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Supplementary Note 1: Capacitance Calculations 

Consider the system shown in Supplementary Figure 1. 

 

Supplementary Figure 1: Single capacitor made of a stationary electrode and a rotating pedal which 

contains both a second electrode and a dielectric 𝜖𝑖 connected to it. In between the first electrode and 

the dielectric is an electrolyte solution of Debye length 𝜅−1 and dielectric constant of 𝜖.  

 

The equation of motion for the electric potential 𝜙(𝑧) is given by the linearized Poisson-

Boltzmann equation (Debye-Huckel): 

 𝑑2𝜙

𝑑𝑧2
= 𝜅2(𝜙 − 𝜙0)      

 (1) 

 

The electric potential everywhere is then given by,    

 𝜙(0 ≤ 𝑧 ≤ 𝑙) = 𝐴𝑒−𝜅𝑧 + 𝐵𝑒𝜅𝑧 + 𝜙0 (2) 

 𝜙(0 ≤ 𝑧 ≤ 𝑙) = 𝐴𝑒−𝜅𝑧 + 𝐵𝑒𝜅𝑧 + 𝜙0 (3) 

 𝜙(𝑎 ≤ 𝑧 ≤ 𝑙 + 𝑑) = 𝐷𝑧 + 𝐸 (4) 

 𝜙(𝑧 ≥ 𝑙 + 𝑑) = 𝑐𝑜𝑛𝑠𝑡.             (5) 

 



 The boundary conditions are: 

• Potential at 𝑧 = 0: 

 𝐴 + 𝐵 + 𝜙0 = 𝑈      (6) 

• Continuity of potential at 𝑧 = 𝑙: 

 𝐴𝑒−𝜅𝑙 + 𝐵𝑒𝜅𝑙 + 𝜙0 = 𝐷𝑙 + 𝐸      (7) 

• Continuity of displacement field at 𝑧 = 𝑙: 

 𝜖𝜅(𝐵𝑒𝜅𝑙 − 𝐴𝑒−𝜅𝑙) = 𝜖𝑖𝐷      (8) 

• Potential at 𝑧 = 𝑙 + 𝑑: 

 𝐷(𝑙 + 𝑑) + 𝐸 = 0 (9) 

 

In addition to the boundary conditions, the system is overall electroneutral, i.e., 

 
∫ 𝜌(𝑧)

𝑙

0

𝑑𝑧 = 0 (10) 

where, 

 
𝜌(𝑧) = −

2𝑒2𝑐0

𝑘𝐵𝑇
(𝜙(𝑧) − 𝜙0) 

(11) 

 

which gives the relation: 

 
𝐵 = 𝐴

1 − 𝑒−𝜅𝑙

1 − 𝑒𝜅𝑙
 

  (12) 

 

 

By solving Supplementary Equations (6) - (9) and   (12) for the parameter 𝐴, we get: 

 𝐴 = 𝑈
𝜖𝑖

2𝜖𝑖(1 − 𝑒−𝜅𝑙) + 𝜖𝜅𝑑(1 + 𝑒−𝜅𝑙)
   (13) 

 

 

The capacitance per unit surface is given by: 

 

𝐶S =
𝜎(𝑧 = 0)

𝑈
=

−
𝜖
4𝜋

𝑑𝜙
𝑑𝑧

|
𝑧=0

𝑈
=

𝜖𝜅

4𝜋
(
𝐴

𝑈
−

𝐵

𝑈
) 

  (14) 

 

 

Plugging in Supplementary Equations (6) and   (14), we get: 



 
𝐶S = (

8𝜋

𝜖𝜅
tanh (

𝜅𝑙

2
) +

4𝜋𝑑

𝜖𝑖
)
−1

   (15) 

 

Supplementary Note 2: Molecular Simulations 

 

We performed long canonical (NVT) simulations, 60ns, of the liquids to compute dielectric 

constants, and NPT simulations to calculate bulk densities. We employed the v-rescale 1 

thermostat to set the system temperature and the Berendsen barostat 2 for the constant pressure 

simulations. The slab simulations, as indicated in the main text, involved typically 40 ns 

trajectories. We employed the 3D correction 3 to compute the electrostatic interactions using 

the Ewald summation method, and the Lennard-Jones interactions were truncated at 1 nm using 

a spherical cut-off. The cross interactions were computed using geometric combination rules.   

The system was surrounded by a large vacuum gap in the z direction, to prevent image-image 

interactions. The total length of the simulation in this direction, Lz, was 3Ls, at least. The 

simulations of the slab systems consisted of ~500 PC or ~1000 formamide molecules. The gold 

slabs consisted of 588 atoms. 196 atoms in the layer next to the PC liquid were assigned 

electrostatic charges to perform the capacitance computations. The position of the gold slabs 

was restrained to prevent drift and maintain the desired level of confinement. All the 

trajectories were integrated with the Leap Frog algorithm, a timestep of 2fs, and the code 

GROMACS 2020.  

The initial geometry for PC was obtained from ATB following optimization with B3LYP/6-

31G*, with the initial charges estimated using the ESP method of Merz-Kollman 4,5 

Intermolecular and intramolecular parameters with parameters were taken initially from the 

GROMOS 54A7 forcefield. PC is a chiral molecule. All the simulations presented here were 

performed with the S-enantiomer. We performed control simulations using the R enantiomer 

obtaining the same results for density and dielectric constant, within the statistical uncertainty 

of our computations. 

The initial forcefield for PC over-predicted the density of the liquid at 300 K, 1295.1 ± 1.1 

kg/m3 (1197.6 kg/m3) and the dielectric constant 73.4 ± 3.5 (Exp. 64.7). To improve the 

accuracy of the model we modified the Lennard-Jones parameters using the Amber94 model 

and the partial charges 6,7. Supplementary Table 1 contains the final optimized parameters. 



With these changes the predicted average density and dielectric constant are 1201.1 ± 0.4 

kg/m3 and 66.4 ± 3.6, in good agreement with the experimental results. 

 

Atom Charge (e) σ (nm) ε (kJ/mol) 

O1 -0.4141 0.3167 0.8786 

O2 -0.5632 0.3167 0.8786 

O3 -0.4147 0.3167 0.8786 

C1 -0.1133 0.3638 0.4577 

C2 0.1141 0.3638 0.4577 

C3 0.0979 0.3638 0.3598 

C4 0.8651 0.3638 0.3598 

H1 0.0672 0.2835 0.0657 

H2 0.0532 0.2835 0.0657 

H3 0.0579 0.2835 0.0657 

H4 0.0877 0.2835 0.0657 

H5 0.0816 0.2835 0.0657 

H6 0.0806 0.2835 0.0657 

 

Supplementary Table 1: Charges, effective diameters and interaction strengths employed in 

the simulations of PC performed in this work. 

 

Simulations of a capacitor with Room Temperature Ionic Liquids 

The capacitances were obtained by analyzing trajectories spanning 16 ns, following the same 

procedure discussed above. The films were prepared to ensure the density in the middle of the 

film agreed with the bulk density of the model 8, and they contained typically 2400 ion pairs, 

with a wall to wall distance of the order of 13 nm. We calculated the potential drop across the 

interfaces for surface charge in the range 0-3 
μF

cm2
. We found that the voltage surface charge 

dependence follows a linear dependence, similar to what is observed in the molecular fluids or 

reported in previous simulations of ionic liquids 9.   

In Supplementary Figure 2, we show the electrostatic potential of the full system, including the 

substrate and RTIL contributions.  



 

Supplementary Figure 2. The simulated electrostatic potential profile for ionic liquid, 

including the substrate and RTIL contributions. 

 

Supplementary Note 3: Derivation of Drag Torque Acting on the Discs  

 

Consider a disk of radius 𝑅 rotating about the z-axis with angular frequency 𝜔. Situated parallel 

to that disk, at a distance ℎ, is an immobile disk of the same radius 𝑅. For 𝑅 ≫ ℎ, and after 

taking advantage of the azimuthal symmetry, we get the Von-Karman differential equations on 

the velocity components 𝑣r, 𝑣φ, 𝑣z in cylindrical coordinates: 

 2𝑣r

𝑟
+

𝑑𝑣z

𝑑𝑧
= 0   (16) 

 

(
𝑣r

𝑟
)
2

− (
𝑣φ

𝑟
)
2

+ 𝑣z

𝑑 (
𝑣r

𝑟 )

𝑑𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈

𝑑2 (
𝑣r

𝑟 )

𝑑𝑧2
   (17) 

 
𝑣z

𝑑𝑣z

𝑑𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈

𝑑2𝑣z

𝑑𝑧2
   (18) 

 
2𝑣r𝑣φ

𝑟2
+ 𝑣z

𝑑 (
𝑣φ

𝑟 )

𝑑𝑧
= 𝜈

𝑑2 (
𝑣φ

𝑟 )

𝑑𝑧2
 

  (19) 

 

 

Where 
𝑣r

𝑟
,
𝑣φ

𝑟
 and 𝑣z are functions of 𝑧 only, and 𝑝 = 𝑝(𝑟, 𝑧).  

Taking a linear approximation and dropping all non-linear velocity terms: 

 2𝑣r

𝑟
+

𝑑𝑣z

𝑑𝑧
= 0   (20) 



 

−
1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈

𝑑2 (
𝑣r

𝑟 )

𝑑𝑧2
= 0    (21) 

 
−

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈

𝑑2𝑣z

𝑑𝑧2
= 0   (22) 

 

𝜈
𝑑2 (

𝑣φ

𝑟 )

𝑑𝑧2
= 0 

  (23) 

 

 

The first three differential equations,   (20)-  (22), present a coupling between 𝑣r, 𝑣z and 𝑝. The 

fourth equation is uncoupled, and its solution is given by: 

 𝑣φ

𝑟
= 𝐴 + 𝐵𝑧 

  (24) 

 

Where 𝐴 and 𝐵 are constants to be determined by the boundary conditions of the problem. 

Applying non-slip conditions for the rotating disk at 𝑧 = 0 and for the immobile disk is at      

𝑧 = ℎ, we get:  

 𝑣φ(𝑟, 𝑧) = 𝜔𝑟 (1 −
𝑧

ℎ
)   (25) 

 

If we introduce a slipping length 𝛿, Supplementary Equation   (25) becomes,  

 𝑣φ(𝑟, 𝑧) = 𝜔𝑟 (1 −
𝑧

ℎ + 𝛿
)   (26) 

 

The shear stress is then given by: 

 𝜕𝑣φ

𝜕𝑧
= −𝜔𝑟

1

ℎ + 𝛿
 

  (27) 

 

Consequently, the drag torque is given by, 

 
𝜏 = ∫ ∫ 𝜈𝜔

1

ℎ + 𝛿
𝑟3𝑑𝑟𝑑𝜑

2𝜋

0

=
1

2
𝜋𝜈𝜔𝑅4

1

ℎ + 𝛿

𝑅

0

   (28) 

For 𝑁 devices,  

 
𝜏 =

1

2
𝜋𝜈𝜔𝑅4

𝑁

ℎ + 𝛿
   (29) 

 

Supplementary Note 4: Derivation of the Expressions for 𝑸(𝒕) and 𝒋(𝒕)  

 



Consider the electric circuit of our proposed device, as sketched in Supplementary Figure 3.  

 

 

Supplementary Figure 3. A sketch of the electric circuit of our proposed device.  

 

Suppose we momentarily charge 𝐶fix using a battery of voltage 𝑉ref and then immediately 

disconnect the voltage source. As a result, one branch of the circuit will possess an excess 

charge 𝑞 and the other branch will possess an excess charge −𝑞. The total charge in each branch 

is conserved:  

 𝑄fix(𝑡) + 𝑄(𝑡) = 𝑞 = 𝐶fix𝑉ref   (30) 

 

Where 𝑄fix(𝑡) and 𝑄(𝑡) are the charges in the fixed capacitor and the overall charge on the 

time-varying capacitors respectively. Kirchhoff’s voltage law in the circuit reads: 

 𝑉fix(𝑡) − 𝑉R − 𝑉(𝑡) = 0   (31) 

 

Using the relation between the charge on the capacitor and the voltage on its terminals we have, 

 𝑄fix(𝑡)

𝐶fix
− 𝑅𝑗(𝑡) −

𝑄(𝑡)

𝐶(𝑡)
= 0 

  (32) 

 

Where 𝑗(𝑡) is the current in the circuit. Using Supplementary Equation   (30) to eliminate 𝑄fix: 

 𝐶fix𝑉ref − 𝑄(𝑡)

𝐶fix
− 𝑅𝑗(𝑡) −

𝑄(𝑡)

𝐶(𝑡)
= 0 

  (33) 

 

Dividing by (–𝑅) and identifying 𝑗(𝑡) =
𝑑𝑄

𝑑𝑡
, we get, 



 𝑑𝑄

𝑑𝑡
+

𝑄(𝑡)

𝑅
(

1

𝐶fix
+

1

𝐶(𝑡)
) =

𝑉ref

𝑅
 

  (34) 

 

The term in the brackets of Supplementary Equation   (34) is just the equivalent inverse 

capacitance of the two capacitors connected in series. Since 𝐶fix ≫ 𝐶(𝑡), we can approximate 

the equivalent capacitance as that of the time changing capacitor alone. For such approximation 

we get, 

 𝑑𝑄

𝑑𝑡
+

𝑄(𝑡)

𝑅𝐶(𝑡)
=

𝑉ref

𝑅
 

  (35) 

 

Which is independent of the reservoir capacitance. Let us first introduce the following rescaling 

parameters:  

 
𝐶(𝑡) = 𝑁𝐶max𝑓(𝑡), 𝜏 ≡ 𝑅𝑁𝐶max, 𝑗0 ≡

𝑉ref

𝑅
 

  (36) 

 

Plugging these into Supplementary Equation   (35) we get, 

 𝑑𝑄

𝑑𝑡
+

1

𝑓(𝑡)

𝑄(𝑡)

𝜏
= 𝑗0 

  (37) 

 

This is a first order linear ODE with time-dependent coefficients. The general solution for it is 

given by, 

 
𝑄(𝑡) =

1

𝐼(𝑡)
[∫ 𝑗0𝐼(𝑡

′)𝑑𝑡′
𝑡

0

+ 𝑄(0)]   (38) 

where:  

 
𝐼(𝑡) ≡ exp [

1

𝜏
∫

𝑑𝑡′

𝑓(𝑡′)

𝑡

0

] 
  (39) 

 

Initially, the current in the circuit is zero, so that the excess charge distributes between the two 

capacitors correspond to zero voltage between them. Therefore, initially,  

𝑉̃(0) − 𝑉(0) =
𝑄fix(0)

𝐶fix
−

𝑄(0)

𝑁𝐶(0)
=

𝑉ref𝐶fix − 𝑄(0)

𝐶̃
−

𝑄(0)

𝑁𝐶(0)
= 0 

   (40) 

 

And so,  

 𝑄(0) ≃ 𝑉ref𝑁𝐶(0)   (41) 

 

Plugging Supplementary Equation   (41) into Supplementary Equation   (38) we get,  



𝑄(𝑡) =
1

𝐼(𝑡)
(∫ 𝑗0𝐼(𝑡

′)𝑑𝑡′
𝑡

0

+ 𝑉ref𝐶(0)) =
𝑗0

𝐼(𝑡)
(∫ 𝐼(𝑡′)𝑑𝑡′

𝑡

0

+ 𝑅𝐶(0)) 
   (42) 

 

 

At this point, to further continue the analysis, we need to model 𝑓(𝑡). The capacitance 𝐶(𝑡) 

changes continuously, on each period, from its minimal value, 𝐶min, to its maximal value, 𝐶max, 

and back to 𝐶min. Therefore, let us model 𝑓(𝑡) as: 

𝑓(𝑡) = sin2 (
𝜔𝑡

2
) +

𝐶min

𝐶max
cos2 (

𝜔𝑡

2
) ≡ sin2 (

𝜔𝑡

2
) + 𝛾 cos2 (

𝜔𝑡

2
) 

   (43) 

 

where 𝛾 =
𝐶min

𝐶max
 .  Substituting Supplementary Equation   (43) into Supplementary Equation   

(39), we get – 

 

𝐼(𝑡) ≡ exp [
1

𝜏
∫

𝑑𝑡′

sin2 (
𝜔𝑡
2 ) + 𝛾 cos2 (

𝜔𝑡
2 )

𝑡

0

] 

  (44) 

 

 

Rearranging Supplementary Equation (44) by using trigonometric identities we arrive at: 

 

𝐼(𝑡) = exp [
1

𝜏
∫

𝑑𝑡′

1 + 𝛾
2 −

1 − 𝛾
2 cos(𝜔𝑡’)

𝑡

0

] 

  (45) 

 

 

Luckily, this class of integrals has a closed-form solution,  

∫
𝑑𝑥′

𝑝 + 𝑞 cos 𝑥′

𝑥

0

=

2(arctan [√
𝑝 − 𝑞
𝑝 + 𝑞 tan (

𝑥
2)] + 𝜋 ∗ Floor [

𝑥 + 𝜋
2𝜋 ])

√𝑝2 − 𝑞2
 ; 𝑝 > 𝑞      

   (46) 

 

 

where the function Floor[𝜂] ≡ 𝜂 − (
1

2
+

arctan(tan(𝜋(𝜂+
1

2
)))

𝜋
), returns the greatest integer less 

than or equal to 𝜂. And so, 

𝐼(𝑡) = exp [
2

𝜔√𝛾𝜏
(arctan [√

1

𝛾
tan (

𝜔𝑡

2
)] + 𝜋 ∗ Floor [

𝜔𝑡 + 𝜋

2𝜋
])] 

 

  (47) 

Plugging Supplementary Equation   (47) into Supplementary Equation   (42), and using the 

identity arctan 𝑥 − arctan 𝑦 = arctan (
𝑥−𝑦

1+𝑥𝑦
), we get the final expression for the charge: 



𝑄(𝑡) = exp

[
 
 
 
 

−
2

𝜔√𝛾𝜏
arctan

(

 
 

(√
1
𝛾

− 1) tan (
𝜔𝑡
2

)

1 + √
1
𝛾

tan2 (
𝜔𝑡
2

)
)

 
 

]
 
 
 
 

 

×

(

 
 

𝑗0 ∫ exp (−
𝑡 − 𝑡′

√𝛾𝜏
) exp

[
 
 
 
 

2

𝜔√𝛾𝜏
arctan

(

 
 

(√
1
𝛾

− 1) tan (
𝜔𝑡′

2
)

1 + √
1
𝛾

tan2 (
𝜔𝑡′

2
)

)

 
 

]
 
 
 
 

𝑑𝑡′
𝑡

0

+ 𝑉ref𝛾𝐶̅ exp (−
𝑡

√𝛾𝜏
) 

)

 
 

 

 

  (48) 

where 𝜏 = 𝑅𝑁𝐶max. 

 

Supplementary Note 5: Stationary Expressions for 𝑸(𝒕), 𝒋(𝒕) and Average Power in the 

High Frequency Regime 

 

The steady state regime is when initial conditions memory disappears. This happens at times 

𝑡 ≫ √𝛾𝜏.  The steady state solution for the overall charge on the time-varying capacitors is: 

𝑄ss(𝑡) = 𝑗0 ∫  exp(−
𝑡 − 𝑡′

√𝛾𝜏
) exp

[
 
 
 
 

2

𝜔√𝛾𝜏

(

 
 

arctan

(

 
 

(√
1
𝛾 − 1) tan (

𝜔𝑡′

2
)

1 + √
1
𝛾 tan2 (

𝜔𝑡′

2 )
)

 
 𝑡

0

− arctan

(

 
 

(√
1
𝛾 − 1) tan (

𝜔𝑡
2 )

1 + √
1
𝛾 tan2 (

𝜔𝑡
2 )

)

 
 

)

 
 

]
 
 
 
 

𝑑𝑡′ 

 

 (49) 

 

Using arctan 𝑥 − arctan 𝑦 = arctan (
𝑥−𝑦

1+𝑥𝑦
)  



𝑄ss(𝑡)

= 𝑗0 ∫  exp (−
𝑡 − 𝑡′

√𝛾𝜏
) exp

[
 
 
 
 
 
 
 
 

2

𝜔√𝛾𝜏
arctan

(

 
 
 
 
 
 

(√
1
𝛾

− 1) tan (
𝜔𝑡′

2
)

1 + √
1
𝛾

tan2 (
𝜔𝑡′

2
)

−

(√
1
𝛾

− 1) tan (
𝜔𝑡
2

)

1 + √
1
𝛾

tan2 (
𝜔𝑡
2

)

1 +

(√
1
𝛾 − 1) tan (

𝜔𝑡′

2 )

1 + √
1
𝛾

tan2 (
𝜔𝑡′

2
)

(√
1
𝛾 − 1) tan (

𝜔𝑡
2 )

1 + √
1
𝛾

tan2 (
𝜔𝑡
2

)
)

 
 
 
 
 
 

]
 
 
 
 
 
 
 
 

𝑑𝑡′
𝑡

0

 

 

 (50) 

For high frequencies, 𝜔 ≫
1

√𝛾𝜏
 , we can expand the second exponential term to a leading term: 

𝑄ss(𝑡) ≃ 𝑗0 ∫  exp (−
𝑡−𝑡′

√𝛾𝜏
) ×

𝑡

0

(

  
 

1 +
2

𝜔√𝛾𝜏
arctan

(

  
 

(√
1
𝛾
−1) tan(

𝜔𝑡′

2
)

1+√
1
𝛾

tan2(
𝜔𝑡′

2
)

−
(√

1
𝛾
−1) tan(

𝜔𝑡
2

)

1+√
1
𝛾

tan2(
𝜔𝑡
2

)

1+
(√

1
𝛾
−1) tan(

𝜔𝑡′

2
)

1+√
1
𝛾

tan2(
𝜔𝑡′

2
)

(√
1
𝛾
−1)tan(

𝜔𝑡
2

)

1+√
1
𝛾

tan2(
𝜔𝑡
2

) )

  
 

)

  
 

𝑑𝑡′  

 

 (51) 

or, simply,  

 𝑄ss(𝑡) = 𝑄1(𝑡) + 𝑄2(𝑡)   (52) 

where, 

𝑄1(𝑡) = 𝑗0 ∫  exp (−
𝑡 − 𝑡′

√𝛾𝜏
)𝑑𝑡′

𝑡

0

= 𝑗0√𝛾𝜏 (1 − 𝑒
−

𝑡

√𝛾𝜏)

= √𝛾𝑉ref𝐶max (1 − 𝑒
−

𝑡

√𝛾𝜏) ≈ √𝛾𝑉ref𝐶max 

 

 (53) 

for steady state large times, and, 
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 (54) 

  

This analysis shows that the total charge 𝑄ss(𝑡), on the time-varying capacitor in steady state, 

is given by the sum of 𝑄1 ≈ √𝛾𝑉ref𝐶max, which is constant in time and independent of the 

rotation frequency 𝜔, and 𝑄2(𝑡) which is an oscillatory function whose magnitude rapidly 

decreases with increasing 𝜔. This is evident from Supplementary Figure 4, which shows the 

numerical solution for the charge as function of time at various high frequencies. 



  

Supplementary Figure 4. The charge on the time varying capacitor as function of time for 

system parameters: 𝑉ref = 50 V,  𝜏 = 1 s, 𝛾 = 10−3 and for angular frequency: (A) 𝜔 =

500 s−1   (B) 𝜔 = 1000 s−1    (C) 𝜔 = 2000 s−1. 

 

The steady state current is given by: 

 𝑑𝑄𝑠𝑠

𝑑𝑡
≈

𝑑𝑄2
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   (55) 

 

which is given by, 
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  (56) 

 

 

 

 

requires us to differentiate under the integral sign (Leibniz rule). This will result in two additive 

terms, one with differentiation of the upper limit, and the other with differentiation of the 

integrand. The former’s amplitude still goes like 
1

𝜔
 and therefore vanishes at high 𝜔. The latter 

term has a non-vanishing amplitude and is given by: 
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 (57) 

 



This derivative will result with two additive terms. The first’s amplitude will still decay with 

𝜔, but the second term’s amplitude will be independent of 𝜔, as we shall show here. 
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 (58) 

 

Let us define: 

𝑥 ≡ 𝜔𝑡, 𝑦 ≡ 𝜔𝑡′ , 𝑓(𝑥, 𝑦) ≡ arctan
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,  

𝑔(𝑥, 𝑦) ≡
𝑑𝑓(𝑥, 𝑦)

𝑑𝑥
 . 

 

 (59) 

 

The steady state current is now given by: 

 
𝑗ss(𝑡) =

2𝑗0

√𝛾𝜏𝜔
∫ 𝑔(𝑥, 𝑦) exp (−

𝑥 − 𝑦

√𝛾𝜏𝜔
)𝑑𝑦
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  (60) 

 

Using integration by parts: 

𝑗ss(𝑡) = 2𝑗0 ([𝑔(𝑥, 𝑥) − 𝑔(𝑥, 0) exp (−
𝑥

√𝛾𝜏𝜔
)] − ∫ exp (−
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 (61) 

 

However, 𝑔(𝑥, 0) exp (−
𝑥

√𝛾𝜏𝜔
) ≈ 0 in the steady state by the definition of the steady state 

times. Therefore, we are left with: 

 
𝑗ss = 2𝑗0 (𝑔(𝑥, 𝑥) − ∫ exp (−
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Since 
𝑑𝑔

𝑑𝑦
 is a periodic function which is symmetric about 𝑦 = 0, and because the function 

exp (−
𝑥−𝑦

√𝛾𝜏𝜔
) is a very slowly decaying envelope, then the integral in Supplementary Equation 

(62) sums over approximately equal negative and positive contributions and is therefore 

negligible. Thereby, we are left with: 

 𝑗ss = 2𝑗0𝑔(𝑥, 𝑥)   (63) 

 

By comparison of 2𝑗0𝑔(𝑥, 𝑥) and the steady state current given solved numerically, we get 

approximately the same profile. Calculating 𝑔(𝑥, 𝑥) explicitly we get, 

 
𝑗ss(𝑡) = 𝑗0 (1 −

2√𝛾

1 + 𝛾 − (1 − 𝛾) cos(𝜔𝑡)
) 

  (64) 

 

By plugging Supplementary Equation (64) into the average power formula given by Equation 

(14) in the main text, we can acquire the average power 𝑃0 at the regime of high rotational 

frequencies 𝜔 ≫
1

√𝛾𝜏
: 

 
𝑃0 = 𝑗0

2𝑅
(√𝛾 − 1)2

2√𝛾
=

𝑉ref
2

𝑅

(1 − √𝛾)2

2√𝛾
   (65) 

 

Supplementary Note 6: Full Analysis of the Performance Frequencies 

The stationary performance frequency of the rotor is determined by the power balance: 

 𝜏p𝜔 − 𝜏d𝜔 − 𝑃R = 0                                   (66) 

 

where, in the main text, 𝑃R is given by Equation (14), 𝜏d is the drag torque given by Equation 

(17) and 𝜏p is the generative press torque given by Equation (15). Plugging in the expressions 

for 𝜏d, 𝜏p and 𝑃R, and dividing Supplementary Equation (66) by 𝜔𝑟, where 𝑟 is the radius of 

the wheel, we get: 

                                    𝐹p =
1

2
𝜋𝜈𝜔𝑟3

𝑁

𝑙 + 𝛿
+

∫ 𝑅𝑗2(𝑡)𝑑𝑡
2𝜋/𝜔

0

2𝜋𝑟
                          (67) 

Where 𝐹p ≈ 25 N is the force of foot press averaged over the period of a foot press (~1 s). To 

determine 𝜔 from this transcendental equation, we calculated the right-hand side of 

Supplementary Equation (67) for different 𝜔 and plotted it in Supplementary Figure 5. The 



intersection point with the constant 𝐹p will give the suitable performance frequency of the rotor. 

Moreover, to check the validity of the approximation made in the main text, where we calculate 

𝜔 by equating the drag torque to the generative torque, we plotted a second curve containing 

only the viscous drag term in Supplementary Equation (67).  

 

a      b 

 

 

 

 

 

 

 

Supplementary Figure 5.  The angular frequency as a function of the drag force (red curve) 

and as a function of the sum of drag force together with the resistive load effective force. The 

vertical line represents the average force of press 𝐹p. Subfigures (a) and (b) correspond to two 

different rotor setups: 

(a) PC lubricant with 𝜈 = 2.5 mPa s, 𝑁 = 102, 𝑟 = 10−2 m, 𝛿 = 50 nm and 𝑙 = 5 nm. 

(b) IL mixture lubricant with 𝜈 = 5 mPa s, 𝑁 = 103, 𝑟 = 10−2 m and 𝑙 = 10 μm. 

 

As seen in Supplementary Figure 5, the difference between the two curves becomes smaller as 

𝜔 increases. The approximation made in the main text is within reason in the case of PC, and 

completely valid in the case of IL mixtures.   
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