) Single clone selection of CRISPR-knockout *LDLR*^{-/-} trophoblast, C1-C5: Candidate 1-5. The C5 was chosen to further experiment due to its complete knockout of LDLR. β-actin is a housekeeping control.

86 Supplemental Tables

88 Supplemental Table S1

89 Primers for gene subcloning and expression with restriction enzyme sites, Related to STAR

Methods and Figure 5					
Gene	Species	Forward primer (5'-3')	Reverse primer (5'-3')	Enzyme	
				sites	
MSR1	Hs	CTTGCGGCCGCGGAGC	TTGGATCCCTATAAAGTGC	NotI and	
		AGTGGGATCACTTTCA	AAGTGACTCCAGC	BamHI	
MSR1	Hs	CTTGCGGCCGCGGAGC	TTGGATCCCTAAGCTTTG	NotI and	
fragment		AGTGGGATCACTTTCA	AAGGACTTCAGTT	BamHI	
1-50					
MSR1	Hs	CTTGCGGCCGCGGAGC	TTGGATCCCTACGTTTCCC	NotI and	
fragment		AGTGGGATCACTTTCA	ACTTCAGGAG	BamHI	
1-80					
MSR1	Hs	CTTGCGCCCGCGGCAC	TTGGATCCCTATAAAGTGC	NotI and	
fragment		TGATTGCCCTTTAC	AAGTGACTCCAGC	BamHI	
51-end					

100 Supplemental Table S2

101

Primers for qPCR, Related to Figure 3

Gene	Species	Forward primer (5'-3')	Reverse primer (5'-3')
VSV	Indiana	TGATACAGTACAATTATTTTGGGAC	GAGACTTTCTGTTACGGGATCTGG
	strain		
Ldlr	Mm	GAATCTACTGGTCCGACCTGTC	CTGTCCAGTAGATGTTGCGGTG
Msr1	Mm	AGTGCTGTCTTCTTTACCAGC	GTGAGGAAGGGATGCTGTA
(Scaral)			
Scara2	Mm	ATGGCACCAAGGGAGACAAAGG	GCCTGGTTTTCCAGCATCACCT
Scara3	Mm	CCACGGAGAAATCCTTCGCAATG	TAGGTCCTCTGCTACCAACAGG
Scara4	Mm	ACTCCAAGCACGGTCAGCTCAT	CTTGTTGCCAGTTGGACCAGGT
Scara5	Mm	TTTGATGGCAGGAGCCTGTCCA	CCCACAAGAATCAGGAAGACCAG
Scarb1	Mm	ACACCCGAATCCTCGCTGGAAT	CCGTTGGCAAACAGAGTATCGG
Scarb2	Mm	TAGCCAACACCTCCGAAAACGC	CGAACTTCTCGTCGGCTTGGTA
Scarb3	Mm	GGACATTGAGATTCTTTTCCTCTG	CAAAGGCATTGGCTGGAAGAAC
(CD36)			
Msr2	Mm	CCTGATCCAGAGTGCAATCGTG	CACATCTCCGATGAAGGGCAAG
Actin	Mm	AGAGGGAAATCGTGCGTGAC	CAATAGTGATGATGACCTGGCCGT
Ifna	Mm	CTTCCACAGGATCACTGTGTACCT	TTCTGCTCTGACCACCTCCC
Tnfa	Mm	CTCCAGGCGGTGCCTATGT	GAAGAGCGTGGTGGCCC
Il6	Mm	CCAGAAACCGCTATGAAGTTCC	TCACCAGCATCAGTCCCAAG
Cxcl10	Mm	ATCATCCCTGCGAGCCTATCCT	GACCTTTTTTGGCTAAACGCTTTC