Supporting Information

An upconversion fluorescent resonant energy transfer aptasensor for H5N1 influenza virus detection

Qiuzi Zhao,^a Ping Du,^b Xiaoyong Wang,^b Mengqian Huang,^a Ling-Dong Sun,^b Tao Wang,

^{a*} and Zhiyun Wang^{c*}

^bBeijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, Beijing, 100871, China

^c School of Environmental Science and Engineering, 135 Yaguang Road, Jinnan District, Tianjin, 300350, China

Coreponding Auther

*E-mail: wangtaobio@tju.edu.cn *E-mail: zhiyun_wang@tju.edu.cn

^a School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China

Supplementary Figures

1. Feasibility of FRET system based on H5N1 HA aptamer

Figure S1. The typical fluorescent emission spectra of different mixtures. The concentrations of Aptamer-FAM, GO and HA were 10 nM, 50 μ g m L⁻¹ and 50 ng mL⁻¹. (The excitation was set at 495 nm and the emission spectra were collected from 510 nm to 600 nm)

2. The TEM image of UCNPs-Apt on GO sheet in the presence of HA

Figure S2.The TEM image of UCNPs-Apt (0.05 mg mL⁻¹) on GO sheet (50 μ g m L⁻¹) in the presence of HA(50 ng mL⁻¹).

3. The fluorescence spectrum in human serum samples

Figure S3. The fluorescence spectra regarding quantitative detection of HA in human serum for different concentrations of HA $(0, 0.2, 0.5, 1, 2, 5, 7, 12 \text{ ng mL}^{-1})$

4. The relationship between commercial standard ELISA kits and this method

Figure S4. The relationship between commercial standard ELISA kits and this method.

5. Between-group repeated measures HA

		sumpress		
Samples	Volume of addition (ng mL ⁻¹)	Found±SD (ng mL ⁻¹)	Recovery (%)	RSD (%) n=3
1	2	2.29±0.152	114.50	6.63
2	5	5.37 ± 0.425	107.43	9.78
3	7	6.91±0.262	98.71	3.79
4	10	9.53 ± 0.922	95.37	9.67
5	12	12.35 ± 0.273	102.91	2.21

 Table S1. Inter-assay precision of Aptamer-SWUCNPs/GO platform in serum samples.

6.Stability of probes

Figure S5. The fluorescence intensity was measured in the period of 15 days. The concentrations of UCNP-Apt was 0.05 mg mL⁻¹. Error bars represented the standard deviation of three parallel testing.

7. A comparison between present HA of H5N1 virus biosensor and other biosensors

No.	Detection Methods	Materials	Liner range (ng mL ⁻¹)	LOD (ng mL ⁻¹)	Reference	
1	Electrochemical	indium-tin-oxide thin-film transistors (ITO TFTs).	5 - 5000	0.08	4	
2	ELISA	Immunowall Device	0.23-100	0.23	5	
3	Fluorescence	Aptamer / Ag@SiO2 nanoparticle	2-100	2	6	
4	Immunoassay	Enzyme-encapsulated liposome	0.1-4	0.04	7	
5	LSPR	MF-DNA /hAuSN	0.0857-857	0.0857	8	
6	DPV	Methylene blue- electroadsorbed graphene	2.14-8.57	0.711	9	
7	Fluorescence	Aptamer- SWUCNP/GO	0.1-15	0.0609	This study	

Table S2.	Comparison	of this	work	with o	ther	methods	for 1	the c	lection	of HA	protein
of H5N1											

References

(1) Shiratori, I.; Akitomi, J.; Boltz, D.; Horii, K.; Furuichi, M.; Waga, I. J. B.; communications, b. r.,

Selection of DNA aptamers that bind to influenza A viruses with high affinity and broad subtype specificity. *Biochem. Biophys. Res. Commun.* **2014**, *443 1*, 37-41.

(2) Dong, H.; Sun, L. D.; Feng, W.; Gu, Y.; Li, F.; Yan, C. H. J. A. N., Versatile Spectral and Lifetime

Multiplexing Nanoplatform with Excitation Orthogonalized Upconversion Luminescence. *Acs Nano* **2017**, *11*, 3289-3297.

(3) Dong, A.; Ye, X.; Chen, J.; Kang, Y.; Gordon, T.; Kikkawa, J. M.; Murray, C. J. J. o. t. A. C. S., A

generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 2011, 133 4, 998-1006.

(4) Ye, W. W.; Tsang, M.-K.; Liu, X.; Yang, M.; Hao, J., Upconversion Luminescence Resonance

Energy Transfer (LRET)-Based Biosensor for Rapid and Ultrasensitive Detection of Avian Influenza Virus H7 Subtype. *Small* **2014**, *10*, 2390-2397.

(5) Chavez Ramos, K.; Nishiyama, K.; Maeki, M.; Ishida, A.; Tani, H.; Kasama, T.; Baba, Y.; Tokeshi,

M., Rapid, Sensitive, and Selective Detection of H5 Hemagglutinin from Avian Influenza Virus Using an Immunowall Device. *Acs Omega* **2019**, *4*, 16683-16688.

(6) Pang, Y.; Rong, Z.; Wang, J.; Xiao, R.; Wang, S., A fluorescent aptasensor for H5N1 influenza

virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF). *Biosensors & Bioelectronics* **2015**, *66*, 527-532.

(7) Lin, C.; Guo, Y.; Zhao, M.; Sun, M.; Luo, F.; Guo, L.; Qiu, B.; Lin, Z.; Chen, G., Highly sensitive

colorimetric immunosensor for influenza virus H5N1 based on enzyme-encapsulated liposome. *Anal. Chim. Acta* **2017**, *963*, 112-118.

(8) Lee, T.; Kim, G. H.; Kim, S. M.; Hong, K.; Kim, Y.; Park, C.; Sohn, H.; Min, J., Label-free localized

surface plasmon resonance biosensor composed of multi-functional DNA 3 way junction on hollow Au spike-like nanoparticles (HAuSN) for avian influenza virus detection. *Colloids and Surfaces B-Biointerfaces* **2019**, *182*.

(9) Veerapandian, M.; Hunter, R.; Neethirajan, S., Dual immunosensor based on methylene blueelectroadsorbed graphene oxide for rapid detection of the influenza A virus antigen. *Talanta* **2016**, *155*, 250-257.