Supplemental Online Content

Catalan A, Salazar de Pablo G, Aymerich C, et al. Neurocognitive functioning in individuals at clinical high risk for psychosis: a systematic review and metaanalysis. *JAMA Psychiatry*. Published online June 16, 2021. doi:10.1001/jamapsychiatry.2021.1290

eMethods 1. Search terms used in the literature search
eMethods 2. Types of CHR-P psychometric interviews included4
eMethods 3 . Neurocognitive domains considered in the current meta-analysis (7 MATRICS domains and 8 CHR-P domains)
eMethods 4. Extracted variables7
eMethods 5. Methods for pooling non-independent neurocognitive tasks7
eMethods 6. Meta regression factors7
eMethods 7. Glossary of terms7
eTable 1. PRISMA statement and checklist9
eTable 2. MOOSE checklist
eTable 3 . Risk of bias (quality) assessment using modified Newcastle-Ottawa Scale for cross-sectional and cohort studies
eTable 4. Characteristics of included studies13
eTable 5. Meta-analytical comparisons: CHR-P vs HC 18
eTable 6 . Meta-analytical comparisons: CHR-P not transitioning vs those transitioning
eTable 7. Meta-analytical comparisons: CHR-P vs FEP21
eTable 8. Pooled meta-analysis across 15 neurocognitive domains: CHR-P vs HC
eFigure 1. Pooled meta-analysis across 15 neurocognitive domains: CHR-P vs HC
eTable 9. Pooled meta-analysis across neurocognitive domains: CHR-P transitioned vs CHR-P non transitioned
eFigure 2. Pooled meta-analysis across neurocognitive domains CHR-P transitioning vs CHR-P non transitioning
eTable 10. Pooled meta-analysis across neurocognitive domains: CHR-P vs FEP
eFigure 3 . Pooled meta-analysis across neurocognitive domains: CHR-P vs FEP
eFigure 4. Funnel plot for processing speed tasks: CHR-P vs HC
eFigure 5. Funnel plot for attention/vigilance tasks: CHR-P vs HC27

eFigure 6. Funnel plot for working memory tasks: CHR-P vs HC	. 28
eFigure 7. Funnel plot for verbal learning tasks: CHR-P vs HC	. 28
eFigure 8. Funnel plot for visual learning tasks: CHR-P vs HC	. 30
eFigure 9. Funnel plot for reasoning and problem-solving tasks: CHR-P vs H	С
	. 30
eFigure 10. Funnel plot for social cognition tasks: CHR-P vs HC	. 30
eFigure 11. Funnel plot for general intelligence tasks: CHR-P vs HC	. 30
eFigure 12. Funnel plot for premorbid IQ: CHR-P vs HC	. 31
eFigure 13. Funnel plot for visuospatial ability tasks: CHR-P vs HC	. 31
eFigure 14. Funnel plot for verbal memory tasks: CHR-P vs HC	. 32
eFigure 15. Funnel plot for visual memory tasks: CHR-P vs HC	. 32
eFigure 16. Funnel plot executive functioning tasks: CHR-P vs HC	. 33
eFigure 17. Funnel plot for motor functioning task: CHR-P vs HC	. 33
eFigure 18. Funnel plot for olfaction task: CHR-P vs HC	. 34
eFigure 19. Funnel plot for neurocognitive domains by tasks: CHR-P not transitioning vs those transitioning	. 35
eFigure 20. Funnel plot for neurocognitive domains by tasks: CHR-P vs FEP	37
eResults 1. Metaregressions	. 38
eDiscussion 1. Additional discussion	. 40
eTable 11. Metaregressions CHR-P vs HC	. 40
eTable 12. Metaregressions CHR-transitioning vs CHR-P non transitioning	. 42
eTable 13. Metaregressions: CHR-P vs FEP	. 43
eDiscussion 2.	. 43

This supplemental material has been provided by the authors to give readers additional information about their work.

eMethods 1. Search terms used in the literature search

The search terms were: "cognit*" OR "neurocognit*" OR "social cognit*" AND "psychosis risk" OR "prodrom*" OR "ultra-high risk" OR "clinical high risk" OR "genetic high risk" OR "at risk mental state" OR "at-risk mental state" OR "basic symptoms" OR "ultra-high risk".

eMethods 2. Types of CHR-P psychometric interviews included (modified from Fusar-Poli et al. 2020¹)

The CHR-P state comprises the Clinical High Risk for Psychosis (CHR-P) state and/or the Basic Symptoms (BS)¹.

The following CHR-P psychometric interviews were considered to define the UHR state: Comprehensive Assessment of At-Risk Mental States (CAARMS²), Structured Interview for Psychosis-risk Syndromes (SIPS^{3,4}), Basel Screening Instrument for Psychosis (BSIP⁵) and Early Recognition Inventory (ERIraos⁶).

The following CHR-P psychometric interviews were considered to define the BS¹: Bonn Scale for the Assessment of Basic Symptoms (BSABS⁷), Schizophrenia Proneness Instrument⁸ -Adult (SPI-A) and Child and Youth (SPI-CY) version.

Furthermore, we considered early operationalisations of the CHR-P state, which were based on the Positive and Negative Syndrome Scale (PANSS⁹) and Brief Psychiatric Rating Scale (BPRS¹⁰).

eMethods 3. Neurocognitive domains considered in the current meta-analysis (7 MATRICS domains and 8 CHR-P domains. Adapted from Fusar-Poli et al. 2012¹¹ and Hauser et al. 2017¹². CHR-P, Clinical High Risk for Psychosis.

As a note, the MATRICS was not designed to be a comprehensive battery for the assessment of cognition but rather was developed with a narrower purpose of creating a brief, highly portable and tolerable consensus battery of neurocognitive domains most likely to be sensitive to both the most common (or best characterized) cognitive impairments in schizophrenia spectrum disorders and to change following targeted treatment (pharmacological or psychological). In fact, the range of cognitive impairment in schizophrenia spectrum disorders is broader and more complex than indexed by the MATRICS, and we should expect no less of its putative clinical high-risk states. As such, in an effort to produce a comprehensive review of the extant literature, we endeavoured to be more inclusive in our approach and thus included additional neurocognitive domains and tasks that have been employed in cognitive studies of CHR-P to date and which are frequently assessed in clinical settings. While the MATRICS represents an organizing framework, it is necessarily limited such that any comprehensive meta-analysis requires the inclusion of a broader set of neurocognitive domains and tests that adhere to a related but non-redundant categorizing scheme.

Neurocognitive	asks								
domains									
MATRICS domains									
Processing Speed	• Trail Making Test-Part A (TMT-A) ¹³								
	• Brief Assessment of Cognition Scale Symbol Coding (BACS SC) ¹⁴								
	• Animal Fluency ¹⁵								
	• Letter Fluency ¹⁶								
	• Digit symbol coding test (DST) ¹⁷								
	• Stroop color word reading (Stroop W) ¹⁸								
	• Stroop color naming task (Stroop C) ¹⁸								
Attention/Vigilance	• Continuous Performance Test – Identical Pairs (CPT-IP)* ^{19,20}								
Working Memory	• Wechsler Memory Scale-III Spatial Span Subtest (WMS-III: SS) ²¹								
	• Letter Number Span (LNS) ²²								
	• Letter Number Sequencing Test (LNST) ¹⁷								
	• Arithmetic (any WAIS) ^{21,23}								
	• Self-Ordered Pointing Task (SOPT) ²⁴								
Verbal Learning	Hopkins Verbal Learning Test—Revised (HVLT-R)** ²⁵								
	• Rey Auditory Verbal Learning Test (RAVLT)*** ²⁶								
	California Verbal Learning Test I/II (CVLT)**** ²⁶⁻²⁸								
Visual learning	• Brief Visuospatial Memory Test-Revised (BVMT-R)** ²⁹								
	• Wechsler Memory Scale Immediate Visual Memory (WMS VM) ²¹								
	• Rey–Osterrieth Complex Figure test Immediate Recall (ROCF) ³⁰								
Reasoning and	• Neuropsychological Assessment Battery Mazes (NAB Mazes) ³¹								
Problem-Solving									
Social cognition+	• Reading the Mind in the Eyes Test (RMET) ^{32,33}								
	• Degraded Facial Affect Recognition (DFAR) ³⁴								
	Hinting ³⁵								
CHR-P domains									
General intelligence IQ	• Wechsler Adult Intelligence Scale- 3 rd edition (WAIS-III) ²¹								
	• Wechsler Adult Intelligence Scale-Revised (WAIS-R) ³⁶								
	• Wechsler Intelligence Scale for Children- 3 rd edition (WISC-III) ³⁷								

Premorbid IQ	•	National Adult Reading Test (NART) ³⁸
	•	MehrfachWortschaftz-Intelligenz Test-part B (MWT-B) ³⁹
Visuospatial ability	•	WAIS/WISC Block Design (WAIS/WISC BD) ^{17,37}
Verbal memory	•	RAVLT Delayed Recall (RAVLT DR) ²⁶
Visual memory	•	ROCF Delayed Recall (ROCF DR) ³⁰
	•	Wechsler Memory Scale Visual Reproduction Delayed Recall (WMS VR) ²¹
Executive functioning	•	Trail Making Test- Part B (TMT-B) ¹³
	•	Wisconsin Card Sorting Test (WCST) ⁴⁰ : categories, number of correct
		responses, perseverative errors and perseverative responses
	•	Stroop Test: Interference ⁴¹
Motor functioning	•	Finger Tapping Test (Tapping) ⁴²
Olfaction	•	University of Pennsylvania Smell Identification Test (UPSIT) ⁴³

*Social cognition encompassed: (a) emotional processing, (b) social perception and knowledge, (c) theory of mind, and (d) attributional bias). *Mean d' across conditions; **Total Learning Trials 1-3; ***Learning Trials; **** Trials 1-5 Total Correct Only tasks with 3 or more available studies in the dataset are listed

eMethods 4. Extracted variables

Author, year, follow-up months, type of CHR-P psychometric instrument, type of CHR-P, number of CHR-P baseline, number of healthy controls at baseline, age at baseline (median and SD), range age, male sex %, years of education, white race %, antipsychotic treatment exposure at baseline, cognition domain, the task used, results of the neurocognitive task (mean and SD), number of CHR-P who transitioned to psychosis, follow-up time (months), positive psychotic and negative symptoms at baseline, functioning status at baseline, and NOS quality.

eMethods 5. Methods for pooling non-independent neurocognitive tasks

To account for studies reporting on more than one non-independent neurocognitive tasks within the same neurocognitive domain (in the meta-analysis iv), we followed the methodological guidelines^{44,45}. Specifically, in order to estimate the pooled effect size in case of studies reporting more than one non-independent neurocognitive task within the same neurocognitive domains, we assumed a correlation of 0.3 ⁴⁶⁻⁴⁸ between the non-independent tasks. However, to ensure that the results did not depend on this assumption, we also conducted the meta-analysis, assuming that the correlation was either 0.1 or 0.5. We first computed the variance of the average effect size, then we multiplied it by (1+(n.es-1) * r)/n.es, where n.es is the number of combined effect sizes and r the correlation between non-independent neurocognitive tasks.

eMethods 6. Meta regression factors

Meta regression factors tested in the current meta-analysis encompassed age, sex, years of education, ethnicity, functioning, positive psychotic symptoms, negative symptoms, study quality, baseline antipsychotic exposure, type of CHR-P psychometric instrument and follow-up time (for the meta-analysis iv only).

eMethods 7. Glossary of terms

- CHR-P: Clinical High Risk for Psychosis
- HC: Healthy Controls (if help-seeking, it is specified in eTable 4).
- FEP: First Episode Psychosis
- TMT-A and TMT-B: Trail Making Test Part A and B
- BACS SC: Brief Assessment of Cognition Scale Symbol Coding
- DST: Digit symbol coding test

- Stroop W: Stroop color word reading
- Stroop C: Stroop color naming task
- CPT-IP: Continuous Performance Test Identical Pairs
- WMS-III: SS: Wechsler Memory Scale-III Spatial Span Subtest
- LNS: Letter Number Span
- LNST: Letter Number Sequencing Test:
- SOPT: Self-Ordered Pointing Task
- HVLT-R: Hopkins Verbal Learning Test—Revised
- RAVLT: Rey Auditory Verbal Learning Test
- CVLT: California Verbal Learning Test I/II
- BVMT-R: Brief Visuospatial Memory Test-Revised
- ROCF: Rey–Osterrieth Complex Figure test
- NAB Mazes: Neuropsychological Assessment Battery Mazes
- RMET: Reading the Mind in the Eyes Test
- DFAR: Degraded Facial Affect Recognition
- WAIS-III: Wechsler Adult Intelligence Scale- 3rd edition
- WAIS-R: Wechsler Adult Intelligence Scale-Revised
- WISC-III: Wechsler Intelligence Scale for Children- 3rd edition
- NART: National Adult Reading Test
- MWT-B: MehrfachWortschaftz-Intelligenz Test-part B
- WAIS/WISC BD: WAIS /WISC Block Design: subtest of WAIS/WISC
- WCST: Wisconsin Card Sorting Test
- Tapping: Finger Tapping Test
- UPSIT: University of Pennsylvania Smell Identification Test

eTable 1. PRISMA statement and checklist

Section/topic	#	Checklist item	Page					
TITLE		•						
Title	.1	Identify the report as a systematic review, meta-analysis, or both	Cover page					
ABSTRACT		·						
Structured summary	ructured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number							
INTRODUCTION								
Rationale	3	Describe the rationale for the review in the context of what is already known	Introduction					
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS)	Introduction					
METHODS								
Protocol and registration	.5	Indicate if a review protocol exists, if and where it can be accessed (e.g. Web address), and, if available, provide registration information including registration number	Methods					
Eligibility criteria	6	Specify study characteristics (e.g. PICOS length of follow-up) and report characteristics (e.g. years considered, language, publication status) used as criteria for eligibility, giving rationale	Methods					
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched	Methods					
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated	Methods					
Study selection	9	State the process for selecting studies (i.e. screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis)	Methods					
Data collection process	10	Describe method of data extraction from reports (e.g. piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators	Methods					
Data items	11	List and define all variables for which data were sought (e.g. PICOS funding sources) and any assumptions and simplifications made	Methods					

 $\ensuremath{\mathbb{C}}$ 2021 American Medical Association. All rights reserved.

Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis	Methods
Summary measures	13	State the principal summary measures	Methods
Risk of bias across	15	Specify any assessment of risk of bias (i.e. Newcastle-Ottawa Scale (NOS)), that may affect the cumulative evidence	Methods
Additional analyses	16	Describe methods of additional analyses (e.g. sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified	Methods
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review with reasons for exclusions at each stage, ideally with a flow diagram	Results
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g. study size, PICOS follow-up period) and provide the citations	Results
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12)	Results
Results of individual studies	20	For all outcomes considered (benefits or harms), present for each study a summary data for each intervention group	Results
Synthesis of results	21	Present results of analyses	Results
Risk of bias across studies	22	Present results of any assessment of the risk of bias across studies (see Item 15)	Results
Additional analysis	23	Give results of additional analyses, if done (e.g. sensitivity or subgroup analyses, meta-regression see Item 16)	Results
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g. healthcare providers, users, and policymakers)	Discussion
Limitations	25	Discuss limitations at study and outcome level (e.g. risk of bias), and at review-level (e.g. incomplete retrieval of identified research, reporting bias)	Discussion
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research	Discussion
FUNDING			
Funding	.27	Describe sources of funding for the systematic review and other support (e.g. supply of data), role of funders for the systematic review	Funding

eTable 2. MOOSE checklist

Criteria		Brief description of how the criteria were handled in the meta-analysis							
Re	porting of background should include								
V	Problem definition	To examine at a meta-analytical level whether neurocognitive deficits are evident in Clinical High Risk (CHR-P) for psychosis subjects relative to preferably healthy controls (HC) and to define the specific pattern of these neurocognitive deficits. To identify neurocognitive impairments that specifically predicted the later transition to psychosis in the CHR-P population, controlling for the potential confounding effect of socio-demographical, methodological, and clinical factors.							
\checkmark	Hypothesis statement	We hypothesized that CHR-P state would have a significant impairment in neurocognitive domains, especially those who develop psychosis.							
~	Description of study outcomes	In line with our earlier meta-analysis the different neurocognitive tasks were grouped in neurocognitive domains on the basis of the criteria developed by the MATRICS conference and then discussed by us, according to the indications of the articles included: (1) processing speed, (2) verbal learning, (3) working memory, (4) reasoning and problem-solving, (5) visual learning, (5) attention and vigilance, and (7) social cognition. Further, we have analysed the CHR-P domains of (8) general intelligence, (9) premorbid intelligence, (10) visuospatial ability, (11) verbal memory, (12) visual memory, (13) executive functioning, (14) motor functioning, and (15) olfaction. We reported differences between CHR-P population and HC in these domains, measured by standardised scales. For comprehensiveness, we conducted two supplementary meta-analyses: iii) comparing neurocognitive functioning in CHR-P individuals (when these contrasts were reported in the articles retrieved) and iv) estimating the pooled effect sizes across each of the 15 neurocognitive domains. For the latter meta-analysis (iv), we followed meta-analytical guidelines ^{44,45} to account for studies reporting on more than one non-independent neurocognitive tasks within the same neurocognitive domain.							
\checkmark	Type of exposure or intervention used	We included individual studies that reported neurocognitive data in CHR-P population.							
\checkmark	Type of study designs used	Case-control studies, and cohort studies, which investigate the neurocognitive functioning CHR-P for psychosis compared to HC.							
	Study population	CHR-P state.							
Re	porting of search strategy should								
	Qualifications of researchers	The credentials of the investigators are indicated in the author list and in the acknowledgements.							
\checkmark	Search strategy. including time period included in the synthesis and keywords	We performed a multi-step literature search using the following keywo"ds: "co"nit*" OR "neuroco"nit*" OR "social co"nit*""AND "psychosis"risk" OR "pro"rom*" OR "ultra-high"risk" OR "clinical high"risk" OR "genetic high"risk" OR "at risk mental "tate" OR "at-risk mental "tate" OR "basic sym"toms" OR "ultra-high"risk" from inception until 1st July 2020.							
	Databases and registries searched	Web of Science database (Clarivate Analytics): Web of Science Core Collection, BIOSIS Citation Index, KCI-Korean Journal Database, MEDLINE, Russian Science Citation Index, PubMed and SciELO Citation Index.							
	Use of hand searching	We hand-searched bibliographies of retrieved papers for additional references.							
V	List of citations located and those excluded. including justifications	Details of the literature search process are outlined in the results section and in the PRISMA flow-chart.							
	Method of addressing articles published in languages other than English	Only articles in English language were selected.							

 $\ensuremath{\mathbb{C}}$ 2021 American Medical Association. All rights reserved.

\checkmark	Method of handling abstracts and unpublished studies	Original individual studies were included. Conference proceedings, reviews, editorials, clinical cases and unpublished studies were excluded							
\checkmark	Description of any contact with authors	A description of the contact with corresponding authors to request additional data for this study is detailed in methods section.							
Re	porting of methods should include								
\checkmark	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	Detailed inclusion and exclusion criteria were described in the methods section.							
\checkmark	Rationale for the selection and coding of data	Data extracted from each of the studies were relevant to the population characteristics, study design, comparison group, exposure and outcomes.							
	Assessment of confounding factors	Confounding factors were systematically assessed in each neurocognitive domain.							
	Assessment of study quality	We adapted the Newcastle-Ottawa Scale for the evaluation of cross-sectional and cohort studies.							
	Assessment of heterogeneity	Heterogeneity was assessed with the I ² index.							
\checkmark	Description of statistical methods in sufficient detail to be replicated	Statistical methods are described in detail in the methods section.							
\checkmark	Provision of appropriate tables and graphics	We included the PRISMA flow-chart and several tables and graphics to describe the literature search and our results.							
Re	porting of results should include								
\checkmark	Graph summarizing individual study estimates and overall estimate	We have appended them in the main text. Additional graphs were presented as supplementary material to fully describe the results.							
\checkmark	Table giving descriptive information for each study included	We have presented descriptive information for each study in the supplementary material.							
	Results of sensitivity testing	Subgroup analyses were conducted to analyse differences between used task in each neurocognitive domain.							
\checkmark	Indication of statistical uncertainty of findings	We reported mean estimates for the main outcome and 95% CI.							
Re	porting of discussion should include								
\checkmark	Quantitative assessment of bias	Publication biases were assessed by funnel plots visual inspections and Egger test ⁴⁹ . The trim and fill methods were used as sensitivity analyses to correct biases if detected.							
	Justification for exclusion	Exclusion criteria and justification are described in the manuscript.							
\checkmark	Assessment of quality of included studies	We adapted the Newcastle-Ottawa Scale for the evaluation of cross-sectional and cohort studies.							
Re	porting of conclusions should include								
\checkmark	Consideration of alternative explanations for observed results	We discussed other explanations for our findings in the discussion section.							
	Generalization of the conclusions	We have addressed the generalization of the conclusions in the discussion section.							
\checkmark	Guidelines for future research	We have suggested possible streams of future development and research in the discussion.							
\checkmark	Disclosure of funding source	Funding source described at the end of the manuscript. No separate funding was necessary for the undertaking of this meta- analysis.							

eTable 3. Risk of bias (quality) assessment using modified Newcastle-Ottawa Scale for cross-sectional and cohort studies

Newcastle-Ottawa Scale Criteria	Maximum Score
Cross-Sectional Studies	
Sample representative of target sample (e.g. all eligible or random sample)?	2
Sample size justified and satisfactory?	1
Non-response rate is defined satisfactory. and characteristics of responders/non-responders compared?	1
Ascertainment of exposure (i.e. menstrual cycle) is valid and/or well described?	1
Assessment of outcome with robust tool and/or record linkage?	2
Outcome per group reported appropriately?	1
Cohort Studies	
Representativeness of exposed cohort (e.g. total population or random sample. selected group)	1
Method used to ascertain exposure (menstrual cycle phase) is robust?	1
Exposed and unexposed are matched or adjustment for confounding factors?	2
Assessment of outcome was blind to exposure status or used record linkage. were robust tools used?	2
Follow-up period was sufficiently long for outcomes to occur (e.g. more than one menstrual cycle?	1
Loss to follow-up rate is reported. low (<30%). and same in exposed and non-exposed?	1

eTable 4. Characteristics of included studies. CHR-P, Clinical High Risk for Psychosis; HC, Healthy Controls; FEP, First Episode Psychosis; FUP, Follow-up; mo, months; NOS, Newcastle-Ottawa Scale.

Author year	Country	N CHR-P	N HC	N FEP	Age mean (SD)	FUP (mo)	NOS	Task used
Addington 2012 ⁵⁰	Canada-USA	146	85		CHR-P 19.8 (4.5)	24	6	WAIS-III/WISC-III
					Help-seeking 19.4 (3.5)			
Addington 2017 ⁵¹	Canada-USA	145			CHR-P 19.84 (4.7)	172	6	Animal Fluency, DST, TMT-A. LNST, WAIS- III/WISC-III, WCST
Atkinson 2017 ⁵²	Austria	102	62		CHR-P 18.6 (2.7) HC 19.1 (3.2)	0	6	LNST, CVLT-II, UPSIT, RMET, Hinting
Becker 2010 ⁵³	The Netherlands	41	17		CHR-P 19.85 (3.6) HC 19.4 (3.8)	18	6	CPT-IP, NART, ROCF, Tapping
Blanchard 2010 ⁵⁴	Ireland	17	20		CHR-P 12 (6.9) HC 12.58 (4.2)	0	4	TMT-A, TMT- B
Bolt 2019 ⁵⁵	Australia	294			CHR-P 19.13 (4.5)	41	7	WAIS-III
Brewer 2003 ⁵⁶	Australia	81	31		CHR-P 20.26 (3.5) HC 21.1 (3.9)	18	7	NART, UPSIT
Brockhous-Dumke 2005 ⁵⁷	Germany	43	33		CHR-P 25.4 (5.8) HC 24.5 (3.3)	0	4	WCST
Broome 2012 ⁵⁸	UK	28			CHR-P 24.41 (4.2)	21	6	NART
Chu 2019 ⁵⁹	Hong Kong	71	68	69	CHR-P 20.8 (6.5) HC 24.5 (8.0) FEP 23.87 (7.2)	0	6	LNS, WMS VR
Chung 2008 ⁶⁰	South Korea	33	36		CHR-P 20.88 (3.2) HC 21.97 (2.5)	0	8	WCST
Corcoran 2015 ⁶¹	USA	49	31		CHR-P 20.6 (3.8) HC 21.4 (3.1)	0	7	WAIS-III
Couture 2008 ⁶²	Canada-USA	88	41		CHR-P 18.9 (4.6) HC 24.9 (5.1)	0	7	RMET
Cui 2020 ⁶³	China.	217	133		CHR-P 18.56 (4.9) HC 18.77 (4.3)	12	8	BACS SC, Animal Fluency, TMT-A, CPT-IP, WMS- III: SS, HVLT-R, BVMT-R, NAB mazes
Eastvold 2007 ⁶⁴	USA	40	36	15	CHR-P 20.8 (3.5) HC 21.8 (3.4) FEP 21.5 (5.2)		8	WCST, Stroop W, Stroop C, Stroop interference
Egloff 2019 ⁶⁵	Switzerland	59		31	CHR-P 25 (6.0) FEP 27.3 (6.0)	0	7	CVLT-I
Eisenacher 2018 ⁶⁶	Germany	38	38		CHR-P 22.9 (4.2) HC 24.3 (5.8)	0	6	HVLT-R, BVMT-R, MWT-B, TMT- B, WCST, NAB Mazes
Epstein 2014 ⁶⁷	USA	21	55		CHR-P 16.1 (3.3) HC 16.5 (2.6)	0	6	CPT-IP

Frommann 2011 ⁶⁸	Germany	89	87		CHR-P 25.3 (6.4) HC 25.5 (4.4)	0	7	DS, Letter Fluency, TMT-A, CPT-IP, LNST, RAVLT, MWT-B, SOPT, RAVLT, TMT- B
Gill 2013 ⁶⁹	USA	71	36		CHR-P 19.33 (3.6) HC 21.7 (4.6)	0	6	WAIS-III, UPSIT
Goghari 2014 ⁷⁰	UK	96	23	28	CHR-P 23.3 (4.4) HC 25.2 (5.4) FEP 22.6 (4.4)	0	5	WAIS-III
Gupta 2014 ⁷¹	USA	53	35		CHR-P 18.6 (2.1) HC 18.8 (1.7)	0	7	BACS SC, TMT-A, BVMT-R, WMS-III: SS
He 2019 ⁷²	China	190	37		CHR-P 20.47 (4.6) HC 22.08 (3.35)	0	6	TMT-A, TMT- B
Healey 2013 ⁷³	USA	147	85		CHR-P 19.79 (4.7) Help-seeking 19.41 (4.08)	24	6	RMET
Hou 2016 ⁷⁴	China-Australia	40	40	40	CHR-P 29.1 (7.0) HC 24.4 (5.1) FEP 26.4 (6.5)	0	7	DST, Stroop C, Stroop W, TMT-A, HVLT-R
Hur 2012 ⁷⁵	South Korea	41	40		CHR-P 20.95 (3.8) HC 21.2 (3.1)	0	6	Stroop interference
Hur 2013 ⁷⁶	South Korea	55	58		CHR-P 21.96 (3.3) HC 23.1 (2.96)	0	6	WCST
Hwang 2019 ⁷⁷	South Korea	40	85	85	CHR-P 20.55 (3.0) HC 21.24 (2.3) FEP 21.87 (3.6)	0	6	WCST
Ilonen 2010 ⁷⁸	Finland	22	187		CHR-P 15.7 (1.7) Help-seeking 15.5 (1.7)	0	5	WAIS-R/WISC-III
Jahshan 2010 ⁷⁹	USA	46	29	18	CHR-P 19.8 (4.1) HC 19.9 (5.7) FEP 21 (5.7)	6-36	5	Stroop W, Stroop C, Stroop interference
Kamath 2014 ⁸⁰	USA	10	17		CHR-P 19.9 (2.6) Help-seeking 21 (2.5)	0	5	UPSIT
Kang 2018 ⁸¹	South Korea	65	83		CHR-P 20.1 (3.4) HC 20.8 (3.6)	0	6	WAIS-III (Korean Version)
Kim 2011 ⁸²	South Korea	45	49		CHR-P 21.07 (3.9) HC 22.7 (3.5)	0	7	Stroop C, TMT-A. CVLT-I, WMS-III: Spatial Span
Kim 2019 ⁸³	South Korea	60	71	47	CHR-P 20.3 (3.5) HC 22 (3.4) FEP 23 (4.1)	0	7	TMT-A, CVLT-I, ROCF, TMT- B, WCST
Koren 2019 ⁸⁴	Israel	21	34		CHR-P 15.9 (1.4) HC 15.8 (1.0)	0	6	RAVLT, WAIS-R, WCST, Hinting
Korver 2010 ⁸⁵	The Netherlands	29	30		CHR-P 18.8 (2.4) HC 19.8 (3.4)	0	6	Letter Fluency, CVLT-I
Koshiyama 2018 ⁸⁶	Japan	30	20	26	CHR-P 20.8 (4.0)	0	5	NART

					HC 23 (5.0)			
					FEP 23.9 (6.4)			
Koutsoluleris 2011 ⁸⁷	Germany	48	30		CHR-P 24.7 (5.8)	0	6	DST, Letter Fluency, TMT-A, LNS, LNST, RAVLT,
					HC 26 (2.7)			MWT-B, SOPT, RAVLT, TMT- B
Kristensen 2019 ⁸⁸	Denmark	116	49		CHR-P 23.8 (4.2)	0	7	BACS SC, WAIS-III
					HC 24.4 (3.4)			
Lee 2014 ⁸⁹	South Korea	75	75		CHR-P 19.97 (3.8)	0	7	TMT-A, ROCF, K-WAI, TMT- B, WCST
					HC 19.9 (2.5)			
Lee 2015 ⁹⁰	South Korea	40	46	24	CHR-P 19.9 (3.6)	0	6	WAIS-III (Korean Version)
					HC 20.8 (3.5)			
					FEP19.9 (3.6)			
Lepock 2019 ⁹¹	Canada	36	21		CHR-P 21.7 (3.0)	0	5	NART
					HC 21.3 (3.4)			
Li 2018 ⁹²	China.	34	37		CHR-P 21.5 (3.5)	0	7	BACS SC, Stroop W, Stroop C, CPT-IP, HVLT-R,
					HC 20.8 (3.1)			BVMT-R
Lin 2013 ⁹³	Australia. UK	124	36		CHR-P 19.13 (3.3)	0	7	DST, TMT-A, Arithmetic, RAVLT, WMS VR, WAIS-
				_	HC 20.75 (4.4)	-		R- WAIS/WISC BD, TMT- B
Lindgren 201094	Finland	62	72		CHR-P 16.5 (0.9)	0	5	BACS SC, Animal Fluency, TMT-A, WMS-III: SS,
T: 201005					HC 16.5 (0.9)	0		CVLT-I, WMS VR, TMT- B, Tapping
Liu 2019 ⁹³	China-USA	73	72		CHR-P 23.3 (4.5)	0	7	WMS VM
Max and 201496	Enner	104	()	20	HC 24 (2.9)	0	(A vide westig WARD
Magaud 2014 ³⁰	France	104	64	30	CHR-P 20.9 (3.5)	0	0	Arithmetic, WAIS-R
					FEP 22 5 (4.3)			
Menghini Muller 201097	Switzerland	3/13	67		$\begin{array}{c} \text{FEF } 22.3 (4.3) \\ \text{CHP P } 22.4 (4.9) \end{array}$	0	6	DST TMT A Arithmetic RAVIT WAIS III
Weinghill – Waller 2017	Switzerland	5-5	07		HC 22.9 (4.09)	0	0	WAIS/WISC BD RAVIT TMT-B
Metzler 2015 ⁹⁸	Switzerland	72		12	$\frac{110222.9(4.09)}{CHR_{-}P 20.52(5.9)}$	18	6	Animal Fluency, DST
	Switzerland	12		12	FEP 19 1 (4 8)	10	0	A miniar Friendy, DBT
Millman 2014 ⁹⁹	USA	37	35		CHR-P 18 6 (1 8)	0	7	BACS SC Animal Fluency TMT-A
	0.511	57	55		HC 18.1 (2.3)	Ũ	<i>'</i>	
Mirzakhanian 2013 ¹⁰⁰	USA	109	102	90	CHR-P 19.1 (4.1)	0	7	CPT-IP
			-		HC 20.8 (4.6)			
					FEP 20.9 (5.4)			
Mittal 2010 ¹⁰¹	USA	90			CHR-P 15.64 (3.0)	24	6	WAIS-III/WISC-III
Modinos 2015 ¹⁰²	UK	18	18	22	CHR-P 24.4 (4.1)	0	6	NART
		-	_		HC 27.9 (5.0)		-	
					FEP 23.8 (4.6)			
Montalvo 2014 ¹⁰³	Spain	23	29	55	CHR-P 22.5 (4.3)	0	7	HVLT-R, BVMT-R, NAB mazes
	1				HC 26.4 (4.3)			
					FEP 24.5 (5.3)			
Ohmuro 2016 ¹⁰⁴	Japan	36	25	40	CHR-P 20.9 (4.7)	0	7	NART
					HC 21.3 (1.0)			
					FEP 22.9 (6.3)	1		

Ohmuro 2018 ¹⁰⁵	Japan	50	29		CHR-P 20 (4.1) HC 21.2 (1.0) FEP 22.9 (6.3)	0	7	NART, WCST
Pflueger 2018 ¹⁰⁶	Switzerland	116	57	90	CHR-P 25.7 (6.5) HC 24.9 (6.4) FEP 28.3 (7.9)	0	5	CVLT-I, WCST
Pukrop 2006 ¹⁰⁷	Germany	128	179		CHR-P 24.43 (6.0) HC 29.23 (8.4)	0	5	MWT-B
Pukrop 2007 ¹⁰⁸	Germany	39	44		CHR-P 24.92 (5.3) HC 25.08 (3.2)	0	5	DST, CPT-IP, LNS, LNST, SOPT, ROCF, TMT- B, WCST
Randers 2020 ¹⁰⁹	Denmark	220	50		CHR-P 22.4 (3.3) HC 23.5 (4.4)	0	5	TMT-A, WMS-III: SS, WAIS/WISC BD, TMT- B, DFAR
Sanada 2018 ¹¹⁰	Spain-Japan	13	30		CHR-P 22.2 (8.0) HC 24 (6.3)	6	7	Stroop W, Stroop C, Stroop Interference, LNST, WCST
Seidman 2010 ¹¹¹	USA-Canada	216	109		CHR-P 18.31 (4.73) HC 18.8 (4.5)	30	6	CPT-IP, WAIS-R, TMT- B, WCST
Seidman 2016 ⁴⁶	USA-Canada	689	264		CHR-P 18.5 (4.2) HC 19.8 (4.7)	24	5	BACS SC, Animal Fluency, CPT-IP, WMS-III: Spatial Span, LNS, HVLT-R, BVMT-R, WAIS/WISC BD, UPSIT, NAB Mazes
Shin 2016 ¹¹²	South Korea	47	28		CHR-P 19.3 (3.3) HC 27 (6.0)	24	5	Letter Fluency
Simon 2007 ¹¹³	Switzerland	93	49	43	CHR-P 20.81 (5.0) HC 21.8 (4.9)	0	5	Animal Fluency, Letter Fluency, LNS, RAVL, MWT- B, RAVLT, TMT- B, WCST
Standford 2011 ¹¹⁴	USA	63	38		CHR-P 19.6 (3.6) HC 23.98 (7.5)	0	5	WAIS-R, RMET
Studerus 2018 ¹¹⁵	Switzerland	168	109		CHR-P 25.4 (7.2) HC 25 (5.3)	0	5	CVLT
Szily 2009 ¹¹⁶	Hungary	26	50		CHR-P 22 (8.7) HC 21.1 (6.3)	0	5	WAIS-R, RMET
Takahashi 2018 ¹¹⁷	Japan	38	61		CHR-P 18.4 (3.9) HC 25.6 (3.2)	0	5	NART
Thompson 2012 ¹¹⁸	Australia	30	30	40	CHR-P 19.1 (2.8) HC 19.3 (2.9)	0	6	WMS-III: Spatial Span, LNST, WAIS-III, Hinting
Tognin 2020 ¹¹⁹	UK	309	51		CHR-P 22.63 (4.8) HC 23.37 (3.9)	24	7	WAIS-III, DFAR
Tor 2019 ¹²⁰	Spain	81	39		CHR-P 15.11 (1.8) HC 15.58 (1.5)	0	7	TMT-A, WMS VM, ROCF, WAIS-III, TMT- B
Üçok 2013 ¹²¹	Tukey	81	35	53	CHR-P 22.13 (6.0) HC 20 (3.7)	0	5	TMT-A, TMT-B, WCST, Stroop C, Stroop interference
Van Rijin 2011 ¹²²	The Netherlands	36	21		CHR-P 15.2 (2.1) HC 15.9 (1.4)	0	5	DFAR
Wood 2007 ¹²³	Australia	16	17		CHR-P 19.4 (3.5) HC 19.7 (2.4)	12	5	RAVLT, WMS VM

Woodberry 2013 ¹²⁴	USA	53	32	CHR-P 16.3 (2	2.6) 12	6	CPT-IP, CVLT-I, WCST, Tapping
				HC 16 (2.4)			
Zhang 2016 ¹²⁵	China.	83	90	CHR-P 20.3 (1	1.7) 12	5	RMET
_				HC 19.1 (2.0)	·		
Ziermans 2014 ¹²⁶	The Netherlands	43	44	CHR-P 15.22	(2.2) 72	5	Letter Fluency, CPT-IP, WAIS-III, WCST, Tapping
				HC 15.4 (1.3)			

CHR-P Clinical High risk for Psychosis; HC healthy controls; FEP First Episode Psychosis

TMT-A Trail Making Test-Part A; BACS SC Basic Assessment of Cognition Scale Symbol Coding; DST Digit Symbol coding test; CPT-IP Continuous Performance Test Identical Pairs; WMS-III: SS Wechsler Memory Scale. 3rd ed. spatial span subtest; LNS Letter Number Span; LNST Letter Number Sequencing Test; HVLT-R Hopkins Verbal Learning Test-Revised; RAVLT Rey Auditory Verbal Learning Test; CVLT California Verbal Learning Test; BVMT-R Brief Visuospatial Memory Test-Revised; ROCT Rey-Osterrieth Complex Figure Test; NAB Mazes Neuropsychological Assessment Battery Mazes; DFAR Degraded Facial Affect Recognition; RMET Reading the Mind in the Eyes; WAIS Wechsler Intelligence Scale; NART National Adult Reading Test; MWT-B. MehrfachWortschaftz-Intelligenz Test-part B; SOPT Self-Ordered Pointing Task; RAVLT DR Rey Auditory Verbal Learning Test Delayed Recall; ROCF Rey- Osterrieth Complex Figure Test; WMS VR Weschler Memory Scale Visual Reproduction Delayed Recall; TMT-B Trail Making Test-Part B; WCST categories Wisconsin Card Sorting Test categories; WCST perseverative responses Wisconsin Card Sorting Test perseverative errors; WCST perseverative responses Wisconsin Card Sorting Test perseverative responses; UPSIT University of Pennsylvania Smell Identification Test.

Neurocognitive			N	Ν		C1059/						Heterogeneity			Publication bias			
domains	Tasks	k	CHR-P	HC	Hedges' g	CI959	%	Z	р	Q	I ²	р	Funnel plots asymmetry	Egger test	trim and fill bias			
Processing Speed	TMT-A	16	1336	861	-0.34	-0.59	-0.09	-2.65	0.01	84.01	86.16	< 0.001	Ν	ns	n.a.			
	BACS SC	5	1109	518	-0.67	-0.95	-0.39	-4.63	<0.001	16.37	79.75	< 0.001	Ν	ns	n.a.			
	Animal Fluency	5	1098	553	-0.39	-0.54	-0.24	-5.06	<0.001	6.5	38.23	0.165	Ν	ns	n.a.			
	Letter Fluency	6	349	268	-0.31	-0.59	-0.04	-2.23	0.03	15.56	63.94	0.082	Y	ns	n.a.			
	DST	6	686	305	-0.74	-1.19	-0.29	-3.23	0.001	28.77	88.56	< 0.001	Y	ns	n.a.			
	Stroop W	3	87	107	-1.17	-1.86	-0.48	-3.35	<0.001	10.6	78.62	< 0.001	Ν	ns	n.a.			
	Stroop C	5	182	107	-0.69	-1.44	0.05	-1.83	0.067	51.58	91.14	< 0.001	Ν	ns	n.a.			
Attention/Vigilance	CPT-IP	11	1591	1059	-0.39	-0.49	-0.29	-7.79	<0.001	14.14	21.75	0.17	Y	ns	n.a.			
Working Memory	WMS-III: SS	5	1044	528	-0.43	-0.6	-0.27	-5.1	<0.001	6.12	41.29	0.19	Ν	ns	n.a.			
	LNS	5	922	455	-0.46	-0.57	-0.34	-7.78	<0.001	5.15	0	0.27	Ν	ns	n.a.			
	LNST	5	280	237	-0.39	-0.57	-0.22	-4.56	<0.001	3.8	0	0.45	Ν	ns	n.a.			
	Arithmetic	3	571	167	-0.32	-0.67	0.03	-1.78	0.07	7.63	73.05	0.02	Y	ns	n.a.			
	SOPT	3	161	176	-0.48	-1.12	0.15	-1.49	0.14	12.64	86.84	< 0.001	Ν	ns	n.a.			
Verbal Learning	HVLT-R	7	1087	570	-0.86	-1.43	-0.28	-2.93	<0.001	57.03	95.22	< 0.001	Ν	ns	n.a.			
	RAVLT	6	684	287	-0.5	-0.78	-0.21	-3.43	<0.001	16.55	70.98	< 0.001	Y	ns	n.a.			
	CVLT	7	497	379	-0.5	-0.64	-0.36	-7.11	<0.001	6.78	0	0.34	Ν	ns	n.a.			
Visual learning	BVMT-R	6	1054	536	-0.47	-0.66	-0.28	-4.78	<0.001	10.76	53.14	0.06	Ν	ns	n.a.			
	WMS VM	5	374	288	-0.49	-0.73	-0.25	-4.05	<0.001	9.07	55.63	0.06	Ν	ns	n.a.			
	ROCF	3	216	185	-0.37	-0.76	0.02	-1.86	0.06	7.21	72.91	0.03	Ν	ns	n.a.			
Reasoning and Problem-Solving	NAB Mazes	4	997	464	-0.46	-0.74	-0.19	-3.27	0.001	14.14	73.23	< 0.001	Y	ns	n.a.			
Social cognition	RMET	6	509	365	-0.32	-0.66	0.03	-1.8	0.072	27.74	83.26	< 0.001	Y	ns	n.a.			
	DFAR	3																
	anger		367	122	0.05	-0.47	0.57	0.15	0.85	8.52	76.26	0.01	Ν	ns	n.a.			
	fear		367	122	0,00	-0.23	0.23	-0.01	0.99	0.9	0	0.64	Ν	ns	n.a.			
	happy		367	122	-0.05	-0.28	0.18	-0.39	0.69	0.2	0	0.9	Ν	ns	n.a.			
	neutral		367	122	-0.19	-0.72	0.34	-0.71	0.48	7.11	76.62	0.03	Ν	ns	n.a.			
	Hinting	3	153,00	125,00	-0.53	-0.77	-0.28	-4.21	<0.001	0.61	0	0.74	Ν	ns	n.a.			
General intelligence	IQ	17	1973	1074	-0.31	-0.45	-0.17	-4.28	0.001	45.8	63.62	< 0.001	Ν	ns	n.a.			

eTable 5. Meta-analytical comparisons: CHR-P vs HC. CHR-P, Clinical High Risk for Psychosis; HC, Healthy Controls

	Verbal IQ	4	232	333	-0.23	-0.52	0.07	-1.5	0.13	6.63	55.85	0.08	Ν	ns	n.a.
	Performance IQ	5	348	382	-0.2	-0.42	0.01	-1.86	0.06	6.49	38.21	0.17	Ν	ns	n.a.
Premorbid IQ	NART	7	294	197	-0.52	-1.01	-0.03	-2.07	0.04	37.32	84.33	< 0.001	N	ns	n.a.
	MWT-B	5	396	383	-0.33	-0.62	-0.03	-2.15	0.03	19.15	72.01	< 0.001	Ν	ns	n.a.
Visuospatial ability	WAIS/WISC BD	5	1192	444	-0.32	-0.44	-0.2	-5.06	<0.001	3.07	6.54	0.55	Y	ns	n.a.
Verbal memory	RAVLT DR	4	573	233	-0.45	-0.67	-0.22	-3.89	<0.001	5.76	45.98	0.12	Ν	ns	n.a.
Visual memory	ROCF DR	4	218	170	-0.34	-0.65	-0.03	-2.13	0.03	6.44	53.87	0.09	Ν	ns	n.a.
	WMS VR	3	159	128	-0.75	-1.36	-0.14	-2.42	0.02	7.07	80.98	0.03	Y	0.008	ns
Executive functioning	TMT- B	16	1328	860	-0.49	-0.72	-0.27	-4.27	<0.001	85.97	82.03	< 0.001	Y	ns	n.a.
	WCST categories	6	382	282	-0.36	-0.66	-0.07	-2.39	0.02	16.97	71.61	< 0.001	Y	ns	n.a.
	WCST number of correct responses	4	148	135	-0.54	-1.14	0.06	-1.76	0.08	16.45	81.74	<0.001	Ν	ns	n.a.
	WCST perseverative errors	9	665	509	-0.21	-0.35	-0.07	-3.1	0.002	9.57	18.66	0.3	Y	0.006	g=-0.15; 95%CI [-0.29, -0.01], p=0.03
	WCST perseverative responses	4	185	186	-0.25	-0.45	-0.05	-2.43	0.01	1.64	0,00	0.65	Ν	ns	n.a.
	Stroop interference	5	221	170	0.15	-0.31	0.61	0.63	0.53	19.95	79.01	< 0.001	N	ns	n.a.
Motor functioning	Tapping	4	199	165	-0.24	-0.45	-0.04	-2.29	0.02	2.49	0	0.48	Ν	ns	n.a.
Olfaction	UPSIT	5	953	409	-0.55	-0.97	-0.12	-2.49	0.01	20.35	86.9	< 0.001	Y	ns	n.a.

k number of studies; ns not significant. n.a. not applicable

TMT-A Trail Making Test-Part A; BACS SC Basic Assessment of Cognition Scale Symbol Coding; DST Digit Symbol Coding Test; Stroop W Stroop color word reading task; Stroop C Stroop color naming task; CPT-IP Continuous Performance Test Identical Pairs; WMS-III: SS. Wechsler Memory Scale-III: Spatial Span; LNS Letter Number Span; LNST Letter Number Sequencing task; HVLT Hopkins Verbal Learning Test; RAVLT Rey Auditory Verbal Learning Test; CVLT California Verbal Learning Test; BVMT-R. Brief Visuospatial Memory Test-Revised; ROCT Rey- Osterrieth Complex Figure Test; NAB Mazes Neuropsychological Assessment Battery Mazes; DFAR Degraded Facial Affect Recognition; RMET Reading the Mind in the Eyes Test; IQ Intelligence Quote; NART National Adult Reading Test; MWT-B. MehrfachWortschaftz-Intelligenz Test Part B; SOPT Self-Ordered Pointing Task; RAVLT DR Rey Auditory Verbal Learning Test Delayed Recall; ROCF DR Rey- Osterrieth Complex Figure Test Delayed Recall; WMS VR Weschler Visual Memory Delayed Recall; TMT-B Trail Making Test-Part B; WCST Categories Wisconsin Card Sorting Test categories completed; WCST number of corrects responses Wisconsin Card Sorting Test number of correct responses; WCST perseverative errors Wisconsin Card Sorting Test perseverative errors; WCST perseverative responses Wisconsin Card Sorting Test perseverative errors; WCST perseverative responses Wisconsin Card Sorting Test perseverative errors; WCST perseverative responses Wisconsin Card Sorting Test perseverative of Pennsylvania Smell Identification Test

Neurocognitive	Tork	Ŀ	N CHR-P Transition	N CHR-P non transitioning	Hedges 'g	CI9	95%	z	р	Heterogeneity		Publication bias			
domains	T ASK	к								Q	I ²	р	Funnel plots asymmetry	Egger test p	trim and fill bias
Processing Speed	TMT-A	5	141	404	-0.29	-0.48	-0.09	-2.85	<0.001	0.44	0	0.98	Y	ns	n.a.
	Animal Fluency	4	171	941	-0.51	-1.12	0.09	-1.66	0.096	18.97	90.76	< 0.001	Ν	ns	n.a.
	DST	7	278	1075	-0.39	-0.63	-0.14	-3.12	0.002	13.9	61.18	0.03	Y	0.02	ns
Attention/Vigilance	CPT-IP	5	214	809	-0.29	-0.51	-0.08	-2.68	0.007	4.9	31.96	0.3	Ν	ns	n.a.
Working Memory	LNST	5	107	306	-0.29	-0.67	0.099	-1.46	0.14	9.28	59,00	0.054	Ν	ns	n.a.
Verbal Learning	CVLT	3	23	121	-0.58	-1.12	-0.05	-2.12	0.03	2.7	23.19	0.26	Y	ns	n.a.
General intelligence	IQ	8	239	923	-0.26	-0.4	-0.11	-3.52	<0.001	7.27	0	0.4	Y	ns	n.a.
Premorbid IQ	NART	3	44	106	-0.19	-0.54	0.16	-1.04	0.3	0.81	0	0.67	Ν	ns	n.a.
Visual memory	ROCF DR	3	75	124	-0.44	-0.74	-0.14	-0.84	<0.001	0.05	0	0.98	Ν	ns	n.a.
Executive functioning	WCST perseverative errors	5	147	344	-0.27	-0.54	0.007	-1.91	0.06	7.25	40.67	0.123	Y	0.02	g= -0.42; 95%CI [-0.77, -0.07], p=0.019
Motor functioning	Tapping	3	37	104	0.07	-0.31	0.45	0.36	0.72	0.2	0	0.9	N	ns	n.a.
Olfaction	UPSIT	3	137	778	-0.137	-0.761	0.486	-0.43	0.67	14.09	86.14	< 0.001	N	ns	n.a.

eTable 6. Meta-analytical comparisons: CHR-P not transitioning vs those transitioning: CHR-P, Clinical High Risk for Psychosis

k number of studies; ns not significant. n.a. not applicable

TMT-A Trail Making Test-Part A; DST Digit Symbol Coding Test; CPT-IP Continuous Performance Test Identical Pairs; LNST Letter Number Sequencing task; CVLT California Verbal Learning Test; IQ Intelligence Quote; NART National Adult Reading Test; ROCF DR Rey- Osterrieth Complex Figure Test Delayed Recall; WCST perseverative responses Wisconsin Card Sorting Test perseverative responses; UPSIT University of Pennsylvania Smell Identification Test

Neurocognitive			N	N						Н	eterogene	eity	Publ	lication bias	8
domains	Task	k	CHR-P	FEP	Hedges'g	CI9	5%	Z	р	Q	I ²	р	Funnel plots asymmetry	Egger test p	trim and fill bias
Processing Speed	TMT-A	3	140	181	0.38	-0.08	0.84	1.63	0.1	8.25	78.45	0.02	Ν	ns	n.a.
Verbal Learning	HVLT-R	3	109	113	0.58	0.22	0.95	3.11	<0.001	3.36	39.23	0.19	Ν	ns	n.a.
	CVLT	3	235	168	0.4	0.2	0.6	3.95	<0.001	1.42	0	0.49	Ν	ns	n.a.
General intelligence	IQ	3	124	82	0.63	0.35	0.91	4.38	<0.001	2.23	17.14	0.33	Ν	ns	n.a.
Premorbid IQ	NART	3	84	88	-0.14	0.74	0.47	-0.45	0.66	7.13	74.48	0.03	Y	0.012	ns
Executive functioning	TMT- B	3	234	143	0.07	-0.14	0.28	0.66	0.51	0.19	0	0.91	Ν	ns	n.a.
	WCST categories	3	234	143	0.25	0.01	0.5	2.02	0.04	2.81	26.98	0.25	Ν	ns	n.a.
	WCST perseverative errors	4	309	265	0.37	0.16	0.57	-3.51	<0.001	4.51	29.63	0.21	Ν	ns	n.a.
	Stroop interference	3	161	108	0.33	-0.47	1.12	0.81	0.42	22.1	88.97	<0.01	N	ns	n.a.

eTable 7. Meta-analytical comparisons: CHR-P vs FEP. CHR-P, Clinical High Risk for Psychosis; FEP, First Episode Psychosis

k number of studies; ns not significant. n.a. not applicable

TMT-A Trail Making Test-Part A; HVLT Hopkins Verbal Learning Test; CVLT California Verbal Learning Test; WAIS full Weschler Adult Intelligence Scale; NART National Adult Reading Test; WCST Categories Wisconsin Card Sorting Test categories; WCST perseverative errors Wisconsin Card Sorting Test perseverative errors

Neurocognitive domains	ŀ	Ν	Ν	Не	Hedges'g			
Neur ocogintive domains	ĸ	CHR-P	HC	Effect size	95%	6CI	L	h
Processing Speed	27	2534	1510	-0.39	-0.56	-0.21	-4.36	<0.001
Attention/Vigilance	11	1591	1059	-0.39	-0.49	-0.29	-7.79	<0.001
Working Memory	15	2070	1064	-0.44	-0.57	-0.31	-6.63	<0.001
Verbal Learning	21	2289	1270	-0.51	-0.63	-0.39	-8.43	<0.001
Visual learning	13	1563	970	-0.43	-0.57	-0.29	-6.08	<0.001
Reasoning and Problem-Solving	4	997	464	-0.46	-0.74	-0.19	-3.27	<0.001
Social cognition	11	927	551	-0.29	-0.50	-0.07	-2.49	0.01
General intelligence	19	2244	1205	-0.39	-0.57	-0.20	-4.09	<0.001
Premorbid IQ	12	690	580	-0.38	-0.63	-0.13	-2.98	<0.001
Visuospatial ability	5	1192	444	-0.32	-0.44	-0.20	-5.06	<0.001
Verbal memory	4	573	233	-0.45	-0.67	-0.22	-3.89	<0.001
Visual memory	6	296	259	-0.45	-0.78	-0.13	-2.72	0.01
Executive functioning	29	1971	1403	-0.42	-0.60	-0.24	-4.62	<0.001
Motor functioning	4	199	165	-0.24	-0.45	-0.04	-2.29	0.02
Olfaction	5	953	409	-0.44	-0.87	-0.02	-2.49	0.01

eTable 8. Pooled meta-analysis across 15 neurocognitive domains: CHR-P vs HC. CHR-P Clinical High Risk for Psychosis; HC healthy controls

k number of studies

eFigure 1. Pooled meta-analysis across 15 neurocognitive domains: CHR-P vs HC

Neurocognitive		N	Ν	Н	ledges'g			
domains	k	CHR-P transitioning	CHR-P not transitioning	Effect size	95%	CI	Z	р
Processing Speed	8	292	1136	-0.39	-0.59	0.188	0.20	<0.001
Attention/Vigilance	5	214	809	-0.29	-0.51	-0.08	0.22	0.007
Working Memory	5	107	306	-0.29	-0.67	0.099	0.38	0.14
Verbal Learning	3	23	121	-0.58	-1.12	-0.05	0.54	0.03
General intelligence	8	239	923	-0.26	-0.40	-0.11	0.14	<0.001
Premorbid IQ	3	44	106	-0.19	-0.54	0.16	0.35	0.3
Visual memory	3	75	124	-0.44	-0.74	-0.14	0.30	<0.001
Executive functioning	5	147	344	-0.42	-0.77	-0.07	0.27	0.06
Motor functioning	3	37	104	0.07	-0.31	0.45	0.38	0.72
Olfaction	4	137	778	-0.14	-0.76	0.49	0.62	0.67

eTable 9. Pooled meta-ana	lysis across neurocognitive d	omains: CHR-P transitioned	l vs CHR-P non transitioned
---------------------------	-------------------------------	----------------------------	-----------------------------

k number of studies

Neurocognitive	k	N CHD D	N FFD	Н	ledges'g			
domains	К	N СПК-Р	NFLF	Effect size	CI	95%	Z	р
Processing Speed	3	140	181	0.38	-0.08	0.84	1.63	0.10
Verbal Learning	6	344	281	0.46	0.30	0.62	5.50	<0.001
General intelligence	3	124	82	0.63	0.35	0.91	4.38	<0.001
Premorbid IQ	3	84	88	-0.14	-0.74	0.47	-0.45	0.66
Executive functioning	8	470	373	0.34	0.11	0.56	2.94	<0.001

eTable 10. Pooled meta-analysis across r	neurocognitive domains: CHR-P vs FEP
--	--------------------------------------

k number of studies

eFigure 3. Pooled meta-analysis across neurocognitive domains: CHR-P vs FEP

© 2021 American Medical Association. All rights reserved.

eFigure 6. Funnel plot for working memory tasks: CHR-P vs HC. CHR-P, Clinical High Risk for Psychosis; HC, Healthy Controls

eFigure 7. Funnel plot for verbal learning tasks: CHR-P vs HC. CHR-P, Clinical High Risk for Psychosis; HC, Healthy Controls

eFigure 8. Funnel plot for visual learning tasks: CHR-P vs HC. CHR-P, Clinical High Risk for Psychosis; HC, Healthy Controls

eFigure 9. Funnel plot for reasoning and problem-solving tasks: CHR-P vs HC. CHR-P, Clinical High Risk for Psychosis; HC, Healthy Controls

eFigure 10. Funnel plot for social cognition tasks: CHR-P vs HC. CHR-P, Clinical High Risk for Psychosis; HC, Healthy Controls

eFigure 13. Funnel plot for visuospatial ability tasks: CHR-P vs HC. CHR-P, Clinical High Risk for Psychosis; HC, Healthy Controls

eFigure 14. Funnel plot for verbal memory tasks: CHR-P vs HC. CHR-P, Clinical High Risk for Psychosis; HC, Healthy Controls

eFigure 16. Funnel plot executive functioning tasks: CHR-P vs HC. CHR-P, Clinical High Risk for Psychosis; HC, Healthy Controls

eFigure 18. Funnel plot for olfaction task: CHR-P vs HC. CHR-P, Clinical High Risk for Psychosis; HC, Healthy Controls

eFigure 19. Funnel plot for neurocognitive domains by tasks: CHR-P not transitioning vs those transitioning: CHR-P, Clinical High Risk for Psychosis

eResults 1. Metaregressions

Metaregressions for the CHR-P vs HC analysis revealed that age (β =-0.06, p=0.022), and years of education (β =0.17, p= 0.003) were associated with processing speed. Younger age was related to higher differences while higher years of education were associated with lower differences between groups. There were not enough data to perform meta-regressions in reasoning and problem-solving, visuospatial ability, verbal memory, visual memory, motor function and olfaction (eTable 11).

Metaregressions for the analysis comparing CHR-P transitioning and not revealed that age (β =-0.08, p= 0.028) was associated with processing speed (eTable 12). Younger age was related to higher differences. No moderators were found for the CHR-P vs FEP analysis (eTable 13). Again, for several domains, metaregressions were not feasible because of the lack of data.

eDiscussion. Additional discussion

We also found some differences between tasks in the same domains, for example between the NART and Verbal IQ. First, the number of studies (7 vs 3) employed for each of these neurocognitive domains is different, thus the effect size estimates are not directly comparable (and in fact were not compared against each other). Second, these measures are not intended to measure the same construct. Although Verbal IQ is less sensitive to conditions than visual IQ, nonverbal measures (e.g. Performance IQ); it is obtained as a measure of current neurocognitive function. Conversely, the NART, as used in these circumstances, is a measure of academic achievement that is intended to estimate premorbid IQ. In this capacity, it also functions as a proxy for cognitive reserve in CHR-P individuals and could reasonably show a different relationship to comparison groups than current verbal IQ. In fact, while these two tasks are categorized within the same broad neurocognitive domain, their actual correlation is not 1.00 (but rather 0.66)¹²⁷.

While there is a moderate average relationship between Stroop color word reading and Stroop color naming task in healthy subjects (based on standard scores; Word reading is usually higher than Color naming using raw scores), there is a good deal of individual variation, similar to the case for WAIS performance and WMS performance, which was also co-normed on the same individuals. Moreover, and also similar to the case for the WAIS and the WMS, on the Stroop color word reading and Stroop color naming task scales is separable due to a number of factors, such as age, education level, IQ, psychiatric conditions including schizophrenia and certain types of neurological conditions or acquired injuries. Similarly, the WAIS BD was one of 5 subtests that comprised the WAIS Performance scale in a few previous versions of the test (the current version no longer divides the subtests into Verbal and Performance scales). One could easily differ on WAIS BD or on other Performance scale subtests but not on the Performance scale composite score if performance on the scale's subtests was heterogeneous.

eTable 11. Metaregressions CHR-P vs HC

	k	ß	SE	Z	р	95% CI
Processing Speed				-		
Age	27	-0.058	0.025	-2.29	0.022	-0.109, -0.008
Sex male	27	0.002	0.009	-0.18	0.860	-0.019, 0.016
Years of education	16	0.171	0.057	2.97	0.003	0.058, 0.284
Caucasian	n.a.					
GAF	12	0.000	0.000	-0.04	0.970	-0.000, 0.000
Psychotic positive symptoms	15	-0.047	0.060	-0.74	0.458	-0.163, 0.073
Psychotic negative symptoms	15	-0.028	0.055	-0.52	0.605	-0.136, 0.079
NOS	27	-0.041	0.075	-0.62	0.532	-0.169, 0.088
Baseline AP exposure	n.a.	-				
Type of CHR-P instrument	23	0.027	0.000	0.10	0.002	0.460.0.400
	SIPS	-0.027	0.222	-0.12	0.903	-0.462, 0.408
XX7	Others	-0.268	0.510	-0.58	0.562	-1.248, 0.712
working memory	16	0.019	0.025	0.74	0.457	0.0(0.0.021
Age Say mala	10	-0.018	0.023	-0.74	0.437	-0.068, 0.051
Vers of education	10	0.003	0.007	0.30	0.018	
Caucasian	11 n a	-0.019	0.021	-0.04	0.525	-0.000, 0.022
GAE	n.a.					
Psychotic positive symptoms	n a					
Psychotic negative symptoms	n.a					
NOS	16	-0.056	0.052	-1 10	0 274	-0.142_0.046
Baseline AP exposure	n.a	0.050	0.052	1.10	0.271	0.112, 0.010
Type of CHR-P instrument	13					
	SIPS	-0.186	0.176	-1.05	0.291	-0.532, 0.159
	Others	0.211	0.284	0.74	0.458	-0.346, 0.769
Verbal learning	•	•			•	
Age	20	-0.075	0.031	-2.41	0.016	-0.146, -0.014
Sex male	20	0.001	0.012	0.06	0.951	-0.023, 0.025
Years of education	12	0.168	0.095	1.77	0.077	-0.018, 0.355
Caucasian	n.a					
GAF	8	-0.015	0.014	-0.36	0.718	-0.033, 0.023
Psychotic positive symptoms	9	0.013	0.102	0.02	0.982	-0.199, 0.203
Psychotic negative symptoms	9	0.195	0.138	1.52	0.127	-0.056, 0.457
NOS	20	-0.155	0.089	-1.85	0.065	-0.299, 0.001
Baseline AP exposure	10	0.016	0.003	1.79	0.073	-0.000, 0.013
Type of CHR-P instrument		0.509	0.200	1.01	0.070	1.0(1.0.041
	SIPS	-0.508	0.280	-1.81	0.070	-1.061, 0.041
	Othera	-0.143	0.333	-0.20	0.794	-1.233, 0.943
Visual learning	Others	-0.387	0.431	-0.90	0.308	-1.232, 0.430
Age	13	-0.026	0.027	-0.98	0.328	-0.079_0.0267
Sex male	13	0.007	0.006	1.05	0.293	-0.006.0.020
Years of education	8	0.083	0.139	0.59	0.552	-0.191, 0.357
Caucasian	n.a.					
GAF	n.a.					
Psychotic positive symptoms	8	0.108	0.074	1.47	0.142	-0.036, 0.253
Psychotic negative symptoms	8	0.088	0.074	1.11	0.266	-0.059, 0.216
NOS	13	-0.019	0.064	-0.30	0.762	-0.145, 0.106
Baseline AP exposure	n.a.					
Type of CHR-P instrument	12					
	SIPS	0.164	0.200	0.82	0.410	-0.227, 0.557
	Others	0.263	0.357	0.74	0.461	-0.447, 0.964
General Intelligence	1	1		1		1
Age	20	-0.015	0.031	-0.18	0.856	-0.087, 0.057
Sex male	20	0.002	0.008	-0.32	0.747	-0.019, 0.014
Years of education	8	0.049	0.156	0.30	0.765	-0.275, 0.374
Caucasian	n.a.	A A A		1.00	0.105	0.001
GAF	13	0.00	< 0.001	1.30	0.193	< 0.001
Psychotic positive symptoms	8	0.024	0.043	0.56	0.570	-0.060, 0.109
Psychotic negative symptoms	8	0.003	0.024	0.14	0.885	-0.044, 0.051
NUS	20	-0.034	0.098	-0.30	0.766	-0.245, 0.138

 $\ensuremath{\mathbb{C}}$ 2021 American Medical Association. All rights reserved.

Baseline AP exposure	9	0.003	0.009	0.35	0.725	-0.015, 0.022
Type of CHR-P instrument	19					
	SIPS	-0.031	0.200	-0.16	0.875	-0.424, 0.361
Premorbid IQ						
Age	12	0.065	0.075	0.86	0.391	-0.081, 0.212
Sex male	11	0.021	0.015	1.40	0.160	-0.008, 0.051
Years of education	7	0.289	0.164	1.70	0.089	-0.042, 0.601
Caucasian	n.a.					
GAF	8	0.039	0.034	1.14	0.252	-0.027, 0.106
Psychotic positive symptoms	9	-0.031	0.059	-0.52	0.605	-0.148, 0.086
Psychotic negative symptoms	9	-0.009	0.103	-0.09	0.929	-0.211, 0.192
NOS	12	0.017	0.116	0.15	0.877	-0.210, 0.246
Baseline AP exposure	n.a.					
Type of CHR-P instrument	12					
	SIPS	0.195	0.341	0.57	0.567	-0.472, 0.863
	Others	0.458	0.445	1.03	0.303	-0.414, 1.333
Executive functioning						
Age	29	0.001	0	0.04	0.966	-0.000, 0.000
Sex male	28	-0.003	0.009	-0.36	0.722	-0.022, 0.015
Years of education	18	0.070	0.089	0.79	0.432	-0.105, 0.246
Caucasian	n.a					
GAF	16	0	0	0.10	0.923	-0.000, 0.000
Psychotic positive symptoms	13	-0.054	0.050	-1.08	0.278	-0.153, 0.044
Psychotic negative symptoms	13	-0.070	0.047	-1.50	0.133	-0.162, 0.021
NOS	29	-0.014	0.075	0.05	0.961	-0.143, 0.151
Baseline AP exposure	13	0.001	0.009	-0.16	0.875	-0.018, 0.016
Type of CHR-P instrument	26					
	SIPS	-0.151	0.247	-0.64	0.523	-0.626, 0.313
	BSIP	0.187	0.588	0.32	0.752	-0.926, 1.270
	BSABS	-0.142	0.582	-0.24	0.807	-1.288, 0.999
	Others	-0.196	0.422	-0.46	0.649	-1.012, 0.639

n.a. not applied; Positive and negative psychotic symptoms measured by PANSS scale or SIPS; CAARMS Comprehensive Assessment of At-Risk Mental States reference category in type of CHR-P instrument; SIPS Structured Interview for Psychosis-risk Syndromes; BSIP Basel Screening Instrument for Psychosis; SPI-A Schizophrenia Proneness Instrument-Adult; SPI-CY Child and Youth version; BSABS Bonn Scale for the Assessment of Basic Symptoms; Others: Early Recognition Inventory (ERIraos), Positive and Negative Syndrome Scale (PANSS) and Brief Psychiatric Rating Scale (BPRS)

eTable 12.	. Metaregressions	CHR-transitioning vs	s CHR-P non	transitioning

	k	ß	SE	Z	р	95% CI
Processing Speed						
Age	8	-0.077	0.035	-2.19	0.028	-0.155, -0.008
Sex male	8	-0.013	0.012	-1.16	0.244	-0.046, 0.009
Years of education	n.a					
Caucasian	n. a.					
GAF	n.a					
Positive psychotic symptoms	n.a					
Negative symptoms	n.a					
NOS	8	0.083	0.074	1.12	0.263	-0.062, 0.238
Baseline AP exposure	n.a					
Follow-up time	8	0.002	0.002	0.73	0.463	-0.003, 0.006
Type of CHR-P instrument	n.a.					
	SIPS	0.038	0.203	0.15	0.88	-0.378, 0.439
	SPI-A or SPI-CY	-1.036	0.401	-2.56	0.01	-1.811, -0.241
General intelligence						
Age	8	0.115	0.124	0.93	0.355	-0.139, 0.369
Sex male	8	-0.028	0.034	-0.55	0.583	-0.084, 0.047
Years of education	n. a.					
Caucasian	n.a					
GAF	n.a					
Positive psychotic symptoms	n.a					
Negative symptoms	n.a					
NOS	8	0.224	0.353	0.64	0.525	-0.477, 0.916
Baseline AP exposure	n.a					
Follow-up time	8	-0.001	0.001	-0.78	0.437	-0.004, 0.002
Type of CHR-P instrument	8					
	SIPS	-0.254	0.899	-0.28	0.778	-2.016, 1.508

n.a. not applied; Positive and negative psychotic symptoms measured by PANSS scale or SIPS; CAARMS Comprehensive Assessment of At-Risk Mental States reference category in type of CHR-P instrument; SIPS Structured Interview for Psychosis-risk Syndromes; BSIP Basel Screening Instrument for Psychosis; SPI-A Schizophrenia Proneness Instrument-Adult; SPI-CY Child and Youth version; BSABS Bonn Scale for the Assessment of Basic Symptoms; Others: Early Recognition Inventory (ERIraos), Positive and Negative Syndrome Scale (PANSS) and Brief Psychiatric Rating Scale (BPRS)

	k	ß	SE	Z	р	95% CI
Executive function						
Age	7	0.059	0.047	1.25	0.210	-0.034, 0.153
Sex male	7	-0.016	0.012	-1.33	0.182	-0.041, 0.007
Years of education	n.a					
Caucasian	n. a.					
GAF	n. a.					
Positive psychotic symptoms	n.a					
Negative symptoms	n. a.					
NOS	7	0.132	0.058	2.27	0.06	0.018, 0.246
Baseline AP exposure	n. a.					
Type of CHR-P instrument	n.a					

eTable 13. Metaregressions: CHR-P vs FEP

n.a. not applied; Positive and negative psychotic symptoms measured by PANSS scale or SIPS; CAARMS Comprehensive Assessment of At-Risk Mental States reference category in type of CHR-P instrument; SIPS Structured Interview for Psychosis-risk Syndromes; BSIP Basel Screening Instrument for Psychosis; SPI-A Schizophrenia Proneness Instrument-Adult; SPI-CY Child and Youth version; BSABS Bonn Scale for the Assessment of Basic Symptoms; Others: Early Recognition Inventory (ERIraos), Positive and Negative Syndrome Scale (PANSS) and Brief Psychiatric Rating Scale (BPRS)

eLimitations

In addition to the limitations addressed in the main text, we did not differentiate affective vs non-affective psychoses at outcomes because these data were hardly ever reported by the primary studies. Furthermore, the mean age of the samples and the associated follow-up are not past the age of peak risk. Another limitation is that outcomes other than transition to psychosis were not addressed because of the lack of longitudinal data. Neurocognitive features remain relatively more highly predictive of functional outcomes in both established schizophrenia spectrum and related psychotic disorders and their risk states. Neurocognitive impairment is prominent, persistent and disabling across illness phases. As such, future studies should fully investigate whether the neurocognitive dysfunction observed in CHR-P individuals is associated with functional outcomes at follow-up. This is particularly relevant considering that most CHR-P individuals who will not transition to psychosis will nevertheless continue displaying functional impairment over time (and therefore, these individuals cannot be truly defined as "false positives"), with remission rates accounting for only 15% of the baseline sample¹²⁸.

A further important limitation is that the comparison with HC groups may have amplified the neurocognitive deficit observed. A subset of studies compared the neurocognitive functioning with help-seeking samples, but these were not enough to perform sensitivity analyses. However, we included a clinical comparison group composed of FEP patients. An associated issue is that neurocognitive dysfunction is also common (i.e. transdiagnostic) among psychiatric disorders (albeit to varying degrees). The CHR-P paradigm is already partially transdiagnostic, in light of the frequent non-psychotic comorbidities (mostly affective or personality disorders¹²⁹) and transdiagnostic conceptualisation of some CHR-P assessment instruments (e.g. the CAARMS, which allows comorbid mental disorders²). However, future studies should perform more extensive transdiagnostic neurocognitive comparisons with other psychiatric and/or high-risk samples. This would facilitate careful ascertainment of the specificity vs transdiagnosticity^{130,131} of cognitive biomarkers across different psychopathological dimensions. Given the heterogeneity in the course and symptom profiles (including neurocognitive profiles) of psychiatric disorders, characterising cognition in CHR-P states may contribute to more homogeneous cross-disorder subtyping according to shared phenotypic features (i.e., symptom profile, neurocognitive profile, brain-based assessments, genetics, etc.). The neurocognitive dysfunctions observed in the current study can, therefore, contribute to the broader literature on subtyping within and across diagnostic groups based on neurocognitive features of psychiatric disorders and their risk states.

A final limitation is that we did not address sensitivity to change over time and disorder progression for the neurocognitive dysfunction observed¹³². Dynamic investigations of the time course of neurocognitive and neurobiological alterations in CHR-P individuals are emerging, and not enough studies are yet available for a meta-analytic summary."

References

- 1. Fusar-Poli P, Salazar de Pablo G, Correll CU, et al. Prevention of Psychosis: Advances in Detection, Prognosis, and Intervention. *JAMA Psychiatry*. 2020.
- 2. Yung AR, Yuen HP, McGorry PD, et al. Mapping the onset of psychosis: the Comprehensive Assessment of At-Risk Mental States. *Aust N Z J Psychiatry*. 2005;39(11-12):964-971.
- Fusar-Poli P, Cappucciati M, Rutigliano G, et al. Towards a Standard Psychometric Diagnostic Interview for Subjects at Ultra High Risk of Psychosis: CAARMS versus SIPS. *Psychiatry J*. 2016;2016:7146341.
- 4. McGlashan T WB, Woods S. *The psychosis-risk syndrome: handbook for diagnosis and follow-up.*: Oxford: Oxford University 2010.
- 5. Riecher-Rössler A, Aston J, Ventura J, et al. [The Basel Screening Instrument for Psychosis (BSIP): development, structure, reliability and validity]. *Fortschr Neurol Psychiatr.* 2008;76(4):207-216.
- 6. Haefner H, Bechdolf A, Klosterkotter J, Maurer K. Early detection and intervention in psychosis. A practice handbook. In: Stuttgart: Schattauer; 2011.
- 7. Vollmer-Larsen A, Handest P, Parnas J. Reliability of measuring anomalous experience: the Bonn Scale for the Assessment of Basic Symptoms. *Psychopathology*. 2007;40(5):345-348.
- 8. Fux L, Walger P, Schimmelmann BG, Schultze-Lutter F. The Schizophrenia Proneness Instrument, Child and Youth version (SPI-CY): practicability and discriminative validity. *Schizophr Res.* 2013;146(1-3):69-78.
- 9. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. *Schizophr Bull*. 1987;13(2):261-276.
- 10. Overall J, Gorham D. The Brief Psychiatric Rating Scale (BPRS): recent developments in ascertainment and scaling. *Psychopharmacol Bull*. 1988;24:97-99.
- 11. Fusar-Poli P, Deste G, Smieskova R, et al. Cognitive Functioning in Prodromal Psychosis A Metaanalysis. *Archives of General Psychiatry*. 2012;69(6):562-571.
- 12. Hauser M, Zhang J-P, Sheridan EM, et al. Neuropsychological Test Performance to Enhance Identification of Subjects at Clinical High Risk for Psychosis and to Be Most Promising for Predictive Algorithms for Conversion to Psychosis: A Meta-Analysis. *Journal of Clinical Psychiatry*. 2017;78(1):E28-E40.
- 13. Reitan RM, Wolfson D. *The Halstead–Reitan Neuropsycholgical Test Battery: Therapy and clinical interpretation.* Tucson, AZ: Neuropsychological Press.; 1985.
- 14. Keefe RSE. *Brief Assessment of Cognition in Schizophrenia (BACS) Manual—A: Version 2.1.* Durham, NC: Duke University Medical Center; 1999.
- 15. Spreen O, Strauss E. A Compendium of Neuropsychological Tests. New York: xford University; 1991.
- 16. Thurstone LL. Primary mental abilities. *Psychometric Monographs*. 1938;1.
- 17. Wechsler D. Wechsler Adult Intelligence Scale—3rd ed (WAISIII): Administration and Scoring Manual. San Antonio, Tex: Psychological Corp; 1997.

- 18. Golden CJ. Stroop Color and Word Test. Chicago, Illinois: Stoelting Company; 1978.
- 19. Nuechterlei KH, Edell WS, Norris M, Dawson ME. Attentionalvulnerability indicators, thought disorder, and negative symptoms. *Schizophrenia bulletin*. 1986;12:408–426.
- Cornblatt BA, Risch NJ, Faris G, Friedman D, Erlenmeyer-Kimling L. The Continuous Performance Test, Identical Pairs version (CPT-IP), I: new findings about sustained attention in normal families. *Psychiatry research*. 1988;26:223-238.
- 21. Wechsler D. *The Wechsler Memory Scale, 3rd ed.* . San Antonio, Tex: Psychological Corp (Harcourt); 1997.
- 22. Gold JM, Carpenter C, Randolph C, Goldberg TE, Weinberger DR. Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. *Archives of general psychiatry*. 1997;54:159–165.
- 23. Wechsler D. *Wechsler Abbreviated Scale of Intelligence*. San Antonio, TX.: Psychological Corporation; 1999.
- 24. Petrides M, Alivisatos B, Evans AC. Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. *Proc Natl Acad Sci U S A*. 1995;92(13):5803-5807.
- 25. Brandt J, R.H.B. B. *The Hopkins Verbal Learning Test—Revised: Professional Manual.* . Odessa, Fla: Psychological AssessmentcResources, Inc.; 2001.
- 26. Lezak MD. Neuropsychological Assessment. Oxford University Press; 2004.
- 27. Woods SP, Delis DC, Scott JC, Kramer JH, Holdnack JA. The California Verbal Learning Testsecond edition: Test-retest reliability, practice effects, and reliable change indices for the standard and alternate forms. *Archives of clinical neuropsychology : the official journal of the National Academy of Neuropsychologists*. 2006;21:413-420.
- 28. Delis DC, Kramer JH, Kaplan E, Ober BA. *California Verbal Learning Test Manual II*. The Psychological Corporation, San Antonio, TX; 2000.
- 29. Benedict RHB. Benedict RHB: Brief Visuospatial Memory Test—Revised: Professional Manual. Odessa, Fla: Psychological Assessment Resources, Inc.; 1997.
- 30. Rey A. L'examen clinique en psychologie. Presses Un, Parisi, M.1964.
- 31. White T, Stern RA. *Neuropsychological Assessment Battery: Psychometric and Technical Manual.* Lutz, Fla: Psychological Assessment Resources, Inc; 2003.
- 32. Baron-Cohen S, Jolliffe T, Mortimore C, Robertson M. Another advanced test of theory of mind: evidence from very high functioning adults with autism or asperger syndrome. *J Child Psychol Psychiatry*. 1997;38(7):813-822.
- Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I. The "Reading the Mind in the Eyes" Test revised version: a study with normal adults, and adults with Asperger syndrome or highfunctioning autism. J Child Psychol Psychiatry. 2001;42(2):241-251.
- 34. van 't Wout M, Aleman A, Kessels RP, Laroi F, Kahn RS. Emotional processing in a non-clinical psychosis-prone sample. *Schizophrenia research*. 2004;68(2-3):271-281.
- 35. Corcoran R, Mercer G, Frith CD. Schizophrenia, symptomatology and social inference: Investigating "theory of mind" in people with schizophrenia. *Schizophrenia research*. 1995;17:5-13.

- 36. Wechsler D. *WAIS-R* : *Wechsler adult intelligence scale-revised*. New York, N.Y. : Psychological Corporation; 1981.
- 37. Wechsler D. *Wechsler Intelligence Scale for Children, 3rd edition* New York, N. Y.: Psychological Corporation; 1991.
- 38. Nelson HE. National Adult Reading Test (NART): Test manual. Windsor: NFER-Nelson.; 1982.
- 39. Maurer K, Hafner H. [Early diagnosis of schizophrenia]. *MMW Fortschritte der Medizin*. 2007;149(13):36-38.
- 40. Grant DA. Computer version of the Wisconsin Card Sorting Test, WCST. Odessa, Fla: Psychological Assessment Resources; 2000.
- 41. Stroop JR. Studies of interference in serial verbal reactions. *J Exp Psychol.* 1935;18:643-662.
- 42. *Finger Tapping Test* [computer program]. Lelystad: BuroTesteR; 2002.
- Doty RL, Shaman P, Kimmelman CP, Dann MS. University of Pennsylvania Smell Identification Test: a rapid quantitative olfactory function test for the clinic. *Laryngoscope*. 1984;94(2 Pt 1):176-178.
- 44. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. [updated March 2011]. The Cochrane Collaboration. Available from <u>www.handbook.cochrane.org</u>. Published 2011. Accessed.
- 45. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Part 5. Chapter 22. Complex Data Structures In: *Introduction to Meta-Analysis*. John Wiley & Sons, Ltd.; 2009.
- Seidman LJ, Shapiro DI, Stone WS, et al. Association of Neurocognition With Transition to Psychosis: Baseline Functioning in the Second Phase of the North American Prodrome Longitudinal Study. *JAMA psychiatry*. 2016;73(12):1239-1248.
- 47. Westwood SJ, Radua J, Rubia K. Noninvasive brain stimulation in children and adults with attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. *Journal of psychiatry & neuroscience : JPN.* 2020;45(6):190179.
- Norman LJ, Carlisi C, Lukito S, et al. Structural and Functional Brain Abnormalities in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder: A Comparative Metaanalysis. JAMA psychiatry. 2016;73(8):815-825.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed). 1997;315(7109):j629-634.
- 50. Addington J, Piskulic D, Perkins D, Woods SW, Liu L, Penn DL. Affect recognition in people at clinical high risk of psychosis. *Schizophrenia research*. 2012;140(1-3):87-92.
- Addington J, Liu L, Perkins DO, Carrion RE, Keefe RS, Woods SW. The Role of Cognition and Social Functioning as Predictors in the Transition to Psychosis for Youth With Attenuated Psychotic Symptoms. *Schizophrenia bulletin*. 2017;43(1):57-63.
- 52. Atkinson RJ, Fulham WR, Michie PT, et al. Electrophysiological, cognitive and clinical profiles of at-risk mental state: The longitudinal Minds in Transition (MinT) study. *PloS one*. 2017;12(2).
- 53. Becker HE, Nieman DH, Wiltink S, et al. Neurocognitive functioning before and after the first psychotic episode: does psychosis result in cognitive deterioration? *Psychological medicine*. 2010;40(10):1599-1606.
- 54. Blanchard MM, Jacobson S, Clarke MC, et al. Language, motor and speed of processing deficits in adolescents with subclinical psychotic symptoms. *Schizophrenia research*. 2010;123(1):71-76.

- 55. Bolt LK, Amminger GP, Farhall J, et al. Neurocognition as a predictor of transition to psychotic disorder and functional outcomes in ultra-high risk participants: Findings from the NEURAPRO randomized clinical trial. *Schizophrenia research*. 2019;206:67-74.
- 56. Brewer WJ, Wood SJ, McGorry PD, et al. Impairment of olfactory identification ability in individuals at ultra-high risk for psychosis who later develop schizophrenia. *The American journal of psychiatry*. 2003;160(10):1790-1794.
- 57. Brockhaus-Dumke A, Tendolkar I, Pukrop R, Schultze-Lutter F, Klosterkötter J, Ruhrmann S. Impaired mismatch negativity generation in prodromal subjects and patients with schizophrenia. *Schizophrenia research*. 2005;73(2-3):297-310.
- 58. Broome M, Day F, Valli I, et al. Delusional ideation, manic symptomatology and working memory in a cohort at clinical high-risk for psychosis: a longitudinal study. *European psychiatry : the journal of the Association of European Psychiatrists.* 2012;27:258–263.
- 59. Chu AOK, Chang WC, Chan SKW, Lee EHM, Hui CLM, Chen EYH. Comparison of cognitive functions between first-episode schizophrenia patients, their unaffected siblings and individuals at clinical high-risk for psychologis. *Psychological medicine*. 2019;49(11):1929-1936.
- 60. Chung YS, Kang D-H, Shin NY, Yoo SY, Kwon JS. Deficit of theory of mind in individuals at ultra-high-risk for schizophrenia. *Schizophrenia research*. 2008;99(1-3):111-118.
- 61. Corcoran CM, Keilp JG, Kayser J, et al. Emotion recognition deficits as predictors of transition in individuals at clinical high risk for schizophrenia: a neurodevelopmental perspective. *Psychological medicine*. 2015;45(14):2959-2973.
- 62. Couture SM, Penn DL, Addington J, Woods SW, Perkins DO. Assessment of social judgments and complex mental states in the early phases of psychosis. *Schizophrenia research*. 2008;100(1-3):237-241.
- 63. Cui H, Giuliano AJ, Zhang T, et al. Cognitive dysfunction in a psychotropic medication-naive, clinical high-risk sample from the ShangHai-At-Risk-for-Psychosis (SHARP) study: Associations with clinical outcomes. *Schizophrenia research*. 2020.
- 64. Eastvold AD, Heaton RK, Cadenhead KS. Neurocognitive deficits in the (putative) prodrome and first episode of psychosis. *Schizophrenia research*. 2007;93(1-3):266-277.
- 65. Egloff L, Lenz C, Studerus E, et al. No associations between medial temporal lobe volumes and verbal learning/memory in emerging psychosis. *European Journal of Neuroscience*. 2019;50(6):3060-3071.
- 66. Eisenacher S, Rausch F, Ainser F, et al. Early cognitive basic symptoms are accompanied by neurocognitive impairment in patients with an 'at-risk mental state' for psychosis. *Early intervention in psychiatry*. 2018;12(4):586-595.
- 67. Epstein KA, Cullen KR, Mueller BA, Robinson P, Lee S, Kumra S. White matter abnormalities and cognitive impairment in early-onset schizophrenia-spectrum disorders. *Journal of the American Academy of Child and Adolescent Psychiatry*. 2014;53(3):362-372.e361-362.
- 68. Frommann I, Pukrop R, Brinkmeyer J, et al. Neuropsychological Profiles in Different At-Risk States of Psychosis: Executive Control Impairment in the Early-and Additional Memory Dysfunction in the Late-Prodromal State. *Schizophrenia bulletin.* 2011;37(4):861-873.
- 69. Gill KE, Evans E, Kayser J, et al. Smell identification in individuals at clinical high risk for schizophrenia. *Psychiatry Research* 2014;220(1-2):201-204.
- 70. Goghari VM, Brett C, Tabraham P, et al. Spatial working memory ability in individuals at ultra high risk for psychosis. *Journal of psychiatric research*. 2014;50:100-105.

- 71. Gupta T, Mittal VA. Nicotine usage is associated with elevated processing speed, spatial working memory, and visual learning performance in youth at ultrahigh-risk for psychosis. *Psychiatry research*. 2014;220(1-2):687-690.
- 72. He Y, Li Z, Ma X, et al. Olfactory and cognitive functions in Chinese individuals at clinical high risk for psychosis. *Psychiatry research*. 2019;272:51-53.
- 73. Healey KM, Penn DL, Perkins D, Woods SW, Addington J. Theory of mind and social judgments in people at clinical high risk of psychosis. *Schizophrenia research*. 2013;150(2-3):498-504.
- 74. Hou CL, Xiang YT, Wang ZL, et al. Cognitive functioning in individuals at ultra-high risk for psychosis, first-degree relatives of patients with psychosis and patients with first-episode schizophrenia. *Schizophrenia research*. 2016;174(1-3):71-76.
- 75. Hur JW, Shin NY, Jang JH, et al. Clinical and neurocognitive profiles of subjects at high risk for psychosis with and without obsessive-compulsive symptoms. *The Australian and New Zealand journal of psychiatry*. 2012;46(2):161-169.
- Hur JW, Byun MS, Shin NY, et al. General intellectual functioning as a buffer against theory-ofmind deficits in individuals at ultra-high risk for psychosis. *Schizophrenia research*. 2013;149(1-3):83-87.
- 77. Hwang WJ, Lee TY, Shin WG, et al. Global and Specific Profiles of Executive Functioning in Prodromal and Early Psychosis. *Frontiers in psychiatry*. 2019;10:356.
- 78. Ilonen T, Heinimaa M, Korkeila J, Svirskis T, Salokangas RKR. Differentiating adolescents at clinical high risk for psychosis from psychotic and non-psychotic patients with the Rorschach. *Psychiatry research.* 2010;179(2):151-156.
- 79. Jahshan C, Heaton RK, Golshan S, Cadenhead KS. Course of Neurocognitive Deficits in the Prodrorne and First Episode of Schizophrenia. *Neuropsychology*. 2010;24(1):109-120.
- 80. Kamath V, Turetsky BI, Calkins ME, et al. Olfactory processing in schizophrenia, non-ill firstdegree family members, and young people at-risk for psychosis. *The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry*. 2014;15(3):209-218.
- 81. Kang M, Bang M, Lee SY, Lee E, Yoo SW, An SK. Coping styles in individuals at ultra-high risk for psychosis: Associations with cognitive appraisals. *Psychiatry research*. 2018;264:162-168.
- 82. Kim HS, Shin NY, Jang JH, et al. Social cognition and neurocognition as predictors of conversion to psychosis in individuals at ultra-high risk. *Schizophrenia research*. 2011;130(1-3):170-175.
- 83. Kim D, Lee S, Choi M, et al. Diffusion tensor imaging reveals abnormal brain networks in elderly subjects with subjective cognitive deficits. *Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology*. 2019;40(11):2333-2342.
- 84. Koren D, Scheyer R, Stern Y, et al. Metacognition strengthens the association between neurocognition and attenuated psychosis syndrome: Preliminary evidence from a pilot study among treatment-seeking versus healthy adolescents. *Schizophrenia research*. 2019;210:207-214.
- 85. Korver N, Nieman DH, Becker HE, et al. Symptomatology and neuropsychological functioning in cannabis using subjects at ultra-high risk for developing psychosis and healthy controls. *The Australian and New Zealand journal of psychiatry*. 2010;44(3):230-236.
- Koshiyama D, Kirihara K, Tada M, et al. Association between mismatch negativity and global functioning is specific to duration deviance in early stages of psychosis. *Schizophrenia research*. 2018;195:378-384.

- 87. Koutsouleris N, Davatzikos C, Bottlender R, et al. Early recognition and disease prediction in the at-risk mental states for psychosis using neurocognitive pattern classification. *Schizophrenia bulletin.* 2012;38(6):1200-1215.
- 88. Kristensen TD, Mandl RCW, Raghaya JM, et al. Widespread higher fractional anisotropy associates to better cognitive functions in individuals at ultra-high risk for psychosis. *Human brain mapping*. 2019;40(18):5185-5201.
- 89. Lee TY, Shin YS, Shin NY, et al. Neurocognitive function as a possible marker for remission from clinical high risk for psychosis. *Schizophrenia research*. 2014;153(1-3):48-53.
- 90. Lee SY, Bang M, Kim KR, et al. Impaired facial emotion recognition in individuals at ultra-high risk for psychosis and with first-episode schizophrenia, and their associations with neurocognitive deficits and self-reported schizotypy. *Schizophrenia research*. 2015;165(1):60-65.
- 91. Lepock JR, Ahmed S, Mizrahi R, et al. Relationships between cognitive event-related brain potential measures in patients at clinical high risk for psychosis. *Schizophrenia research*. 2019.
- 92. Li RR, Lyu HL, Liu F, et al. Altered functional connectivity strength and its correlations with cognitive function in subjects with ultra-high risk for psychosis at rest. *CNS neuroscience & therapeutics*. 2018;24(12):1140-1148.
- 93. Lin A, Yung AR, Nelson B, et al. Neurocognitive predictors of transition to psychosis: mediumto long-term findings from a sample at ultra-high risk for psychosis. *Psychological medicine*. 2013;43(11):2349-2360.
- 94. Lindgren M, Manninen M, Laajasalo T, et al. The relationship between psychotic-like symptoms and neurocognitive performance in a general adolescent psychiatric sample. *Schizophrenia research.* 2010;123(1):77-85.
- 95. Liu Y, Wang G, Jin H, et al. Cognitive deficits in subjects at risk for psychosis, first-episode and chronic schizophrenia patients. *Psychiatry research*. 2019;274:235-242.
- 96. Magaud E, Morvan Y, Rampazzo A, et al. Subjects at Ultra High Risk for psychosis have 'heterogeneous' intellectual functioning profile: a multiple-case study. *Schizophrenia research*. 2014;152(2-3):415-420.
- 97. Menghini-Muller S, Studerus E, Ittig S, et al. Sex differences in cognitive functioning of patients at-risk for psychosis and healthy controls: Results from the European Gene-Environment Interactions study. *European psychiatry : the journal of the Association of European Psychiatrists*. 2020;63(1):e25-e25.
- 98. Metzler S, Dvorsky D, Wyss C, et al. Changes in neurocognitive functioning during transition to manifest disease: comparison of individuals at risk for schizophrenic and bipolar affective psychoses. *Psychological medicine*. 2015;45(10):2123-2134.
- 99. Millman ZB, Goss J, Schiffman J, Mejias J, Gupta T, Mittal VA. Mismatch and lexical retrieval gestures are associated with visual information processing, verbal production, and symptomatology in youth at high risk for psychosis. *Schizophrenia research*. 2014;158(1-3):64-68.
- 100. Mirzakhanian H, Singh F, Seeber K, Shafer KM, Cadenhead KS. A Developmental Look at the Attentional System in the At Risk and First Episode of Psychosis: Age related Changes in Attention along the Psychosis Spectrum. *Neurocognitive Neuropsychiatry*. 2013;18(0):26–43.
- 101. Mittal VA, Walker EF, Bearden CE, et al. Markers of basal ganglia dysfunction and conversion to psychosis: neurocognitive deficits and dyskinesias in the prodromal period. *Biological psychiatry*. 2010;68(1):93-99.

- 102. Modinos G, McGuire P. The prodromal phase of psychosis. *Current Opinion in Neurobiology*. 2015;30:100-105.
- 103. Montalvo I, Gutierrez-Zotes A, Creus M, et al. Increased prolactin levels are associated with impaired processing speed in subjects with early psychosis. *PloS one*. 2014;9(2):e89428.
- 104. Ohmuro N, Katsura M, Obara C, et al. Deficits of cognitive theory of mind and its relationship with functioning in individuals with an at-risk mental state and first-episode psychosis. *Psychiatry research.* 2016;243:318-325.
- 105. Ohmuro N, Katsura M, Obara C, et al. The relationship between cognitive insight and cognitive performance among individuals with at-risk mental state for developing psychosis. *Schizophrenia research.* 2018;192:281-286.
- 106. Pflueger MO, Calabrese P, Studerus E, et al. The neuropsychology of emerging psychosis and the role of working memory in episodic memory encoding. *Psychology research and behavior management.* 2018;11:157-168.
- 107. Pukrop R, Schultze-Lutter F, Ruhrmann S, et al. Neurocognitive functioning in subjects at risk for a first episode of psychosis compared with first- and multiple-episode schizophrenia. *Journal of clinical and experimental neuropsychology*. 2006;28(8):1388-1407.
- 108. Pukrop R, Ruhrmann S, Schultze-Lutter F, Bechdolf A, Brockhaus-Dumke A, Klosterkötter J. Neurocognitive indicators for a conversion to psychosis: comparison of patients in a potentially initial prodromal state who did or did not convert to a psychosis. *Schizophrenia research*. 2007;92(1-3):116-125.
- 109. Randers L, Jepsen JRM, Fagerlund B, et al. Associations between facial affect recognition and neurocognition in subjects at ultra-high risk for psychosis: A case-control study. *Psychiatry research.* 2020;290:112969.
- 110. Sanada K, Ruiz de Azua S, Nakajima S, et al. Correlates of neurocognitive functions in individuals at ultra-high risk for psychosis A 6-month follow-up study. *Psychiatry research*. 2018;268:1-7.
- 111. Seidman LJ, Giuliano AJ, Meyer EC, et al. Neuropsychology of the Prodrome to Psychosis in the NAPLS Consortium Relationship to Family History and Conversion to Psychosis. *Archives of general psychiatry*. 2010;67(6):578-588.
- 112. Shin YS, Kim SY, Lee TY, et al. Longitudinal change in neurocognition and its relation to symptomatic and functional changes over 2years in individuals at clinical high-risk for psychosis. *Schizophrenia research*. 2016;174(1-3):50-57.
- 113. Simon AE, Cattapan-Ludewig K, Zmilacher S, et al. Cognitive functioning in the schizophrenia prodrome. *Schizophrenia bulletin*. 2007;33(3):761-771.
- 114. Standford AD, Messinger J, Malaspina D, Corcoran C. Theory of Mind in patients at clinical high risk for psychosis. *Schizophrenia research*. 2011;131:11–17.
- 115. Studerus E, Corbisiero S, Mazzariello N, et al. Can neuropsychological testing facilitate differential diagnosis between at-risk mental state (ARMS) for psychosis and adult attention-deficit/hyperactivity disorder (ADHD)? *European psychiatry : the journal of the Association of European Psychiatrists.* 2018;52:38-44.
- 116. Szily E, Kéri S. Anomalous subjective experience and psychosis risk in young depressed patients. *Psychopathology*. 2009;42(4):229-235.
- 117. Takahashi T, Nakamura M, Sasabayashi D, et al. Olfactory deficits in individuals at risk for psychosis and patients with schizophrenia: relationship with socio-cognitive functions and symptom severity. *European archives of psychiatry and clinical neuroscience*. 2018;268(7):689-698.

- 118. Thompson A, Papas A, Bartholomeusz C, et al. Social cognition in clinical "at risk" for psychosis and first episode psychosis populations. *Schizophrenia research*. 2012;141(2-3):204-209.
- 119. Tognin S, Catalan A, Modinos G, et al. Emotion Recognition and Adverse Childhood Experiences in Individuals at Clinical High Risk of Psychosis. *Schizophrenia bulletin.* 2020;46(4):823-833.
- 120. Tor J, Dolz M, Sintes-Estevez A, et al. Neuropsychological profile of children and adolescents with psychosis risk syndrome: the CAPRIS study. *European child & adolescent psychiatry*. 2020.
- Üçok A, Direk N, Koyuncu A, et al. Cognitive deficits in clinical and familial high risk groups for psychosis are common as in first episode schizophrenia. *Schizophrenia research*. 2013;151(1-3):265-269.
- 122. van Rijn S, Aleman A, de Sonneville L, et al. Misattribution of facial expressions of emotion in adolescents at increased risk of psychosis: the role of inhibitory control. *Psychological medicine*. 2011;41(3):499-508.
- 123. Wood SJ, Brewer WJ, Koutsouradis P, et al. Cognitive decline following psychosis onset Data from the PACE clinic. *British Journal of Psychiatry*. 2007;191:S52-S57.
- 124. Woodberry KA, McFarlane WR, Giuliano AJ, et al. Change in neuropsychological functioning over one year in youth at clinical high risk for psychosis. *Schizophrenia research*. 2013;146(1-3):87-94.
- 125. Zhang T, Cui H, Tang Y, et al. Correlation of social cognition and neurocognition on psychotic outcome: a naturalistic follow-up study of subjects with attenuated psychosis syndrome. *Scientific reports*. 2016;6.
- 126. Ziermans T, de Wit S, Schothorst P, et al. Neurocognitive and clinical predictors of long-term outcome in adolescents at ultra-high risk for psychosis: a 6-year follow-up. *PloS one*. 2014;9(4):e93994.
- 127. Bright P, van der Linde I. Comparison of methods for estimating premorbid intelligence. *Neuropsychol Rehabil.* 2020;30(1):1-14.
- 128. Rutigliano G, Valmaggia L, Landi P, et al. Persistence or recurrence of non-psychotic comorbid mental disorders associated with 6-year poor functional outcomes in patients at ultra high risk for psychosis. *J Affect Disord.* 2016;203:101-110.
- 129. Fusar-Poli P, Nelson B, Valmaggia L, Yung AR, McGuire PK. Comorbid depressive and anxiety disorders in 509 individuals with an at-risk mental state: impact on psychopathology and transition to psychosis. *Schizophr Bull.* 2014;40(1):120-131.
- 130. Fusar-Poli P. TRANSD recommendations: improving transdiagnostic research in psychiatry. *World Psychiatry*. 2019;18(3):361-362.
- 131. Fusar-Poli P, Davies C, Rutigliano G, Stahl D, Bonoldi I, McGuire P. Transdiagnostic Individualized Clinically Based Risk Calculator for the Detection of Individuals at Risk and the Prediction of Psychosis: Model Refinement Including Nonlinear Effects of Age. *Front Psychiatry*. 2019;10:313.
- 132. Seabury RD, Cannon TD. Memory Impairments and Psychosis Prediction: A Scoping Review and Theoretical Overview. *Neuropsychol Rev.* 2020;30(4):521-545.