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Part A. DATA PREPARATION AND ANALYSIS SAMPLE  

 

Data Harmonization  

 

Our analyses use harmonized panel data from five major household surveys: the U.S. Survey of Income 

and Program Participation (SIPP), the European Union Statistics on Income and Living Conditions (EU-

SILC), the German Socioeconomic Panel (GSOEP), the British Household Panel Survey (BHPS), and the 

Understanding Societies Survey (UKHLS).  

 

We selected this set of panel data surveys because they contain the most high-quality longitudinal 

information on family income dynamics in the United States and Europe. The only similar multi-country 

longitudinal dataset that exists, the Cross-National Equivalent File (CNEF), includes data from eight 

countries, which is insufficient to estimate multilevel logistic regression models that require a larger 

sample size at the higher cluster level (Bryan and Jenkins 2015; Heisig and Schaeffer 2019). Other cross-

national datasets, like the Luxembourg Income Study, are not longitudinal.  

 

We use the GSOEP data for Germany instead of the EU-SILC German sample because the EU-SILC 

German data has not been released to the public (SOEP 2019). We use the BHPS and UKHLS data for the 

UK instead of the EU-SILC UK sample due to discrepancies in the reference period used to collect 

income information (Mack and Lange 2015; Eurostat 2019). The EU-SILC UK sample is the only EU-

SILC sample that collects income information using the current year as a reference period instead of the 

previous year. To construct a measure of pervious year income using the EU-SILC UK data, we would 

need to drop one of the waves and further constrain the already short window of observation in our data. 

 

The five longitudinal surveys we use to construct our analysis sample are remarkably similar. They are all 

nationally representative probability random samples of households that collect information on 

households’ sociodemographic characteristics, employment, and economic conditions. The basic follow-

up rules are also the same across surveys. All panel surveys follow original sample people (OSM) during 

the life of the panel or rotation sample. OSM are respondents recruited the first year the sample starts. All 

surveys follow persons moving into households with OSM as long as they live with OSM. Children of 

OSM become part of the “original sample people” when they become 16. For more information on 

additional characteristics of each survey, see section “About the Surveys” below. 

 

There are two important differences in the structure of these longitudinal surveys that we harmonized to 

build our analysis sample: (a) panel length and sample rotation, (b) interview schedule. 

 

The EU-SILC and SIPP have a sample rotation panel structure and each respondent is followed for a 

maximum of four to six years. The GSOEP, BHPS, and UKHLS have a simple longitudinal structure and 
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each respondent is followed for the entire duration of the survey. The GSOEP is now one of the longest 

running longitudinal survey in Europe, and the original sample has now been followed for over 30 years.  

 

We harmonized the panel length and sample rotation structure across surveys. We adapted all surveys to 

follow the EU-SILC four-year rotating panel structure, which is the most constringent structure and thus 

offers a maximum common denominator template. We did this in two ways. First, for surveys with 

rotating panels where respondents are eligible to be followed for more than four waves (this applies to 

some EU-SILC samples and the SIPP), we restricted all respondents to four observations only. Second, 

for longer surveys without rotating panels, we created a sample rotation structure. This applied to the 

GSOEP and BHPS; we did not do this for the UKHLS because this survey only included four waves of 

data at the time of this study. To replicate the EU-SILC overlapping sample rotation, we split the sample 

into equal rotation groups and assigned them different start dates (four rotation groups for GSOEP and 

two for BHSP). When the rotation sample ends after four waves, respondents’ observations are reused for 

new rotation samples. For instance, GSOEP rotation group 1 starts in 2004 and is followed until 2007, 

and rotation group 2 starts in 2005 and is followed until 2008; respondents in rotation group 1 and 

rotation group 2 can enter new rotation groups after 2007 and 2008, respectively.  

 

The interview schedule also varies across these longitudinal surveys. The SIPP has a quarterly data 

collection, and the remaining surveys follow an annual interview schedule. We harmonized the SIPP to 

mirror the other surveys by collapsing the quarterly data into an annual file, utilizing the quarterly data to 

construct annual measures on employment and income corresponding to the other surveys. 

 

About the Surveys 

 

The EU-SILC is a 31-country longitudinal survey including all 28 EU member states plus Norway, 

Iceland, and Switzerland. The EU-SILC is organized under a “common framework” that aims to 

maximize comparability of the information produced. The common framework defines: (a) harmonized 

lists of target variables, (b) recommendations for sample design, (c) common criteria for imputation, 

weighting, and sampling error calculation, and (d) common concepts and classifications. Using this 

common framework, the national statistical agencies of each country are responsible for identifying the 

sample and carrying out the survey. EU-SILC data collected by national statistical agencies comes largely 

from surveys, but some countries use a combination of survey and data from administrative registers. 

Register countries are Denmark, Finland, Iceland, Norway, and Sweden (Eurostat 2013, 2017, 2019; 

Jäntti et al. 2013). 

 

The majority of countries participating in the EU-SILC follow a four-year rotating panel structure 

recommended by Eurostat. This sample design is based on four subsamples or rotation groups that start in 

different years and are followed for four waves. The rotation groups overlap and a new sample for each 

rotation group is obtained every four years. For instance, rotation group 1 starts in 2004 and is followed 

until 2007, and rotation group 2 starts in 2005 and is followed until 2008. New samples for rotation group 

1 and 2 start in 2008 and 2009, respectively. A few countries deviate from this structure and use longer 

rotation panels. For instance, France and Norway follow rotation groups for eight and nine years, 

respectively (Eurostat, 2013, 2017, 2019). 

 

The SIPP is a longitudinal household survey in the United States composed of a series of continuous and 

independent multi-year panels that began in 1984. We use the 2004 and 2008 panels comprising two 

samples of respondents followed for up to four and five years, respectively. The SIPP follows a quarterly 

interview schedule; every member is interviewed every four months (U.S. Census Bureau 2001, 2015).  

 

The GSOEP is a household longitudinal survey in Germany that started in 1984 and follows respondents 

once per year. It was originally a representative sample of West Germany, and in 1990 it expanded to 

include the former DGR and become representative of the German residential population. In addition to 
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the original West Germany sample and the former GDR extension, the survey includes one refresher 

sample that started in 1998 and several samples on specific populations (e.g., immigrants or high-income 

individuals). All respondents recruited through these additional samples become OSM and are followed 

using the same criteria.  

 

The BHPS is a household longitudinal survey in the United Kingdom that started in 1991 with a sample 

of 5,000 households, including approximately 10,000 individual interviews. This survey incorporated 

additional refresher and special samples over time. All respondents recruited through these additional 

samples became Original Sample Members and are followed using the same criteria. The BHPS study 

officially ended in 2008, but respondents were invited to continue their participation in Understanding 

Society (UKHLS), the new longitudinal survey that substituted the BHPS. About 85 percent of BHPS 

participants accepted and were incorporated into the UKHLS (ISER 2019a; Taylor et al. 2010). 

 

The UKHLS is a household longitudinal survey in the United Kingdom that started in 2009 and follows 

respondents once per year. It consists of a large general population sample, initially including 47,520 

addresses; the survey also includes other sample components, such as the Ethnic Minority Boost sample 

and the Innovation Panel. At Wave 2, the BHPS members were incorporated to the sample (ISER 2019b; 

Knies 2014). 

 

Analysis Sample 

 

We construct an unbalanced sample of couples at risk of separation during the panel. To identify this 

analytic sample, we begin with a core sample of women age 15 to 60 at the beginning of the panel and 

select those who are observed in a union and matched to their partners during the panel. After matching 

spouses, we obtain the analytic sample of couples at risk of separation. Table S1 shows how we obtain 

this sample in each survey.  

 

Couples can enter the sample at any point during the panel. For instance, an original sample person who 

moves in with her partner at wave two is incorporated into our analysis sample at wave 2. We conducted 

robustness checks using a semi-balanced panel that restricts the sample to respondents who are cohabiting 

or married at wave 1 and our results do not change.  

 

Couples remain in our analytic sample as long as they stay together, and they exit the sample when they 

separate, when they attrite out of the survey, or when their panel ends (right-censored), whichever comes 

first. Table S1 summarizes the percent of separations, attrition, and right-censored couples in our sample. 

 

Table S2 reports additional descriptive statistics for variables used in our analysis; this complements 

Table 2 in the main text. Our data are unweighted because each survey uses a different approach to 

calculate weights, and our analyses control for the things typically used to construct those weights 

(Winship and Radbill 1994). 
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Table S1. Sample Selection 

  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

  

Women 

age 15-

60 

during 

panel 

Women age 

15-60 with 

completed 

information 

on marital 

and 

relationship 

status 

Women 

age 15-

60 in 

union 

Women 

age 15-60 

in union 

and 

matched 

to partner 

Proportion 

of initial 

sample in 

union and 

matched 

with partner 

% 

separation 

% 

attrition 

Average 

observations 

% 

missing 

at least 

one 

covariate 

Final 

analysis 

sample 

EU-SILC 474907 473073 298222 283754 59.7 4.3 15.9 3.2 9.0 283754 

 1331031 1323859 840093 801106 60.2 
   

6.5 748639 

SIPP 54263 54263 38986 35618 65.6 5.4 15.1 3.3 0 35618 

 198745 198745 141462 125030 62.9 
   

0 125030 

GSOEP 29799 29748 21137 18653 62.6 6.9 14.6 3.4 10.0 18653 

 87985 87830 60232 53514 60.8 
   

11.8 47192 

BHPS 7732 7732 5102 4481 58.0 10.2 10.1 3.5 8.5 4481 

 33764 33746 21665 18664 55.3 
   

6.7 17417 

UKHLS 25353 25349 14275 13391 52.8 7.3 17.0 3.3 1.9 13391 

 77871 77821 43718 40864 52.5 
   

2.3 39922 
           

TOTAL 592054 590165 377722 355897 60.1 6.8 14.5 3.3 7.9 355897 

  1729396 1722001 1107170 1039178 60.1       5.9 978200 

Data sources: EU-SILC, SIPP, GSOEP, BHPS, UKHLS. 

Note: (5) The proportion of the initial sample in union and matched with partner is obtained by calculating the percent of women in the initial sample who are in unions and 

matched to partners, or (4) / (1) * 100. (6) The % separation is calculated as the number of couples who separate during the survey over all women in unions and matched to 

partners. (7) The % attrition is calculated as the number of respondents who exit the panel before it ends and not due to separation or right-censoring for other reasons (i.e., 
becoming no longer eligible to be in the analytic sample due to age) over all women in unions and matched to partners. (8) The average observations is the average number of 

years couples are observed in the analysis sample. (9) The % missing at least one covariate lists item response missing data in at least one of the covariates used in our models: 

employment status, age, education, income, children, and household ownership. (10) The final couple-level sample is the same as listed in (4), and the final couple-year sample 
is obtained by subtracting observations with item response missing data, or (4) - (9).  
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Table S2. Sample Descriptive Statistics for Additional Variables Not Reported in Table 2 

  

N couples 
N couple 

years  

His Unemployment Her Unemployment 
Her 

income 

His 

income 

Household 

tenure 

Have 

children 

  
Ever 

At first 

interview 
Ever 

At first 

interview 

Pooled 

sample 
355897 978200 10.7 5.5 11.8 6.0 23059.5 12277.3 75.7 70.9 

AT 9285 24701 6.9 3.6 7.6 3.3 28941.2 13367.6 60.8 65.4 

BE 8830 23272 8.0 5.2 10.0 6.5 27384.5 15573.8 73.6 65.7 

BG 6123 18548 22.9 14.9 25.1 17.0 1845.0 1225.6 85.9 75.4 

CY 6028 18399 13.6 5.3 13.3 6.0 20947.3 10314.8 77.9 77.0 

CZ 10416 33657 6.9 3.3 11.6 6.0 8140.6 4207.4 79.0 71.0 

DE 18653 47192 10.3 5.8 9.6 4.9 29342.5 11403.4 52.8 85.4 

DK 9300 25367 4.7 1.6 7.2 2.9 43235.5 29863.8 81.6 65.1 

EE 6899 19902 15.2 7.4 12.5 5.6 5537.5 3091.9 86.1 74.5 

EL 9137 26193 12.4 6.8 16.3 8.7 14130.4 6687.3 74.0 75.3 

ES 20924 58085 20.3 11.5 25.2 13.4 15494.0 7877.3 80.1 75.5 

FI 12755 35472 8.9 4.7 8.6 4.1 28672.0 18912.7 78.6 63.8 

FR 11511 45728 11.6 5.5 14.0 6.8 23945.1 14064.8 60.1 65.5 

HU 13517 38447 13.3 7.0 14.3 7.7 4023.3 2526.2 88.4 72.4 

IE 5326 12202 16.8 11.7 6.3 2.8 35433.7 16471.6 76.9 75.4 

IS 5438 14442 5.7 2.5 5.3 2.2 25595.6 13945.5 84.1 77.0 

IT 20818 82928 9.2 4.4 13.2 6.3 22947.5 10850.4 68.6 77.5 

LT 2946 9099 16.9 8.9 15.4 7.8 3859.8 2793.1 91.5 73.0 

LU 7060 24459 8.2 3.4 9.6 4.1 38137.2 18767.4 63.1 70.3 

LV 6580 18302 23.4 12.6 19.7 9.9 3856.8 2568.0 82.9 72.2 

NL 16877 46649 3.5 1.1 3.1 .5 39827.3 17206.4 84.3 67.5 

NO 8681 23367 3.0 1.2 4.6 1.9 47856.5 27291.0 85.9 70.3 

PL 17239 53652 11.3 6.5 18.0 11.4 5323.0 3052.2 71.8 77.6 

PT 1371 2772 12.7 8.7 14.4 10.5 10330.6 6308.3 75.2 69.2 

RO 6978 20228 5.5 3.4 2.9 1.3 1811.1 1033.5 95.8 49.8 

SE 9862 25667 5.9 2.7 7.2 3.7 28902.8 19111.1 73.7 66.8 

SI 19455 49857 13.1 7.7 17.7 10.8 11587.9 9375.2 83.2 83.9 

SK 2573 8002 9.3 5.3 14.5 9.2 5426.6 3250.4 87.8 82.4 

UK 17872 57339 11.6 6.7 8.5 3.5 26574.6 14583.5 70.1 52.2 

US 35618 125030 11.1 3.8 10.5 3.8 35517.6 17910.1 74.6 67.7 

Data sources: EU-SILC, SIPP, GSOEP, BHPS, UKHLS. 
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Part B. SENSITIVITY ANALYSES  

 

Sensitivity to Different Measures of Male-Breadwinner Values  

 

Our results could be invalidated by measurement error if key findings were sensitive to the way we 

constructed the male-breadwinner-norms variable. This variable uses items from two different surveys, 

the European Social Survey (ESS) and the International Social Survey Programme (ISSP). ESS asks 

respondents whether they agree/disagree that “men should have more right to jobs than women when jobs 

are scarce.” ISSP asks respondents whether they agree/disagree that “men’s job is to earn money, 

women’s job to look after home.”  

Table S3 shows descriptive statistics for the ESS and ISSP male-breadwinner values items, including 

information on data availability (years of data available for each country from each dataset) and 

individual-level variability in the variable of interest in each survey.  

The ESS-ISSP combination we use to construct our model maximizes country coverage and the number 

of countries with the same item. The ESS and ISSP items are remarkably similar, but some notable 

differences exist. In general, there is greater agreement with the ISSP item than with the ESS item, which 

is not surprising given the difference in statements.  

We checked the robustness of the cross-level interaction to different ways of constructing the male-

breadwinner-norms variable.   

First, we ran analyses using only ESS countries. This reduces the number of countries in our sample from 

29 to 27, excluding the United States and Latvia, which have no ESS data. Table S4, Model S1, shows the 

cross-level interaction finding is robust.  

Second, we ran analyses swapping ESS values for ISSP values for countries that are in both surveys. 

There are 23 countries that have both ISSP and ESS values; the correlation between the two male-

breadwinner items is high, .74. Table S2, Model S2, shows the cross-level interaction is robust. 

Finally, we ran models adding cross-level interactions for other gender attitudes that are not as directly 

linked to norms about men’s employment, using items from both ISSP and ESS surveys. Table S4, 

Models 3 to 7, show the cross-level interaction between husbands’ unemployment and male-breadwinner 

values remains robust. These analyses show no statistically significant cross-level interactions between 

husbands’ unemployment and other gender attitudes items. This result reinforces our confidence that the 

male-breadwinner measure captures attitudes about men’s employment and emphasizes the importance of 

choosing concrete items to measure different dimensions of context-level gender norms (Knight and 

Brinton 2017). 

Sensitivity to Unemployment Transitions  

 

Our measure of unemployment is based on respondents’ status at the time of the interview. For a subset of 

countries, it is possible to use monthly employment calendar information to restrict the measure of 

unemployment to those who lost jobs and not include those who become unemployed after a period of 

schooling or inactivity.  

 

We ran analyses on this subset of countries (24 countries, all except Denmark, Finland, Norway, Sweden, 

and the Netherlands) and confirm that results are robust. Table S5 shows results for the cross-level 

interaction model.  
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Sensitivity to Confounders  

 

Table S6 presents analyses that test the sensitivity of our conclusion to more stringent criteria to control 

for potential sources of unobserved heterogeneity at the individual and country levels.  

 

Model S9 presents results from Mundlak correction, which address the concern that our estimate of the 

effect of unemployment on divorce might be confounded with individual-level unobserved traits that 

correlate with unemployment incidence and separation. The Mundlak correction adds individual-level 

averages for all time-varying variables in an effort to control for time-fixed unobserved heterogeneity. 

Running this model in our data is not ideal because we only have a few observations per couple, and the 

average estimate absorbs a lot of the time-variation we observe in the short window of observation. 

Results show that the cross-level interaction between his time-varying unemployment measure and the 

context-level male-breadwinner values remains statistically significant. The main effects for men’s and 

women’s unemployment are not statistically significant in this specification, which is not surprising given 

that we only have four years of data per couple. 

 

Models S10 and S11 present results for regressions with country fixed-effects and with country fixed-

effects interacted with men’s unemployment. These models address the concern that our measure of male-

breadwinner norms is picking up unobserved variation in other country-level characteristics, such as 

institutions (Giesselmann and Schmidt-Catran 2019). Model S10 shows the moderating effect of male-

breadwinner norms remains robust when only time-varying within-country variation is leveraged. Model 

S11 shows the moderating effect of male-breadwinner norms is not driven by country-specific effects for 

his unemployment. The results reinforce the robustness of our findings. 

 

Model S12 presents results with year fixed-effects, which address the concern that changes in male-

breadwinner values could be capturing a larger time trend in correlated unobserved processes shared by 

all countries included in the analysis. Our results are robust to this specification too.  

 

Finally, Models S13, S14, and S15 exclude three outliers, Greece (EL), Poland (PL), and Netherlands 

(NL). The outliers are selected based on patterns in Figure 1. All analyses show that our key findings 

remain robust.  

 

Sensitivity to Lacking Data on Union Duration  

 

The EUSILC does not include information on marital parity or duration, and we cannot incorporate these 

control variables in our analyses. Our models include women’s age as a proxy for couples’ duration; but 

is age a good enough proxy for marital duration? The results would be severely biased if marital duration 

mediated or moderated the association between men’s unemployment and divorce, potentially shifting the 

interaction with male-breadwinner norms. We assessed this source of potential bias in two ways.  

 

First, we ran analyses for a subsample of young couples (women under age 46) and confirmed that results 

are robust. Table S7, Model S16, shows results for the cross-level interaction with male-breadwinner 

norms.  

 

Second, we used marital duration information in the SIPP sample and tested whether the effect of men’s 

unemployment systematically varied across marital duration. Table S7, Model S17, shows no evidence of 

an interaction between men’s unemployment and marital duration. Table S7, Models S18 to S20, show 

the coefficient for men’s unemployment does not vary substantially across models that control for 

women’s age only, marital duration only, or both.  
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Third, we tested the interaction between his age (as a proxy for marital duration) and unemployment to 

address the possibility that union duration moderates the relationship between unemployment and 

separation and may confound our key estimates of interest. We fully recognize that using age as a proxy 

for union duration is far from perfect, but for the purpose at hand, one should not fail to notice that 

respondent age and union duration are strongly correlated (r = .67 in the SIPP), and thus age can serve as 

a useful control in our study, in terms of capturing true age (or birth-cohort effects) and as a proxy control 

to indirectly capture some of the true duration or (marriage/union cohort) effects and to net out the 

respective correlations with unemployment incidence. Table S7 reports results showing that our findings 

remain robust. Unlike the results with SIPP data reported above, the interaction between men’s 

unemployment and age is statistically significant and the effect is positive (which implies potential for 

downward bias, based on the simulation results presented below). In any case, the interaction between 

men’s age and unemployment does not alter any of the key coefficients of interest, namely the 

relationship between (men’s) unemployment and separation and the interaction between (men’s) 

unemployment and male-breadwinner norms. 

 

Sensitivity to the Structure of the Model 

 

Our three-level models include the random slope parameters for country-level controls and cross-level 

interactions at the country level, even though our country-level measures vary within countries across 

years. This modeling specification responds to substantive and computation reasons. We model the 

interaction at the country level because most of the variation in male-breadwinner norms is between 

rather than within countries. This specification is also computationally more efficient than similar 

specifications including random slopes, at the country and country-year levels. Furthermore, to keep the 

model setup reasonably parsimonious and computationally feasible, our preferred specification includes 

random slope parameters for all variables involved in a cross-level interaction, as well as for covariates 

where previous studies have established an association with relationship outcomes that varies across 

countries, namely cohabitation and women’s education.  

 

To demonstrate that our results are not sensitive to this particular model structure or list of random slope 

parameters, we present robustness tests from analyses that change the structure of the model and that 

include a more expanded set of random slope parameters. Table S8 presents various versions of our 

preferred model (Model 6 from Table 3) and shows that all key patterns are robust to changes in the 

structure of the model and in the list of random slope parameters. Model S25 shows our results are robust 

to including random slopes at the country-year and country levels, Model S26 shows our results are 

robust to including additional random slope parameters, and Model S27 shows our results are robust to 

estimating a two-level model, instead of a three-level, model.  
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Table S3. Male-Breadwinner Macro-Level Indicators, Comparing ESS and ISSP Data 

  BWN   ESS BWN    ISSP BWN      

Country 

 % agree men's primary 

role is breadwinning                           
(ESS data for all 

countries except US and 

LT using ISSP data) 

 

% who agree with the statement: 

"Men should have more right to 

jobs than women when jobs are 
scarce" 

 % who agree with the statement: "Men’s job is to earn money, 

women’s job to look after home" 

 

ISSP-ESS 

% Min  Max   Years 

SD in 

individual 

data (1) 

Education 
gap (2) 

  % Min  Max Years 

SD in 

individual 

data (1) 

Education 
gap (2) 

  Difference 

AT 18.5 16.0 23.6  04;08 1.2 9.9  26.0 25.0 28.7 02;05;12 1.0 18.7  7.4 

BE 24.0 20.0 33.2  04;08 1.2 19.0  21.9 16.5 24.0 02;05;12 1.0 18.7  –2.1 

BG 33.5 33.5 33.5  08 1.6 16.0  36.0 36.0 36.0 02;05;12 1.0 9.8  2.6 

CY 39.9 39.9 39.9  08 1.3 21.2  30.1 30.1 30.1 02;05 .8 25.4  –9.8 

CZ 28.2 25.6 34.8  04;08 1.5 11.5  40.4 37.4 41.4 02;05;12 1.1 12.6  12.2 

DE 19.5 16.4 24.1  04;08 1.2 13.7  19.3 17.8 19.8 02;05;12 1.0 12.6  –.2 

DK 5.3 3.3 9.7  04;08 .9 4.7  12.1 6.8 13.2 02;05;12 .8 7.7  6.8 

EE 22.4 17.5 34.9  04;08 1.3 10.8          

EL 47.3 47.2 47.3  04;08 1.3 20.6          

ES 20.1 17.4 28.5  04;08 1.3 18.2  22.3 17.9 24.3 02;05;12 .9 21.6  2.3 

FI 7.1 5.7 11.8  04;08 1.0 5.4  10.5 9.0 11.4 02;05;12 .7 5.7  3.4 

FR 18.4 14.8 29.2  04;08 1.3 17.5  18.1 12.2 21.6 02;05;12 .9 10.5  –.3 

HU 40.9 35.6 58.8  04;08 1.4 14.5  40.9 39.2 44.7 02;05;12 1.1 19.7  .1 

IE 14.0 10.2 21.6  04;08 1.0 11.1  15.6 13.2 16.8 02;05;12 .8 10.1  1.6 

IS 13.8 13.8 13.8  04 1.3 13.0  6.7 6.7 6.7 12 .6 5.4  –7.1 

IT 26.2 26.2 26.2  04 3.3 22.5          

LT 33.0 33.0 33.0      33.0 33.0 33.0 12 .9 5.8   

LU 26.9 26.9 26.9  04 1.3 19.0          

LV 20.1 20.1 20.1  08 1.4 8.5  37.1 36.0 39.6 02;05;12 1.1 5.1  17.0 

NL 13.4 10.4 20.1  04;08 1.0 10.2  12.3 12.2 12.6 02;05;12 .8 10.1  –1.1 

NO 5.4 4.5 9.1  04;08 .8 4.0  7.4 5.1 9.3 02;05;12 .7 6.7  2.0 

PL 30.9 27.5 40.3  04;08 1.4 23.5  42.7 42.5 43.3 02;05;12 1.1 28.4  11.9 

PT 27.1 22.4 37.8  04;08 1.3 14.7  29.8 24.6 33.2 02;05;12 1.0 28.8  2.7 

RO 33.3 33.3 33.3  08 1.7 12.9          

SE 4.3 2.8 7.5  04;08 .8 3.4  7.0 5.7 7.5 02;05;12 0.6 5.2  2.8 

SI 18.7 16.9 23.5  04;08 1.2 17.1  26.6 20.6 28.8 02;05;12 1.0 22.8  7.8 

SK 30.4 29.9 31.9  04;08 1.3 14.1  42.4 42.2 44.4 02;05;12 1.1 6.0  12.0 

UK 16.6 12.5 25.1  04;08 1.1 12.3  17.9 12.6 19.6 02;05;12 .9 14.1  1.3 

US 23.0 21.6 23.3           23.0 21.6 23.3 02;05;12 1.0 11.3     

                 
Data sources: ESS and ISSP.  
Note: SD = Standard Deviation. (1) SD in individual data is calculated using the original measure used in the survey and including all respondents. In ESS, the original 
measure ranges from 1 to 5 (5 indicates more egalitarian). In the ISSP, the original measure ranges from 1 to 4 (4 means more egalitarian). (2) Education gap is calculated as 

the difference between the percent of support for the male-breadwinner statement among respondents without a college degree and among respondents with a college degree. 

A value of 9, for instance, means the percentage of support for male-breadwinner among those without college is 9 percentage points higher than among those with a college 
degree.  
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Table S4. Sensitivity to Male-Breadwinner Measures: Multi-Level Logistic Regression on the Annual Probability of Separation 

 

VARIABLES 

Model S1      

ESS 

countries 

only 

Model S2 

swapping 

ESS values 

for ISSP 

Model S3     

ISSP item 1: 

warm 

Model S4     

ISSP item 2: 

suffer 

Model S5         

ISSP item 3: 

contribute 

Model S6      

ESS item 1: 

men home 

Model S7      

ESS item 2: 

women cut 

        
Women's unemployment .124*** .144*** .133*** .143*** .143*** .102* .103* 

 (.037) (.038) (.038) (.038) (.037) (.041) (.041) 

Men's unemployment .323*** .297*** .295*** .298*** .294*** .327*** .337*** 

 (.036) (.034) (.034) (.035) (.034) (.041) (.040) 

Male-breadwinner values .007 .002 .012* .011* .011* .012* .013 

 (.005) (.005) (.005) (.006) (.005) (.006) (.007) 

# W Unemp -.000 -.001 .000 .003 .001 -.002 -.001 

 (.004) (.003) (.004) (.005) (.004) (.004) (.005) 

# M Unemp .009** .006** .007* .008** .008** .010** .010** 

 (.004) (.002) (.003) (.003) (.003) (.003) (.003) 

ISSP warm    -.004     

   (.007)     
# M Unemp   .007     

   (.005)     
ISSP suffer     .001    

    (.00383)    
# M Unemp    -.001    

    (.003)    
ISSP contribute      .002   

     (.004)   
# M Unemp     -.001   

     (.003)   
ESS men home       .009  

      (.008)  
# M Unemp      .008  

      (.006)  
ESS women cut       -.005 

       (.005) 

# M Unemp       -.002 

       (.003) 

Wives' earnings .001 .003 .007 .001 .001 .001 .000 

 (.001) (.008) (.007) (.001) (.001) (.001) (.001) 

Husbands' earnings -.003*** -.032*** -.034*** -.003*** -.003*** -.002*** -.003*** 

 (.001) (.006) (.006) (.001) (.001) (.001) (.001) 

Wives' education        
secondary -.027 .001 .011 .011 .011 -.047 -.030 

 (.028) (.025) (.025) (.025) (.025) (.029) (.030) 

college -.155*** -.179*** -.164*** -.165*** -.165*** -.183*** -.153*** 

 (.034) (.032) (.032) (.032) (.032) (.036) (.036) 

Husbands' education        
secondary .056* -.004 .005 .005 .005 .053 .047 

 (.027) (.025) (.025) (.025) (.025) (.029) (.029) 

college -.048 -.136*** -.120*** -.121*** -.121*** -.053 -.050 

 (.034) (.032) (.032) (.032) (.032) (.036) (.036) 

Cohabitation 1.515*** 1.601*** 1.636*** 1.636*** 1.636*** 1.510*** 1.481*** 

 (.023) (.022) (.022) (.022) (.022) (.025) (.025) 
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Household tenure -.410*** -.407*** -.419*** -.419*** -.418*** -.420*** -.447*** 

 (.023) (.022) (.022) (.022) (.022) (.025) (.025) 

        
Constant .0751 .118 .163 .163 .157 .498 -.422 

 (.444) (.438) (.419) (.419) (.419) (.468) (.476) 

Random intercepts Yes Yes Yes Yes Yes Yes Yes 

Random slopes Yes Yes Yes Yes Yes Yes Yes 

Observations 798,636 842,175 767,605 767,605 767,605 798,636 798,636 

Number of groups 272 282 244 244 244 272 272 

Note: All models also control for women's age (quadratic), women's and men's inactivity, incomes (logged), and educational levels, parental 

status, cohabitation, household tenure, GDP, UR, UGEN, GWG, WLFP. Models also include interactions with each macro-level item and 

women's unemployment, we omit these coefficients due to space and because they are not statistically significant. ISSP item 1 warm = "A 

working mother can establish just as warm and secure a relationship with her children as a mother who does not work"; ISSP item 2 suffer = 

"A preschool child is likely to suffer if his or her mother works"; ISSP item 3 contribute = "Both the man and woman should contribute to 

the household income"; ESS item 1 = "Men should take as much responsibility as women for home and children"; ESS item 2 = "Women 

should be prepared to cut down on paid work for sake of family." 

Standard errors in parentheses. *** p<.001, ** p<.01, * p<.05 

 

 

VARIABLES 

Model S1      

ESS 

countries 

only 

Model S2 

swapping 

ESS values 

for ISSP 

Model S3     

ISSP item 1: 

warm 

Model S4     

ISSP item 2: 

suffer 

Model S5         

ISSP item 3: 

contribute 

Model S6      

ESS item 1: 

men home 

Model S7      

ESS item 2: 

women cut 

        
Women's unemployment .124*** .144*** .133*** .143*** .143*** .102* .103* 

 (.037) (.038) (.038) (.038) (.037) (.041) (.041) 

Men's unemployment .323*** .297*** .295*** .298*** .294*** .327*** .337*** 

 (.036) (.034) (.034) (.035) (.034) (.041) (.040) 

Male-breadwinner values .007 .002 .012* .011* .011* .012* .013 

 (.005) (.005) (.005) (.006) (.005) (.006) (.007) 

# W Unemp -.000 -.001 .000 .003 .001 -.002 -.001 

 (.004) (.003) (.004) (.005) (.004) (.004) (.005) 

# M Unemp .009** .006** .007* .008** .008** .010** .010** 

 (.004) (.002) (.003) (.003) (.003) (.003) (.003) 

ISSP warm    -.004     

   (.007)     
# M Unemp   .007     

   (.005)     
ISSP suffer     .001    

    (.00383)    
# M Unemp    -.001    

    (.003)    
ISSP contribute      .002   

     (.004)   
# M Unemp     -.001   

     (.003)   
ESS men home       .009  

      (.008)  
# M Unemp      .008  

      (.006)  
ESS women cut       -.005 

       (.005) 

# M Unemp       -.002 
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       (.003) 

Wives' earnings .001 .003 .007 .001 .001 .001 .000 

 (.001) (.008) (.007) (.001) (.001) (.001) (.001) 

Husbands' earnings -.003*** -.032*** -.034*** -.003*** -.003*** -.002*** -.003*** 

 (.001) (.006) (.006) (.001) (.001) (.001) (.001) 

Wives' education        
secondary -.027 .001 .011 .011 .011 -.047 -.030 

 (.028) (.025) (.025) (.025) (.025) (.029) (.030) 

college -.155*** -.179*** -.164*** -.165*** -.165*** -.183*** -.153*** 

 (.034) (.032) (.032) (.032) (.032) (.036) (.036) 

Husbands' education        
secondary .056* -.004 .005 .005 .005 .053 .047 

 (.027) (.025) (.025) (.025) (.025) (.029) (.029) 

college -.048 -.136*** -.120*** -.121*** -.121*** -.053 -.050 

 (.034) (.032) (.032) (.032) (.032) (.036) (.036) 

Cohabitation 1.515*** 1.601*** 1.636*** 1.636*** 1.636*** 1.510*** 1.481*** 

 (.023) (.022) (.022) (.022) (.022) (.025) (.025) 

Household tenure -.410*** -.407*** -.419*** -.419*** -.418*** -.420*** -.447*** 

 (.023) (.022) (.022) (.022) (.022) (.025) (.025) 

        
Constant .0751 .118 .163 .163 .157 .498 -.422 

 (.444) (.438) (.419) (.419) (.419) (.468) (.476) 

Random intercepts Yes Yes Yes Yes Yes Yes Yes 

Random slopes Yes Yes Yes Yes Yes Yes Yes 

Observations 798,636 842,175 767,605 767,605 767,605 798,636 798,636 

Number of groups 272 282 244 244 244 272 272 

Notes: All models also control for women's age (quadratic), women's and men's inactivity, incomes (logged), and educational levels, 

parental status, cohabitation, household tenure, GDP, UR, UGEN, GWG, WLFP. Models also include interactions with each macro-level 

item and women's unemployment, we omit these coefficients due to space and because they are not statistically significant. ISSP item 1 

warm = "A working mother can establish just as warm and secure a relationship with her children as a mother who does not work"; ISSP 

item 2 suffer = "A preschool child is likely to suffer if his or her mother works"; ISSP item 3 contribute = "Both the man and woman should 

contribute to the household income"; ESS item 1 = "Men should take as much responsibility as women for home and children"; ESS item 2 

= "Women should be prepared to cut down on paid work for sake of family." 

Standard errors in parentheses. *** p<.001, ** p<.01, * p<.05 

Table S5. Sensitivity to Unemployment Definition: Multi-

Level Logistic Regression on the Annual Probability of 

Separation 

 

VARIABLES 

Model S8                       

Using employment calendar 

data 

  
Women's unemployment .140*** 

 (.040) 

Men's unemployment .274*** 

 (.036) 

Male-breadwinner values .009 

 (.005) 

# W Unemp .001 

 (.005) 

# M Unemp .012** 
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 (.004) 

Women's earnings (logged) .008 

 (.007) 

Men's earnings (logged) -.034*** 

 (.006) 

Women's education  
secondary .005 

 (.026) 

college -.194*** 

 (.033) 

Men's education  
secondary .043 

 (.025) 

college -.092** 

 (.033) 

Cohabitation 1.620*** 

 (.023) 

  
Constant -1.079** 

 (.443) 

Random intercepts Yes 

Random slopes Yes 

Observations 762,790 

Number of groups 241 

Notes: Models also control for women's age (quadratic), parental status, 

women's and men's inactivity, household tenure,  GDP, UR, UGEN, 

GWG, WLFP. 

Standard errors in parentheses. *** p<.001, ** p<.01, * p<.05 
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Table S6. Sensitivity to Other Specifications; Multi-Level Logistic Regression on the Annual Probability of Separation: Mundlak 

Correction, Country Fixed Effects, Year Fixed Effects, Omitting Recession Years, and Omitting Outliers   

 

VARIABLES 

Model S9 

Mundlak 

correction 

Model S10 

country fixed 

effects 

Model S11 country 

fixed effects + MU 

interacted with country 

dummies 

Model S12        

year fixed effects 

Model S13 

w/o recession 

years 

Model S14  

excluding EL 

Model S145 

excluding PL 

Model S16 

excluding NL 

Women's unemployment -.069 .207*** .209*** .145*** .220*** .138*** .137*** .132*** 

 (.060) (.037) (.037) (.037) (.056) (.036) (.036) (.036) 

Men's unemployment -.022 .274*** .115 .325*** .326*** .302*** .290*** .305*** 

 (.059) (.034) (.205) (.045) (.054) (.032) (.032) (.032) 

Male-breadwinner values .021** .045*** .044*** .029*** .017 .011* .009* .005 

 (.008) (.009) (.009) (.004) (.010) (.005) (.005) (.005) 

# W Unemp -.001 .001 .001 .001 .010 .002 .001 .001 

 (.004) (.004) (.004) (.004) (.006) (.004) (.004) (.004) 

# M Unemp .009** .008** .018* .012** .013** .009** .008** .011** 

 (.003) (.003) (.009) (.005) (.005) (.003) (.003) (.004) 

Cohabitation 1.653*** 1.609*** 1.610*** 1.636*** 1.678*** 1.646*** 1.645*** 1.640*** 

 (.022) (.021) (.021) (.021) (.030) (.021) (.021) (.021) 

Household tenure -.416*** -.409*** -.408*** -.403*** -.380*** -.408*** -.400*** -.409*** 

 (.021) (.021) (.021) (.021) (.029) (.021) (.021) (.021) 

Mean W Unemp .472***        

 (.0747)        
Mean  H Unemp .444***        

 (.0735)        
Constant .226 -.442 -.383 .309 -1.479*** -.167 -.0935 -.207 

 (.420) (.456) (.457) (.423) (.574) (.402) (.404) (.403) 

Random intercepts Yes 
Yes                   

(year-level only) 

Yes                           

(year-level only) 

Yes                 

(country-level 

only) 

Yes Yes Yes Yes  

Random slopes Yes 
Yes                  

(year-level only) 

Yes                           

(year-level only) 

Yes                 

(country-level 

only) 

Yes Yes Yes Yes  

Observations 978200 978200 978200 978200 488748 952007 924548 961323 

Number of groups 292 292 292 292 258 276 276 276 

Note: All models also control for women's age (quadratic), parental status, women's and men's inactivity and education levels and incomes (logged), household tenure, GDP, UR, UGEN, 

GWG, WLFP. Model S9 includes time-varying and time-fixed variables for his and her income. In Models S10 and S11 country dummies are omitted, and Model S11 also omits interactions 

between men's unemployment and country dummies. Random intercepts at the country and year levels. Random slopes for men's and women's unemployment, college education, and 

cohabitation. Coefficients for the random components are omitted in the interest of space. 

Standard errors are clustered at the country and country-year levels. *** p<.001, ** p<.01, * p<.05 
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Table S7. Sensitivity to Omission of Marital Duration: Multi-Level Logistic Regression on the Annual Probability of Separation  

 

VARIABLES 
Model S17           

young couples  

Model S18            

SIPP interaction 

mardur*M Unemp  

Model S19       

SIPP age 

only 

Model S20     

SIPP mardur 

only 

Model S21      

SIPP age and 

mardur 

Model S22          

M age#M Unemp 

Model S23              

M age#M Unemp    

M edu#M Unemp 

  
 

 
 

 
  

Women's unemployment .083 .175 .235** .176 .174 .198*** .199*** 

 (.044) (.105) (.084) (.104) (.105) (.037) (.037) 

Men's unemployment .289*** .293** .315*** .286** .292** .346*** .322*** 

 (.036) (.095) (.077) (.095) (.095) (.041) (.043) 

Male-breadwinner values .008     .016* .016* 

 (.005)     (.007) (.007) 

# W Unemp .001     .004 .004 

 (.004)     (.004) (.004) 

# M Unemp .010**     .008** .009** 

 (.003)     (.003) (.003) 

Wives' age -.586*** -.179 -.200*  -.186 -.0171*** -.0171*** 

 (.084) (.117) (.079)  (.117) (.00197) (.00197) 

Wives' age^2 .016*** .004 .005*  .005   

 (.003) (.003) (.002)  (.003)   
Marital duration  -.037***  -.118*** -.039***   

  (.004)  (.023) (.004)   
# H Unemp  -.010      

  (.008)      
Marital duration^2    .004**    

    (.001)    
Men's age      -.008*** -.008*** 

      (.002) (.002) 

# H Unemp      .006* .006* 

      (.003) (.003) 

Husbands' education        
secondary .013 -.226** -.0137 -.227** -.226** -.001 -.002 

 (.027) (.0939) (.081) (.094) (.094) (.023) (.023) 

college -.120*** -.564*** -.290*** -.569*** -.563*** -.215*** -.228*** 

 (.035) (.111) (.096) (.111) (.111) (.031) (.031) 
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# H Unemp       .212* 

       (.097) 

Cohabitation 1.474*** 2.630*** 2.275*** 2.659*** 2.629*** 1.720*** 1.720*** 

 (.024) (.062) (.048) (.063) (.062) (.022) (.022) 

Household tenure -.387*** -.333*** -.397*** -.344*** -.335*** -.414*** -.414*** 

 (.023) (.058) (.050) (.057) (.058) (.021) (.021) 

Constant 2.801*** -.736 -1.016 -3.228*** -.639 -5.036*** -5.030*** 

 (.857) (1.501) (.961) (.116) (1.498) (.083) (.083) 

Random intercepts Yes No No No No Yes Yes 

Random slopes Yes No No No No Yes Yes 

Observations 536,544 83,713 88,417 83,713 83,713 978,200 978,200 

Number of groups 282 N/A N/A N/A N/A 292 292 

Notes: All models include controls for women's and men's education levels, incomes (logged), household tenure, and parenthood status. Model S16 also includes 

controls for macro-level variables GDP, UR, UGEN, GWG, and WLFP. Random intercepts at the country and year levels. Random slopes for men's and women's 

unemployment, college education, and cohabitation. Coefficients for the random components are omitted in the interest of space. 

Standard errors are clustered at the country and country-year levels. *** p<.001, ** p<.01, * p<.05 
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Table S8. Sensitivity to the Structure of the Model 

 
  Model S24 Model S25 Model S26 Model S27 

VARIABLES 

Model 5 from 

Table 3     

(preferred model) 

Model with 

random slopes at 

both levels 

Model with 

additional random 

slopes  

Two-level model 

with additional 

random slopes  

     
Women's unemployment .224*** .225*** .227*** .225*** 

 (.038) (.038) (.038) (.038) 

Men's unemployment .332*** .353*** .330*** .329*** 

 (.036) (.048) (.048) (.038) 

Male-breadwinner values .033** .029** .030** .014* 

 (.010) (.010) (.010) (.007) 

# W Unemp .004 .005 .004 .004 

 (.004) (.004) (.004) (.004) 

# M Unemp .012** .009* .008* .007* 

 (.004) (.004) (.004) (.003) 

Women's earnings (logged) .023*** .019*** .022*** .020*** 

 (.004) (.006) (.004) (.004) 

Men's earnings (logged) -.020*** -.026*** -.020*** -.025*** 

 (.004) (.006) (.004) (.005) 

Women's education     
secondary .011 .009 .009 .004 

 (.025) (.025) (.025) (.024) 

college -.139*** -.138*** -.141*** -.166*** 

 (.040) (.040) (.041) (.034) 

Men's education     
secondary .008 .006 .006 .006 

 (.024) (.024) (.024) (.024) 

college -.200*** -.194*** -.203*** -.202*** 

 (.031) (.038) (.031) (.033) 

Women's inactivity .036 .038 .033 .031 

 (.033) (.034) (.033) (.034) 

Men's inactivity .184*** .184*** .189*** .181*** 

 (.041) (.042) (.042) (.042) 

Cohabitation 1.789*** 1.787*** 1.739*** 1.587*** 

 (.137) (.136) (.134) (.052) 

Household tenure -.398*** -.395*** -.397*** -.403*** 

 (.021) (.021) (.021) (.021) 

Have young child -.127*** -.125*** -.125*** -.128*** 

 (.021) (.021) (.021) (.021) 

Women's age -.255*** -.261*** -.259*** -.251*** 

 (.035) (.035) (.035) (.035) 

# Women's age .007*** .007*** .007*** .006*** 

 (.001) (.001) (.001) (.001) 

GDP -.005 -.005 -.006 -.001 

 (.005) (.005) (.005) (.003) 

GWG .058*** .057*** .057*** .058*** 

 (.015) (.015) (.015) (.010) 
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WLFP -.945 -.637 -.912 -.977 

 (1.021) (1.016) (.997) (.757) 

UGEN .010* .012** .010* .009*** 

 (.004) (.004) (.004) (.003) 

UR .057* .056* .050 .042 

 (.027) (.027) (.026) (.031) 

     
Constant -1.434*** -1.433*** -1.425*** -1.295*** 

 (.431) (.432) (.438) (.423) 

     
Random part      
Level 2 (country-years)     

     
Constant  .476 .412 .481 .580 

 (.063) (.059) (.063) (.088) 

Women's education college  .003  .016 

  (.010)  (.012) 

Women's unemployment  .000  .000 

  (.000)  (.000) 

Men's unemployment  .009  .008 

  (.013)  (.013) 

Cohabitation  .128  .461 

  (.026)  (.060) 

Men's education college    .011 

    (.010) 

Women's age    .000 

    (.000) 

Women's inactivity    .000 

    (.000) 

Men's inactivity    .031 

    (.027) 

Women's earnings (logged)    .000 

    (.000) 

Men's earnings (logged)    .000 

    (.000) 

     
Level 3 (countries)     

     
Constant  .311 .327 .277  

 (.107) (.109) (.118)  
Women's education college .010 .010 .008  

 (.006) (.007) (.005)  
Women's unemployment .000 .000 .000  

 (.000) (.000) (.000)  
Men's unemployment .018 .016 .014  

 (.018) (.018) (.018)  
Cohabitation .495 .455 .503  

 (.143) (.138) (.147)  
Men's education college   .006  

   (.005)  
Women's age   .000  

   (.000)  
Women's inactivity   .036  

   (.019)  
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Men's inactivity   .038  

   (.025)  
Women's earnings (logged)   .000  

   (.000)  
Men's earnings (logged)   .000  

   (.000)  

     
Respondents 978200 978200 978200 978200 

     
Number of level-2 groups (country-

years) 292 292 292 292 

     
Number of level-3 groups (countries) 29 29 29 N/A 

Note: Standard errors are clustered at the country and country-year levels. *** p<.001, ** p<.01, * p<.05 

 

 

 

 

  



 20 

Part C. SUPPLEMENTARY TESTS FOR DIFFERENCES IN KEY COEFFICIENTS OF 

INTEREST  

 

Figures S1 to S6 plot Wald tests of statistical significance for differences in estimates of interest. 

Figure S1, for instance, shows tests for differences in men’s unemployment coefficients across 

all levels of male-breadwinner norms; with Panel A testing average marginal effects (AMEs) and 

Panel B testing logistic marginal coefficients. We show results from key regression models 

presented in the main text. Tests are performed at different levels of male-breadwinner norms as 

the baseline, as indicated in the legend (at 0%, 5%, 10%, 15%, and 20% levels of support for 

male-breadwinner norms). For example, black dots correspond to tests against BWN = 0, or no 

support for male-breadwinner norms, meaning the black dot at 45 on the x-axis tests the 

difference in men’s unemployment AME between a context with no support for male-

breadwinner norms and a context where 45% of the population supports male-breadwinner 

values. All estimates are shown with 95% confidence intervals.  

 

Figure S1 shows differences between men’s unemployment AMEs across levels of male-

breadwinner norms are statistically significant, especially when support for male-breadwinner 

norms is high. Results are generally consistent across models and across metrics (AME versus 

logistic coefficients).  

 

Figure S2 tests for differences between men’s and women’s unemployment effects across male-

breadwinner contexts. It shows men’s unemployment effects are generally higher than women’s, 

and those differences are usually, although not always, statistically significant. Differences 

between men’s and women’s unemployment effects are larger in contexts with high support for 

male-breadwinner norms.  

 

Figure S3 tests for differences between men’s unemployment estimates across male-breadwinner 

norms using the quadratic specification. It shows differences are accentuated, particularly in 

contexts with high levels of support for the male-breadwinner norm.  

 

Figure S4 tests for differences between men’s and women’s unemployment effects across male-

breadwinner contexts using the quadratic specification. 

 

Figure S5 shows tests for differences between men’s unemployment effects by union type and 

across male-breadwinner contexts. It shows variation in men’s unemployment effects across 

male-breadwinner values is only statistically significant among married couples, not among 

cohabiting couples.  

 

Figure S6 shows tests for differences between men’s and women’s unemployment effects by 

union type across male-breadwinner contexts. It shows the difference between men’s and 

women’s unemployment effects is only statistically significant among married couples, not 

among cohabiting couples.  
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Figure S1. Wald Tests for Differences in Men’s Unemployment Estimates across Male-

Breadwinner Norms Contexts, Selected Models 

 

Panel A. Average Marginal Effects 

 
 

Panel B. Logistic Marginal Coefficients  

 
Note: Figures summarize two-sided Wald tests for differences in men’s unemployment estimates across all levels of male-

breadwinner norms; with Panel A presenting average marginal effects (AMEs) and Panel B presenting logistic coefficients. Each 

panel shows tests using different levels of male-breadwinner norms as the baseline. For instance, BWN = 0 tests differences 

between men’s unemployment estimate in a context where nobody supports the male-breadwinner model and men’s 

unemployment estimate across all other levels of male-breadwinner norms on the x-axis. The BWV = 0 point at value 45 on the 

x-axis = men’s unemployment at 0 male-breadwinner norms minus men’s unemployment at 45% male-breadwinner norms. Tests 

plot 95% confidence intervals.   

Data sources: EU-SILC, SIPP, GSOEP, BHPS, UKHLS. 
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Figure S2. Wald Tests for Differences between Men’s and Women’s Unemployment Effects 

across Male-Breadwinner Contexts, Selected Models 

 

Panel A. Average Marginal Effects 

 
Panel B. Logistic Marginal Effects 

 

 
Note: Figures summarize two-sided Wald tests for differences in men’s unemployment and women’s unemployment estimates 

across all levels of male-breadwinner norms; with Panel A presenting average marginal effects (AMEs) and Panel B presenting 

logistic coefficients. Each panel shows tests using different levels of male-breadwinner norms as the baseline. For instance, point 

estimates at value 20 on the x-axis tests differences between men’s and women’s unemployment estimate in a context where 20% 

of the population supports the male-breadwinner model. Tests plot 95% confidence intervals.   

Data sources: EU-SILC, SIPP, GSOEP, BHPS, UKHLS. 
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Figure S3. Wald Tests for Differences in Men’s Unemployment Effects across Male-

Breadwinner Contexts, Quadratic Specification 

 

Panel A. Average Marginal Effects 

 

 
 

Panel B. Logistic Marginal Effects 

 
Note: Figures summarize two-sided Wald tests for differences in men’s unemployment estimates across all levels of male-

breadwinner norms; with Panel A presenting average marginal effects (AMEs) and Panel B presenting logistic coefficients. Each 

panel shows tests using different levels of male-breadwinner norms as the baseline. For instance, BWN = 0 tests differences 

between men’s unemployment estimate in a context where nobody supports the male-breadwinner model and men’s 

unemployment estimate across all other levels of male-breadwinner norms on the x-axis. The BWW = 0 point at value 45 on the 

x-axis = men’s unemployment at 0 male-breadwinner norms minus men’s unemployment at 45% male-breadwinner norms. Tests 

plot 95% confidence intervals.   

Data sources: EU-SILC, SIPP, GSOEP, BHPS, UKHLS. 
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Figure S4. Wald Tests for Differences between Men’s and Women’s Unemployment Effects 

across Male-Breadwinner Contexts, Quadratic Specification 

 

Panel A. Average Marginal Effects 

 
 

Panel B. Logistic Marginal Effects 

 
Note: Figures summarize two-sided Wald tests for differences in men’s unemployment and women’s unemployment estimates 

across all levels of male-breadwinner norms; with Panel A presenting average marginal effects (AMEs) and Panel B presenting 

logistic coefficients. Each panel shows tests using different levels of male-breadwinner norms as the baseline. For instance, point 

estimates at value 20 on the x-axis tests differences between men’s and women’s unemployment estimate in a context where 20% 

of the population supports the male-breadwinner model. Tests plot 95% confidence intervals.   

Data sources: EU-SILC, SIPP, GSOEP, BHPS, UKHLS. 
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Figure S5. Wald Tests for Differences in Men’s Unemployment Effects across Male-

Breadwinner Contexts, by Type of Union 

 

Panel A. Average Marginal Effects 

 
Panel B. Logistic Marginal Effects 

 
Note: Figures summarize two-sided Wald tests for differences in men’s unemployment estimates across all levels of male-

breadwinner norms; with Panel A presenting average marginal effects (AMEs) and Panel B presenting logistic coefficients. Each 

panel shows tests using different levels of male-breadwinner norms as the baseline. For instance, BWN = 0 tests differences 

between men’s unemployment estimate in a context where nobody supports the male-breadwinner model and men’s 

unemployment estimate across all other levels of male-breadwinner norms on the x-axis. The BWW = 0 point at value 45 on the 

x-axis = men’s unemployment at 0 male-breadwinner norms minus men’s unemployment at 45% male-breadwinner norms. Tests 

plot 95% confidence intervals.   

Data sources: EU-SILC, SIPP, GSOEP, BHPS, UKHLS. 
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Figure S6. Wald Tests for Differences between Men’s and Women’s Unemployment Effects 

across Male-Breadwinner Contexts, by Type of Union 

 

Panel A. Average Marginal Effects 

 
 

Panel B. Logistic Marginal Effects 

 
Note: Figures summarize two-sided Wald tests for differences in men’s and women’s unemployment estimates across all levels 

of male-breadwinner norms; with Panel A presenting average marginal effects (AMEs) and Panel B presenting logistic 

coefficients. Each panel shows tests using different levels of male-breadwinner norms as the baseline. For instance, point 

estimates at value 20 on the x-axis tests differences between men’s and women’s unemployment estimate in a context where 20% 

of the population supports the male-breadwinner model. Tests plot 95% confidence intervals.   

Data sources: EU-SILC, SIPP, GSOEP, BHPS, UKHLS. 
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Part D. SIMULATION STUDY TO EVALUATE POTENTIAL OMITTED VARIABLE BIAS 

FROM UNMEASURED DURATION DEPENDENCE 

 

Our dataset does not have information on the start date of marital and cohabiting unions, a shortcoming 

known in the event history analysis literature as “left-truncation with unknown start dates” (Guo 

1993:219ff.). As is usual with many household panel surveys, the constituent surveys used to construct 

the cross-nationally comparative dataset are based on representative samples of respondents drawn at a 

particular point in time (or indeed at several points in time in case of the EU-SILC rotating panel survey 

architecture), who are then followed up in (typically) annual interviews over at least several years. From 

the perspective of analyzing separation processes in marriages and consensual unions, the resulting 

sample is a stock sample where all existing unions enter the survey observation window at the point of the 

initial sampling, irrespective of the elapsed union duration prior to joining the survey. Relative to an 

inflow sample or cohort design that would permit observation of marriage (or union formation) cohorts 

from their common starting point, unions are only observed conditional on being sufficiently long-lasting 

to become included in the stock sample, and then also contribute data selectively for only those periods of 

the consensual union that happen to coincide with the survey observation window and that may represent 

earlier or later stages of the relationship, depending on union duration at the point of entry to the survey. 

The corresponding left-truncation of the sample, occasionally also described as “late entry to the risk set” 

(Singer and Willett 2003:595ff.), creates an “initial conditions” problem (Heckman and Singer 1986) that 

is conventionally resolved by conditioning the analysis on process time at entry to the survey observation 

period (cf. Guo 1993:228ff.). 

 

Owing to the fact that the EU-SILC lacks questions from which marriage or union start dates could be 

recovered, our analysis is faced with the additional problem of “left-censoring” (in the terminology of 

Singer and Willett 2003:319; Tuma and Hannan 1984; Yamaguchi 1991) or “unknown start dates” (in the 

terminology of Guo 1993). When start dates are unknown, it is of course impossible to condition the 

analysis on union duration at entry to the survey, and the only remaining option is to estimate the 

empirical model under the assumption of a time-constant baseline hazard function (cf. Guo 1993:222ff.).1 

In the present context, this requirement is conceptually unattractive because all available empirical 

evidence confirms that the separation hazard is not time-constant but exhibits negative duration 

dependence or some bell-, hump-, or sickle-shaped (inverted-U) pattern over process time. The 

assumption of a time-constant baseline hazard that is implied by the incomplete data available to the 

present analysis is therefore patently false in a descriptive sense. However, given that the inferential goal 

of our article is neither in recovering the baseline hazard itself, nor in providing a complete model of 

separation processes, but in isolating the effect of (men’s and women’s) unemployment experiences on 

separation risk, the main question is whether the lack of information on union start dates is likely to create 

 
1 As an alternative, Guo recommends restricting the sample to spells where the starting date is actually observed 

because the start date occurs after the initial stock sampling. This general alternative is conceptually unattractive in 

our specific study given the unfavorable ratio between the very short four-year observation window in our 

comparative dataset and the ideal length of the observation window in a (marriage) cohort study that aims for a near 

complete observation of the union separation process. Given that the four-year window would translate into a 

maximum length of observation of about 2.5 years for any newly formed union, restricting the sample to these 

couples would drastically redefine the substantive hypothesis being tested, because we would only be estimating the 

effect of (men’s or women’s) unemployment among recently formed couple relationships in their first two years of 

being together (the maximum identifiable case being a respondent who is without a partner or with an earlier partner 

at survey wave 1, who is observed as newly partnered by survey wave 2, and who is then being re-interviewed in 

two further follow-ups at survey waves 3 and 4). However, as the parameter that is identified clearly differs between 

the two analyses, conducting Guo’s alternative test is non-informative in the present study because a difference in 

estimates could always be due to either our main analysis being non-robust or to there being significant treatment 

effect heterogeneity in separation risks and the effect of either partner’s unemployment or cross-national differences 

therein being very different among recently formed couples relative to their older peers (e.g., due to genuine cohort 

or life-cycle effects). 
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a particular type of omitted variable bias in our estimates. This is a legitimate concern because union 

duration is well-known to be among the important determinants of separation risk, and because it is 

straightforward to presume our estimates must be affected by some bias due to unobserved “initial 

conditions” (and union duration obviously prime among these) for the marriages and consensual unions in 

our sample. 

 

In the main text and in several supplementary analyses we offered a range of empirical reasons and 

robustness checks that suggest our results are not likely to be critically affected by omitted variable bias 

despite the non-ideal database we are drawing on. However, to also make a more principled argument 

why left-truncation without known start dates may have less severe consequences for our estimates than 

standard intuition about omitted variable bias might suggest, we conducted a small-scale simulation 

analysis on the joint impact of left-truncation (a.k.a. late entry to the risk set) and left-censoring (i.e., 

unknown start dates). We sought to mimic some broad features of our actual data in the simulation, for 

example, in terms of baseline separation risk, likely patterns of duration dependence in the baseline 

hazard, or the magnitude of the treatment effect of men’s unemployment on separation risk. We 

deliberately cast the simulation in the form of an underlying separation process driven by an event history 

model in continuous time, where the resulting data are incompletely observed and where the main 

workhorse in the data analysis is a logistic model for the transition probability (rather than the hazard rate 

in continuous time). We explore the role of different shapes of the baseline hazard and different degrees 

of duration dependence in the process, and we address the difference between the case where the 

generative process conforms to a proportional hazards (PH) assumption and the case of time-varying 

effects of unemployment that result in a non-PH process.  

 

In line with standard intuition, our simulation demonstrates that left-censoring (i.e., the inability to allow 

for duration dependence and the necessity to work with a model that implies a time-constant baseline 

hazard) creates bias in parameter estimates. Our simulation evidence also underscores two very important 

qualifications that need to be added to this general intuition, and that imply the (perhaps counterintuitive) 

result that the estimates we report in the main text are likely to be conservative, that is, are likely to 

exhibit mild downward bias, if anything. The first of these qualifications relates to the fact that while left-

censoring implies a potential for bias, the direction of bias depends on the type of covariate concerned. 

For time-constant covariates, left-censoring implies upward bias in the estimates, conforming to standard 

intuition. For time-varying covariates, however, left-censoring creates downward bias in parameter 

estimates, and this downward bias increases in the degree of positive correlation between the covariate 

(i.e., men’s unemployment) and process time (i.e., union duration). Thus, unlike in the standard case of a 

cross-sectional regression model, the specific type of omitted variable bias that results from left-censored 

data may go either way in an event history setting. And because our key covariate of interest (men’s 

unemployment) is a time-varying covariate, it follows that our reported estimates are likely to exhibit 

some degree of downward bias, if anything; that is, they are likely to be conservative relative to the “true” 

causal effect in question. The main intuition for this conclusion is that when there is negative duration 

dependence in the hazard (as is the well-known case in the separation hazard), time-varying covariates 

tend to index variation that occurs at some later point in process time, that is, something that happens 

when the hazard already is below average. Therefore, the bias that results from left-censoring is 

downward bias because it results from the misattribution of the low hazard to the covariate of interest 

rather than to unobserved process time. 

 

Second, although some downward bias may be present in our reported estimates, it is likely to be small. 

This follows from the fact that left-truncation (i.e., late entry to the risk set in the sense of incompletely 

observed spells) is mitigating and counteracts any bias created by left-censoring, so the overall bias in 

stock-sample estimates is the sum of two sources of bias that work in opposite directions and therefore 

tend to largely cancel each other out. The intuition for this result is also rather straightforward. The bias 

from left-censoring occurs with completely observed spell data, where exposure to the event in question 

(i.e., the separation risk set) is well defined and fully observed, but where the estimate for the hazard (or, 
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equivalently, the transition probability in discrete-time) then cannot be conditioned on time-specific 

survival without information on starting times. Left-truncation implicitly corrects for this problem 

because while each individual spell is incompletely observed (e.g., only in four-year snippets of full 

relationship histories in our dataset), truncation is equivalent to an implicit conditioning on initial survival 

up to the point of the first survey wave, and the resulting left-truncated data therefore no longer contain 

the heaping of exposure time units that is the source of bias in completely observed but left-censored spell 

data in the first place. 

 

As a result, the simulation exercise may shed some conceptual and fundamental light on why the 

estimates we obtain from imperfectly observed data nevertheless succeed in arriving at parameter 

estimates that broadly fall in line with those from other studies based on superior (single-country) data 

sources, and why they support our conviction that even when based on imperfect data, our reported 

estimates are unlikely to be so severely biased that our substantive inferences would be called into 

question. Against this general conclusion, we report the simulation results in greater detail in the 

following. 
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Simulation results for omitted variable bias due to left-censoring,  

by type of negative duration dependence, type of covariate of interest,  

and left truncation of sample 

 

To systematically understand and document the potential for omitted variable bias that is created by the 

fact that our study relies on left-truncated data with unknown start times of couple relationships, we 

programmed a simulation study on the behavior of the parameter of interest under alternative scenarios 

for the unobserved baseline hazard in the separation process. We base our simulation on a sample of N = 

100,000 spells for which we first create observable (union) duration data according to a prespecified 

transition model, and then, to mimic the constraint inherent in the left-censoring of the data (i.e., the 

unknown start dates), ascertain whether we are able to recover the parameter of interest from estimating a 

model that assumes a time-constant baseline hazard (i.e., that does not control for an effect of process 

time on transition outcomes) in a second step. We conduct all simulations for two types of baseline hazard 

functions, one exhibiting monotonous negative duration dependence and the other a bell-shaped (a.k.a. 

hump-shaped or sickle-shaped) pattern of duration dependence that is regularly confirmed in union 

separation data, and we report simulation results from a range of transition processes that differ in the 

degree of duration dependence and the degree of the bell-shape in the hazard, respectively. Intending to 

broadly align the simulation to empirical features of our data, we constrain all models to be consistent 

with the total separation risk implied by the survivor function 𝐺(𝑡) = 𝑒−𝑟𝑡 for a baseline time constant 

hazard rate 𝑟 = .005 after simulating the process for 𝑡 = 100 time units; in this, the baseline hazard r was 

chosen to roughly reflect the average annual separation probability among couples not experiencing 

unemployment in our actual data. 

 

In each simulation analysis we conduct, we focus on the parameter estimate for the multiplicative effect 

of a single observed covariate U on the transition rate 𝑟(𝑡). To again align the simulation to the estimated 

average effect of male partner’s unemployment on separation risk in the actual study, we set the true 

value of the model coefficient to 𝑏 = 𝑙𝑛(2), corresponding to a hazard ratio of 𝑒𝑏 = 2 throughout. We 

randomly assign 10 percent of all spells to the treatment condition of experiencing U (i.e., set 𝑈 = 1) and 

the remaining spells to the control group. To focus the simulation study on essentials, we abstract from 

the presence of any additional covariates in the model, that is, we assume any confounding other than 

from unobserved process time (i.e., from left-censoring) is absent or has been perfectly controlled for 

through appropriate controls in the actual research. Instead, we systematically vary the type of observed 

covariate in our simulation, and we present three case studies for each simulated model, where the 

covariate of interest is either a time-constant factor, a time-varying covariate that occurs randomly across 

process time, or a time-varying covariate that exhibits a mildly positive correlation with process time. As 

it turns out, the type of covariate studied will critically affect the direction of omitted variable bias due to 

the (negative, null, or positive) correlation with process time that is implied. 

 

In Part I of the simulation study, we study omitted variable bias due to left-censoring and left-truncation 

in the context of proportional-hazard (PH) transition models. We simulate a class of models that exhibit 

monotonous duration dependence in the baseline hazard from  

 

(D-1) 𝑟(𝑡) =
𝑓(𝑡)

𝐺(𝑡)
≈ 𝑃𝑟(𝑇 = 𝑡|𝑇 ≥ 𝑡) = 𝑒(𝑐+𝑎𝑡+𝑏𝑈) . 

 

The simulated model is a continuous-time exponential model with linear duration dependence and a 

(standard) multiplicative effect of U on 𝑟(𝑡) or its discrete-time analogue 𝑃𝑟(𝑇 = 𝑡|𝑇 ≥ 𝑡) (cf. Allison 

1982:72, equation 10), respectively. Even though our actual research is estimating logit models for the 

(annual) separation probability in discrete-time, we liberally use a basic model in continuous time as the 

workhorse for our simulation because time aggregation bias is negligible at the very low baseline hazard 

of 𝑟 = .005 observed in our actual data and used in our derived simulation exercise (also see Petersen 

1991:273, Table 1 in particular). Our simulation data show that although strictly speaking, as a 
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proportional odds model, the logit model of course violates the PH assumption of the exponential model, 

the difference in parameter estimates is again minuscule in practice, given the low level of the baseline 

hazard in our actual data and in the simulation study. 

 

We present simulation evidence for a range of transition models that vary in the parameter a to express 

and simulate different degrees of duration dependence, but where choosing 𝑎 < 0 guarantees to create 

negative duration dependence in principle (see Figure D1 for a graphical display of the specific baseline 

hazards assumed in our simulation study). We simulate the effect of left-censoring (i.e., unknown start 

times) by estimating a discrete-time logit model on the complete data but without any control for process 

time (i.e., assuming a time-constant transition probability), and by conducting a Wald test against 𝐻0: 𝑏 =
𝑙𝑛(2) to evaluate any resulting bias in the parameter estimate of interest. To check whether alternative 

model specifications would be more successful in identifying the “true” coefficient, we compare the 

parameter estimates from the logit model with time-constant baseline hazard to a logit model that allows 

for duration dependence as well as to a range of model specifications in continuous time (i.e., exponential, 

Weibull, and Cox regression models). Among these, the comparison between the logit and the 

exponential model with time-constant baseline hazard (i.e., without controls for process time) 

demonstrates that the subtle mathematical difference between proportional hazards and proportional odds 

specifications always results in quantitatively negligible differences in the practical context of our study. 

In a second step, we repeat the simulation exercise but randomly left-truncate the spell sample and 

observe each spell over a fixed observation window afterward, that is, we simulate random “late entry to 

the observed risk set” and a subsequent fixed panel observation window to mimic the respective features 

of our stock sample data in the actual study. 

 

To allow for slightly more complicated bell-shaped patterns in the baseline hazard, we then repeat the 

exercise for the slightly more complex class of transition models given by 

 

(D-2) 𝑟(𝑡) = 𝑒(𝑐+𝑎1𝑡+𝑎2𝑡2+𝑏𝑈) , 

 

where a bell-shaped pattern of duration dependence results from appropriately fixing 𝑎1 > 0 and 𝑎2 < 0  
in a polynomial function of process time; for the reader’s benefit, Figure D2 depicts the four different 

bell-shaped baseline hazards utilized in our concrete simulations. As before, we set the true value of 𝑏 =
𝑙𝑛(2) and we conduct the respective hypothesis tests in left-censored but otherwise completely observed 

data and in a left-truncated sample that also exhibits left-censored duration data (i.e., unknown starting 

times coupled with incompletely observed exposure). We summarize the main results from our 

simulations in Table D1, and report more detailed case-by-case evidence in Tables D3 to D14. The 

bottom-line result is that left-censoring and left-truncation create bias in opposite directions. As a 

consequence, the bias that remains in scenarios that most closely resemble our actual data is mild and 

downward, not upward. If anything, the left-truncated data with unknown start times that we have 

available are likely to yield slightly conservative inferences. 
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Table D1. 

Part I: Summary of simulation results for PH models 

 

 Type of selectivity of job loss by relationship duration 

Scenario 

Case 1: 

U time-constant factor 

Case 2: 

U time-varying and 

randomly distributed 

over T 

Case 3: 

U time-varying and 

positively selected on 

process time 

Monotonous hazard    

A: negative duration 

dependence 

upward bias in 

parameter of interest;  

bias increases with the 

degree of negative 

duration dependence 

mild downward bias in 

parameter of interest;  

bias increases with the 

degree of negative 

duration dependence 

downward bias in 

parameter of interest;  

bias increases with the 

degree of negative 

duration dependence 

B: A + left-truncation 

of sample 

mild upward bias in 

parameter of interest, 

but only with strong 

negative duration 

dependence 

no bias in parameter of 

interest at all;  

opposing effects 

cancel out 

very mild downward 

bias in parameter of 

interest with strong 

duration dependence, 

no bias otherwise 

Non-monotonous hazard 

C: bell-shaped (hump-

shaped, sickle-shaped) 

hazard function 

upward bias in 

parameter of interest 

(stronger than in A);  

bias increases with the 

degree of hump-shape 

no bias in parameter of 

interest with mild-

moderate hump-shape; 

downward bias in 

parameter of interest 

with pronounced 

hump-shaped hazard 

downward bias in 

parameter of interest;  

bias increases with 

more pronounced 

hump-shape of the 

hazard 

D: C + left-truncation 

of sample 

upward bias in 

parameter of interest 

(slightly attenuated 

relative to C, stronger 

than in A) 

no bias in parameter of 

interest 

no bias in parameter of 

interest except with 

very pronounced 

hump-shape of the 

hazard; downward 

bias in that case 

Note: Statements of bias refer to the difference between parameter estimate from a discrete-time logit model with 

time-constant baseline hazard and the true parameter of 𝑏 = 𝑙𝑛(2). Our actual study concerns the effect of a time-

varying covariate (men’s unemployment) estimated from stock-sample data, that is, left-truncated data with 

unknown start times. The simulation results most relevant (i.e., that most closely resemble the actual features of our 

dataset) are simulations B-2/B-3 and D-2/D-3, depending on what unobserved pattern of duration dependence and 

what degree of positive selection on process time (i.e., union duration) one wishes to assume when judging the 

interpretations advanced in the main text. 

 

 

 
In Part II of the simulation exercise, we add a further layer of complexity by examining the bias from left-

censoring and left-truncation in the context of transition models that lack the PH property, that is, that 

permit the effect of the main covariate of interest U to vary with process time. For this simulation we 

expand the earlier class of models exhibiting monotonous negative duration dependence by adding an 

interaction term (𝑡 × 𝑈) between U and process time t to yield 
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(D-3) 𝑟(𝑡) = 𝑒(𝑐+𝑎𝑡+𝑏𝑈+𝑑(𝑡∗×𝑈)) . 

 

To fix the specification, we set 𝑑 = 1.01 to simulate a time-varying coefficient of U that increases with 

process time, that is, where the total effect of U on 𝑟(𝑡) is given by 𝑏 + 𝑑𝑡∗. To simplify the presentation 

of results as well as the actual hypothesis testing, we construct the interaction term with the demeaned 

process time 𝑡∗ = 𝑡 − 50.5 to keep the scaling of b in line with Part I of the simulation study. In Part II, in 

other words, we keep to testing against 𝐻0: 𝑏 = 𝑙𝑛(2) with the understanding this represents the average 

effect of U on 𝑟(𝑡) over the observed process time t with 1 ≤ 𝑡 ≤ 100. We keep the setup of the 

simulation exactly parallel to Part I otherwise, and we incorporate a simulation study on omitted variable 

bias in a class of non-PH transition models exhibiting a bell-shaped baseline hazard given by 

 

(D-4) 
𝑟(𝑡) = 𝑒

(𝑐+𝑎1𝑡+𝑎2𝑡2+𝑏𝑈+𝑑(𝑡∗×𝑈))
 . 

 

In line with our earlier practice, we summarize the main results from these simulations in Table D2, we 

graphically display the simulated (non-PH) baseline hazards in the treatment and control group in Figures 

D3 and D4, and we report more detailed case-by-case evidence in Tables D15 to D26. In case of non-PH 

specifications, the bottom-line result is that the effects of left-censoring and left-truncation are less 

benign, but there is considerable potential for bias, and bias will be in an upward direction when it is 

realistic to assume the covariate of interest U (i.e., men’s unemployment) may have stronger effects on 

separation risk among young couples, but downward (i.e., our reported estimates may be conservative) if 

stronger effects apply among older couples. At the same time, our robustness checks provide no 

indication of the PH assumption being violated (at least in U.S. data), and we also note that what we 

report as “bias” in the non-PH case could equally well be interpreted as a specific type of treatment effect 

heterogeneity (cf. Xie et al. 2012) that we are unable to capture in our present study, but that may 

represent at best a sideline interest in a study to compare the average effects of men’s unemployment on 

separation risk in Western countries. 
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Table D2. 

Part II: Summary of simulation results for non-PH models 

 

 Type of selectivity of job loss by relationship duration 

Scenario 

Case 1: 

U time-constant factor 

Case 2: 

U time-varying and 

randomly distributed 

over T 

Case 3: 

U time-varying and 

positively selected on 

process time 

Monotonous hazard    

E: negative duration 

dependence, time-

varying coefficient 

(= non-PH model) 

downward bias in 

parameter estimate, 

increasing with more 

pronounced duration 

dependence 

downward bias in 

parameter estimate, 

bias more pronounced 

than in case E-1 

downward bias in 

parameter estimate, 

bias slightly more 

pronounced than in 

case E-2 

F: E + left-truncation 

of sample 

mild downward bias in 

parameter estimate, 

but only with strong 

duration dependence 

mild downward bias in 

parameter estimate, 

but only with 

moderate-strong 

duration dependence 

mild downward bias in 

parameter estimate, 

but only with 

moderate-strong 

duration dependence 

Non-monotonous hazard 

G: bell-shaped (hump-

shaped,) hazard, time-

varying coefficient  

(= non-PH model) 

clear downward bias 

in parameter estimate, 

more pronounced bias 

pattern than in E 

clear downward bias 

in parameter estimate, 

slightly more 

pronounced patterns 

than in G-1  

clear downward bias 

in parameter estimate, 

slightly more 

pronounced patterns 

than in G-2 

H: G + left-truncation 

of sample 

clear downward bias 

in parameter estimate, 

somewhat attenuated 

relative to G-1 

clear downward bias 

in parameter estimate, 

somewhat attenuated 

relative to G-2 

clear downward bias 

in parameter estimate, 

somewhat attenuated 

relative to G-3 

Note: Statements of bias refer to the difference between parameter estimate from a discrete-time logit model with 

time-constant baseline hazard and the true parameter of 𝑏 = 𝑙𝑛(2). Our actual study concerns the effect of a time-

varying covariate (men’s unemployment) estimated from stock-sample data, that is, left-truncated data with 

unknown start times. The simulation results most relevant (i.e., that most closely resemble the actual features of our 

dataset) are simulations F-2/F-3 and H-2/H-3, depending on what unobserved pattern of duration dependence and 

what degree of positive selection on process time (i.e., union duration) one wishes to assume when judging the 

interpretations advanced in the main text. 
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Detailed simulation results 

 

 

Part I: PH transition models 

Scenarios A and B: models exhibiting monotonous negative duration dependence 

 

 

 
 

Figure D1. 

Monotonically declining baseline hazards utilized in the simulation study 
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Table D3. 

Simulation A1: Monotonous negative duration dependence, U time-constant covariate 

 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .699 (.014) .725 (.014) .747 (.014) .812 (.014) 

- Wald test, b=.69 .673 .020* .000*** .000*** 

Logit w t linear  .704 (.014) .705 (.014) .713 (.014) 

- Wald test, b=.69  .439 .368 .139 

     

Continuous-time     

Exponential .694 (.014) .719 (.014) .741 (.014) .805 (.014) 

- Wald test, b=.69 .961 .053 .000*** .000*** 

Exp. w t linear  .698 (.014) .699 (.014) .705 (.014) 

- Wald test, b=.69  .708 .645 .400 

Weibull .698 (.014) .709 (.014) .715 (.014) .736 (.014) 

- Wald test, b=.69 .712 .258 .102 .002** 

     

Cox regression .694 (.014) .698 (.014) .699 (.014) .704 (.014) 

- Wald test, b=.69 .977 .711 .650 .411 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D4. 

Simulation A2: Monotonous negative duration dependence, U time-varying covariate but 

uncorrelated with process time 

 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .700 (.014) .682 (.015) .660 (.015) .551 (.016) 

- Wald test, b=.69 .654 .448 .024* .000*** 

Logit w t linear  .703 (.015) .708 (.015) .713 (.016) 

- Wald test, b=.69  .484 .325 .218 

     

Continuous-time     

Exponential .695 (.014) .677 (.015) .655 (.015) .546 (.016) 

- Wald test, b=.69 .925 .266 .009** .000*** 

Exp. w t linear  .698 (.015) .702 (.015) .706 (.016) 

- Wald test, b=.69  .733 .538 .411 

Weibull .686 (.014) .699 (.015) .711 (.015) .713 (.016) 

- Wald test, b=.69 .628 .670 .233 .217 

     

Cox regression .696 (.014) .699 (.015) .703 (.015) .708 (.016) 

- Wald test, b=.69 .844 .672 .510 .340 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D5. 

Simulation A3: Monotonous negative duration dependence, U time-varying covariate and 

positively correlated with process time 

 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .699 (.015) .666 (.015) .634 (.015) .487 (.016) 

- Wald test, b=.69 .688 .074 .000*** .000*** 

Logit w t linear  .698 (.015) .702 (.015) .705 (.016) 

- Wald test, b=.69  .754 .542 .487 

     

Continuous-time     

Exponential .694 (.015) .662 (.015) .629 (.015) .484 (.016) 

- Wald test, b=.69 .957 .033* .000*** .000*** 

Exp. w t linear  .693 (.015) .697 (.015) .698 (.016) 

- Wald test, b=.69  .975 .795 .748 

Weibull .684 (.015) .688 (.015) .694 (.015) .671 (.016) 

- Wald test, b=.69 .523 .724 .948 .176 

     

Cox regression .696 (.015) .694 (.015) .698 (.015) .701 (.014) 

- Wald test, b=.69 .865 .950 .736 .643 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D6. 

Simulation B1: Monotonous negative duration dependence, U time-constant covariate,  

left-truncated sample 

 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .691 (.020) .689 (.020) .726 (.020) .759 (.022) 

- Wald test, b=.69 .906 .826 .104 .003** 

Logit w t linear  .679 (.020) .706 (.020) .696 (.022) 

- Wald test, b=.69  .491 .522 .915 

     

Continuous-time     

Exponential .686 (.020) .684 (.020) .721 (.020) .754 (.022) 

- Wald test, b=.69 .709 .638 .173 .006** 

Exp. w t linear  .674 (.020) .701 (.020) .689 (.022) 

- Wald test, b=.69  .347 .712 .856 

Weibull .690 (.020) .684 (.020) .717 (.020) .739 (.022) 

- Wald test, b=.69 .874 .636 .241 .035* 

     

Cox regression .686 (.020) .678 (.020) .709 (.020) .728 (.022) 

- Wald test, b=.69 .715 .463 .422 .110 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D7. 

Simulation B2: Monotonous negative duration dependence, U time-varying covariate but 

uncorrelated with process time, left-truncated sample 

 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .701 (.020) .689 (.020) .709 (.020) .688 (.022) 

- Wald test, b=.69 .683 .853 .445 .818 

Logit w t linear  .688 (.020) .714 (.020) .713 (.022) 

- Wald test, b=.69  .794 .295 .371 

     

Continuous-time     

Exponential .696 (.019) .684 (.020) .703 (.020) .683 (.022) 

- Wald test, b=.69 .882 .658 .613 .654 

Exp. w t linear  .683 (.020) .709 (.020) .707 (.022) 

- Wald test, b=.69  .603 .436 .528 

Weibull .695 (.019) .684 (.020) .705 (.020) .692 (.022) 

- Wald test, b=.69 .941 .657 .556 .960 

     

Cox regression .696 (.019) .685 (.020) .704 (.020) .690 (.022) 

- Wald test, b=.69 .888 .673 .585 .894 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 

 

  



 43 

 

Table D8. 

Simulation B3: Monotonous negative duration dependence, U time-varying covariate and 

positively correlated with process time, left-truncated sample 

 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .692 (.020) .691 (.020) .690 (.020) .641 (.022) 

- Wald test, b=.69 .938 .904 .868 .020* 

Logit w t linear  .697 (.020) .708 (.020) .702 (.022) 

- Wald test, b=.69  .839 .457 .707 

     

Continuous-time     

Exponential .687 (.020) .686 (.020) .685 (.020) .637 (.022) 

- Wald test, b=.69 .737 .708 .679 .011* 

Exp. w t linear  .692 (.020) .703 (.020) .696 (.022) 

- Wald test, b=.69  .959 .625 .893 

Weibull .683 (.020) .685 (.020) .688 (.020) .652 (.022) 

- Wald test, b=.69 .622 .690 .792 .065 

     

Cox regression .687 (.020) .688 (.020) .691 (.020) .656 (.022) 

- Wald test, b=.69 .767 .810 .926 .095 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Part I: PH transition models 

Scenarios C and D: models featuring bell-shaped baseline hazard function 

 

 

 
 

Figure D2. 

Bell-shaped baseline hazards utilized in the simulation study 
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Table D9. 

Simulation C1: Bell-shaped baseline hazard, U time-constant covariate 

 

Estimator 

Simulation 1: 

very mild  

hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .770 (.014) .796 (.014) .805 (.014) .864 (.014) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Logit w t linear .702 (.014) .705 (.014) .694 (.014) .680 (.014) 

- Wald test, b=.69 .538 .397 .945 .342 

Logit w t quad. .708 (.014) .716 (.014) .715 (.014) .713 (.014) 

- Wald test, b=.69 .277 .089 .115 .147 

     

Continuous-time     

Exponential .763 (.014) .789 (.014) .798 (.014) .856 (.014) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t linear .695 (.014) .697 (.014) .686 (.014) .666 (.014) 

- Wald test, b=.69 .905 .775 .588 .047** 

Exp. w t quad. .701 (.014) .709 (.014) .706 (.014) .699 (.014) 

- Wald test, b=.69 .552 .252 .343 .678 

Weibull .728 (.014) .742 (.014) .745 (.014) .751 (.014) 

- Wald test, b=.69 .011* .000*** .0001*** .000*** 

     

Cox regression .701 (.014) .709 (.014) .706 (.014) .699 (.014) 

- Wald test, b=.69 .553 .252 .343 .682 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D10. 

Simulation C2: Bell-shaped baseline hazard, U time-varying covariate but uncorrelated with 

process time 

 

Estimator 

Simulation 1: 

mild hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .686 (.015) .690 (.015) .719 (.015) .545 (.016) 

- Wald test, b=.69 .619 .839 .080 .000*** 

Logit w t linear .766 (.015) .803 (.015) .863 (.015) .942 (.016) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Logit w t quad. .709 (.015) .714 (.015) .713 (.015) .711 (.016) 

- Wald test, b=.69 .287 .164 .186 .285 

     

Continuous-time     

Exponential .680 (.015) .685 (.015) .713 (.015) .540 (.016) 

- Wald test, b=.69 .388 .566 .173 .000*** 

Exp. w t linear .759 (.015) .796 (.015) .854 (.015) .929 (.016) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t quad. .702 (.015) .707 (.015) .704 (.015) .696 (.016) 

- Wald test, b=.69 .530 .369 .465 .851 

Weibull .754 (.015) .781 (.015) .818 (.015) .783 (.016) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

     

Cox regression .702 (.015) .707 (.015) .705 (.015) .696 (.016) 

- Wald test, b=.69 .530 .371 .446 .859 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 

 

  



 47 

 

Table D11. 

Simulation C3: Bell-shaped baseline hazard, U time-varying covariate and positively correlated 

with process time 

 

Estimator 

Simulation 1: 

mild hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .647 (.015) .633 (.015) .650 (.016) .401 (.017) 

- Wald test, b=.69 .003** .000*** .006** .000*** 

Logit w t linear .762 (.015) .794 (.016) .853 (.016) .913 (.018) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Logit w t quad. .703 (.015) .702 (.016) .702 (.016) .710 (.018) 

- Wald test, b=.69 .533 .569 .574 .346 

     

Continuous-time     

Exponential .642 (.015) .628 (.015) .645 (.015) .398 (.017) 

- Wald test, b=.69 .0009*** .000*** .002*** .000*** 

Exp. w t linear .756 (.015) .787 (.016) .845 (.016) .900 (.017) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t quad. .696 (.015) .695 (.016) .693 (.016) .696 (.017) 

- Wald test, b=.69 .832 .912 .989 .885 

Weibull .728 (.015) .740 (.016) .767 (.016) .669 (.017) 

- Wald test, b=.69 .022* .003** .000*** .160 

     

Cox regression .696 (.015) .695 (.016) .694 (.016) .696 (.017) 

- Wald test, b=.69 .829 .913 .968 .887 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 

 

  



 48 

 

Table D12. 

Simulation D1: Bell-shaped baseline hazard, U time-constant covariate, left-truncated sample 

 

Estimator 

Simulation 1: 

very mild  

hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .735 (.020) .778 (.020) .786 (.020) .825 (.024) 

- Wald test, b=.69 .034* .000*** .000*** .000*** 

Logit w t linear .697 (.020) .718 (.020) .712 (.020) .672 (.025) 

- Wald test, b=.69 .852 .204 .336 .383 

Logit w t quad. .700 (.020) .727 (.020) .725 (.020) .707 (.025) 

- Wald test, b=.69 .746 .091 .115 .581 

     

Continuous-time     

Exponential .729 (.020) .772 (.020) .779 (.020) .820 (.024) 

- Wald test, b=.69 .068 .0001*** .000*** .000*** 

Exp. w t linear .690 (.020) .711 (.020) .704 (.020) .657 (.024) 

- Wald test, b=.69 .893 .366 .591 .135 

Exp. w t quad. .693 (.020) .719 (.020) .716 (.020) .693 (.024) 

- Wald test, b=.69 .996 .184 .248 .989 

Weibull .721 (.020) .758 (.020) .759 (.020) .781 (.024) 

- Wald test, b=.69 .166 .001** .001*** .000*** 

     

Cox regression .709 (.020) .744 (.020) .740 (.020) .758 (.024) 

- Wald test, b=.69 .422 .010* .017* .008** 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 

 

  



 49 

 

Table D13. 

Simulation D2: Bell-shaped baseline hazard, U time-varying covariate but uncorrelated with 

process time, left-truncated sample 

 

Estimator 

Simulation 1: 

very mild  

hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .693 (.020) .722 (.020) .737 (.020) .653 (.025) 

- Wald test, b=.69 .997 .156 .031* .105 

Logit w t linear .700 (.020) .729 (.020) .766 (.020) .850 (.025) 

- Wald test, b=.69 .732 .070 .000*** .000*** 

Logit w t quad. .684 (.020) .702 (.020) .713 (.020) .721 (.025) 

- Wald test, b=.69 .635 .660 .325 .267 

     

Continuous-time     

Exponential .688 (.020) .716 (.020) .730 (.020) .649 (.025) 

- Wald test, b=.69 .777 .259 .063 .074 

Exp. w t linear .694 (.020) .722 (.020) .758 (.020) .837 (.025) 

- Wald test, b=.69 .967 .141 .001** .000*** 

Exp. w t quad. .678 (.020) .695 (.020) .705 (.020) .708 (.025) 

- Wald test, b=.69 .434 .928 .568 .557 

Weibull .690 (.020) .720 (.020) .736 (.020) .680 (.025) 

- Wald test, b=.69 .880 .185 .034** .607 

     

Cox regression .685 (.020) .712 (.020) .724 (.020) .678 (.025) 

- Wald test, b=.69 .699 .346 .117 .553 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D14. 

Simulation D3: Bell-shaped baseline hazard, U time-varying covariate and positively correlated 

with process time, left-truncated sample 

 

Estimator 

Simulation 1: 

very mild  

hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .705 (.020) .686 (.020) .682 (.021) .513 (.026) 

- Wald test, b=.69 .565 .712 .603 .000*** 

Logit w t linear .731 (.020) .725 (.020) .743 (.021) .806 (.027) 

- Wald test, b=.69 .057 .119 .016* .000*** 

Logit w t quad. .712 (.020) .692 (.020) .682 (.021) .693 (.027) 

- Wald test, b=.69 .358 .961 .577 .998 

     

Continuous-time     

Exponential .699 (.020) .680 (.020) .677 (.021) .510 (.026) 

- Wald test, b=.69 .772 .517 .424 .000*** 

Exp. w t linear .725 (.020) .718 (.020) .736 (.021) .795 (.027) 

- Wald test, b=.69 .111 .215 .039* .000*** 

Exp. w t quad. .705 (.020) .685 (.020) .674 (.021) .681 (.026) 

- Wald test, b=.69 .546 .703 .348 .649 

Weibull .706 (.020) .691 (.020) .692 (.021) .567 (.026) 

- Wald test, b=.69 .503 .900 .960 .000*** 

     

Cox regression .708 (.020) .690 (.020) .692 (.021) .589 (.026) 

- Wald test, b=.69 .456 .890 .944 .000*** 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Part II: Non-PH transition models 

Scenarios E and F: models exhibiting monotonous negative duration dependence 

 

 

 
Figure D3. 

Non-PH specifications combined with monotonically declining baseline hazards  

(C – control group, T – treatment group) 
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Table D15. 

Simulation E1: Non-PH specification, monotonous negative duration dependence, U time-

constant covariate 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .651 (.014) .627 (.014) .606 (.014) .565 (.015) 

- Wald test, b=.69 .002** .000*** .000*** .000*** 

Logit w t linear  .613 (.014) .576 (.014) .498 (.014) 

- Wald test, b=.69  .000*** .000*** .000*** 

Logit w t tvcoeff  .688 (.014) .686 (.015) .700 (.018) 

- Wald test, b=.69  .688 .627 .698 

     

Continuous-time     

Exponential .647 (.013) .622 (.014) .601 (.014) .560 (.014) 

- Wald test, b=.69 .001*** .000*** .000*** .000*** 

Exp. w t linear  .609 (.014) .571 (.014) .493 (.014) 

- Wald test, b=.69  .000*** .000*** .000*** 

Exp. w t tvcoeff  .683 (.014) .681 (.014) .696 (.018) 

- Wald test, b=.69  .446 .420 .863 

Weibull .655 (.013) .617 (.014) .585 (.014) .519 (.014) 

- Wald test, b=.69 .004** .000*** .000*** .000*** 

Weibull w anc p .652 (.014) .608 (.014) .571 (.014) .494 (.014) 

- Wald test, b=.69 .002** .000*** .000*** .000*** 

     

Cox regression .653 (.014) .609 (.014) .572 (.014) .493 (.014) 

- Wald test, b=.69 .003** .000*** .000*** .000*** 

Cox w tvcoeff .689 (.014) .683 (.014) .681 (.014) .695 (.018) 

- Wald test, b=.69 .771 .444 .415 .900 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D16. 

Simulation E2: Non-PH specification, monotonous negative duration dependence, U time-

varying covariate but uncorrelated with process time 

 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .714 (.014) .656 (.014) .601 (.015) .421 (.016) 

- Wald test, b=.69 .133 .020* .000*** .000*** 

Logit w t linear  .675 (.014) .644 (.015) .583 (.016) 

- Wald test, b=.69  .216 .001*** .000*** 

Logit w t tvcoeff  .694 (.015) .691 (.015) .706 (.018) 

- Wald test, b=.69  .951 .883 .468 

     

Continuous-time     

Exponential .709 (.014) .655 (.014) .597 (.015) .418 (.016) 

- Wald test, b=.69 .257 .007** .000*** .000*** 

Exp. w t linear  .670 (.014) .639 (.015) .578 (.016) 

- Wald test, b=.69  .112 .000*** .000*** 

Exp. w t tvcoeff  .689 (.014) .686 (.015) .702 (.018) 

- Wald test, b=.69  .776 .646 .609 

Weibull .696 (.014) .672 (.014) .648 (.015) .583 (.016) 

- Wald test, b=.69 .841 .137 .003** .000*** 

Weibull w anc p .691 (.014) .652 (.014) .617 (.015) .544 (.016) 

- Wald test, b=.69 .896 .004** .000*** .000*** 

     

Cox regression .712 (.014) .677 (.014) .646 (.015) .586 (.016) 

- Wald test, b=.69 .178 .259 .001** .000*** 

Cox w tvcoeff .697 (.014) .690 (.015) .687 (.015) .702 (.018) 

- Wald test, b=.69 .804 .840 .688 .610 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D17. 

Simulation E3: Non-PH specification, monotonous negative duration dependence, U time-

varying covariate and positively correlated with process time 

 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .731 (.014) .668 (.015) .600 (.015) .381 (.016) 

- Wald test, b=.69 .009** .084 .000*** .000*** 

Logit w t linear  .691 (.015) .660 (.015) .593 (.017) 

- Wald test, b=.69  .904 .030* .000*** 

Logit w t tvcoeff  .696 (.015) .691 (.015) .703 (.018) 

- Wald test, b=.69  .861 .900 .590 

     

Continuous-time     

Exponential .725 (.014) .662 (.015) .595 (.015) .379 (.016) 

- Wald test, b=.69 .024* .038* .000*** .000*** 

Exp. w t linear  .686 (.015) .655 (.015) .588 (.017) 

- Wald test, b=.69  .639 .012* .000*** 

Exp. w t tvcoeff  .691 (.015) .687 (.015) .699 (.018) 

- Wald test, b=.69  .869 .666 .743 

Weibull .710 (.014) .683 (.015) .655 (.015) .563 (.017) 

- Wald test, b=.69 .238 .504 .012* .000*** 

Weibull w anc p .706 (.014) .668 (.015) .633 (.015) .557 (.017) 

- Wald test, b=.69 .369 .088 .000*** .000*** 

     

Cox regression .727 (.014) .693 (.015) .662 (.015) .596 (.017) 

- Wald test, b=.69 .019* .975 .040* .000*** 

Cox w tvcoeff .698 (.015) .692 (.015) .688 (.015) .699 (.018) 

- Wald test, b=.69 .722 .941 .727 .740 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D18. 

Simulation F1: Non-PH specification, monotonous negative duration dependence, U time-

constant covariate, left-truncated sample 

 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .694 (.019) .669 (.019) .662 (.020) .616 (.022) 

- Wald test, b=.69 .976 .214 .114 .000*** 

Logit w t linear  .664 (.019) .647 (.020) .578 (.022) 

- Wald test, b=.69  .133 .019* .000*** 

Logit w t tvcoeff  .699 (.020) .703 (.020) .693 (.025) 

- Wald test, b=.69  .761 .618 .995 

     

Continuous-time     

Exponential .689 (.019) .664 (.019) .657 (.020) .612 (.022) 

- Wald test, b=.69 .811 .134 .067 .000*** 

Exp. w t linear  .659 (.019) .642 (.020) .573 (.022) 

- Wald test, b=.69  .078 .009** .000*** 

Exp. w t tvcoeff  .694 (.019) .698 (.020) .689 (.025) 

- Wald test, b=.69  .963 .793 .870 

Weibull .694 (.019) .666 (.019) .655 (.020) .602 (.022) 

- Wald test, b=.69 .971 .154 .051 .000*** 

Weibull w anc p .692 (.019) .660 (.019) .643 (.020) .575 (.022) 

- Wald test, b=.69 .964 .088 .011* .000*** 

     

Cox regression .690 (.019) .661 (.019) .649 (.020) .592 (.022) 

- Wald test, b=.69 .881 .096 .024* .000*** 

Cox w tvcoeff .714 (.019) .682 (.019) .669 (.020) .552 (.024) 

- Wald test, b=.69 .267 .571 .231 .000*** 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D19. 

Simulation F2: Non-PH specification, monotonous negative duration dependence, U time-

varying covariate but uncorrelated with process time, left-truncated sample 

 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .675 (.019) .658 (.019) .644 (.020) .586 (.022) 

- Wald test, b=.69 .335 .072 .015* .000*** 

Logit w t linear  .658 (.019) .651 (.020) .614 (.022) 

- Wald test, b=.69  .073 .036* .000*** 

Logit w t tvcoeff  .687 (.020) .691 (.020) .697 (.024) 

- Wald test, b=.69  .751 .912 .867 

     

Continuous-time     

Exponential .670 (.019) .653 (.019) .640 (.020) .582 (.022) 

- Wald test, b=.69 .221 .040* .007** .000*** 

Exp. w t linear  .653 (.019) .646 (.020) .609 (.022) 

- Wald test, b=.69  .040* .019** .0001*** 

Exp. w t tvcoeff  .682 (.019) .686 (.020) .693 (.024) 

- Wald test, b=.69  .565 .732 .993 

Weibull .668 (.019) .653 (.019) .641 (.020) .591 (.022) 

- Wald test, b=.69 .189 .037* .009** .000*** 

Weibull w anc p .667 (.019) .647 (.019) .637 (.020) .588 (.022) 

- Wald test, b=.69 .164 .017** .005** .000*** 

     

Cox regression .670 (.019) .655 (.019) .640 (.020) .591 (.022) 

- Wald test, b=.69 .225 .047* .008** .000*** 

Cox w tvcoeff .680 (.019) .671 (.019) .651 (.020) .551 (.024) 

- Wald test, b=.69 .502 .253 .034* .000*** 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D20. 

Simulation F3: Non-PH specification, monotonous negative duration dependence, U time-

varying covariate and positively correlated with process time, left-truncated sample 

 

Estimator 

Simulation 1: 

time-constant 

baseline hazard 

(ea = 1) 

Simulation 2: 

mild duration 

dependence  

(ea = .995) 

Simulation 3: 

moderate dur. 

dependence  

(ea = .99) 

Simulation 4: 

strong duration 

dependence  

(ea = .975) 

Discrete-time     

Logit .685 (.019) .655 (.020) .635 (.020) .574 (.022) 

- Wald test, b=.69 .663 .051 .004** .000*** 

Logit w t linear  .659 (.020) .648 (.020) .636 (.022) 

- Wald test, b=.69  .087 .027* .010** 

Logit w t tvcoeff  .679 (.020) .682 (.021) .714 (.024) 

- Wald test, b=.69  .485 .597 .378 

     

Continuous-time     

Exponential .680 (.019) .650 (.020) .631 (.020) .571 (.022) 

- Wald test, b=.69 .488 .028* .002** .000*** 

Exp. w t linear  .654 (.020) .643 (.020) .631 (.022) 

- Wald test, b=.69  .050* .014** .005** 

Exp. w t tvcoeff  .674 (.020) .678 (.020) .710 (.024) 

- Wald test, b=.69  .343 .447 .472 

Weibull .675 (.019) .649 (.020) .633 (.020) .587 (.022) 

- Wald test, b=.69 .352 .025* .003** .000*** 

Weibull w anc p .674 (.019) .647 (.020) .633 (.020) .610 (.022) 

- Wald test, b=.69 .334 .020* .003** .000*** 

     

Cox regression .679 (.019) .652 (.020) .637 (.020) .592 (.022) 

- Wald test, b=.69 .472 .039* .005** .000*** 

Cox w tvcoeff .678 (.019) .663 (.020) .648 (.020) .568 (.024) 

- Wald test, b=.69 .442 .125 .025* .000*** 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb=2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Scenarios G and H: models featuring bell-shaped baseline hazard function 

 

 
 

 
Figure D4. 

Non-PH specifications combined with bell-shaped baseline hazards  

(C – control group, T – treatment group) 
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Table D21.  

Simulation G1: Non-PH specification, bell-shaped baseline hazard, U time-constant covariate 

Estimator 

Simulation 1: 

very mild  

hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .592 (.014) .573 (.014) .544 (.014) .462 (.015) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Logit w t quad. .541 (.014) .511 (.014) .475 (.014) .377 (.015) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Logit w t tvcoeff .699 (.016) .698 (.018) .682 (.023) .708 (.049) 

- Wald test, b=.69 .713 .778 .634 .763 

     

Continuous-time     

Exponential .587 (.014) .569 (.014) .540 (.014) .459 (.015) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t quad. .536 (.014) .506 (.014) .470 (.014) .371 (.015) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t tvcoeff .695 (.016) .694 (.018) .677 (.023) .701 (.048) 

- Wald test, b=.69 .930 .974 .476 .878 

Weibull .564 (.014) .539 (.014) .508 (.014) .409 (.015) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Weibull w anc p .536 (.014) .505 (.014) .468 (.014) .370 (.015) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

     

Cox regression .536 (.014) .506 (.014) .470 (.014) .371 (.015) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Cox w tvcoeff .695 (.016) .694 (.018) .677 (.023) .700 (.048) 

- Wald test, b=.69 .928 .973 .482 .880 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb=2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001, biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D22. 

Simulation G2: Non-PH specification, bell-shaped baseline hazard, U time-varying covariate but 

uncorrelated with process time 

 

Estimator 

Simulation 1: 

very mild  

hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .590 (.015) .548 (.015) .524 (.016) .222 (.017) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Logit w t quad. .611 (.015) .574 (.015) .530 (.016) .428 (.018) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Logit w t tvcoeff .706 (.016) .701 (.018) .675 (.023) .694 (.056) 

- Wald test, b=.69 .434 .681 .414 .989 

     

Continuous-time     

Exponential .585 (.015) .544 (.015) .520 (.015) .220 (.017) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t quad. .606 (.015) .569 (.015) .524 (.016) .420 (.018) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t tvcoeff .701 (.016) .696 (.018) .670 (.023) .691 (.055) 

- Wald test, b=.69 .622 .875 .300 .968 

Weibull .656 (.015) .639 (.015) .628 (.016) .472 (.018) 

- Wald test, b=.69 .014* .0005*** .000*** .000*** 

Weibull w anc p .588 (.015) .553 (.015) .513 (.016) .426 (.017) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

     

Cox regression .607 (.015) .570 (.015) .525 (.016) .420 (.018) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Cox w tvcoeff .701 (.016) .696 (.018) .670 (.023) .695 (.055) 

- Wald test, b=.69 .610 .862 .310 .975 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb=2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D23. 

Simulation G3: Non-PH specification, bell-shaped baseline hazard, U time-varying covariate and 

positively correlated with process time 

 

Estimator 

Simulation 1: 

very mild  

hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .574 (.015) .516 (.016) .477 (.016) .097 (.019) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Logit w t quad. .624 (.016) .582 (.016) .534 (.016) .431 (.019) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Logit w t tvcoeff .705 (.016) .697 (.018) .671 (.023) .703 (.057) 

- Wald test, b=.69 .475 .831 .334 .861 

     

Continuous-time     

Exponential .570 (.015) .512 (.016) .473 (.016) .096 (.019) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t quad. .618 (.015) .577 (.016) .528 (.016) .424 (.019) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t tvcoeff .700 (.016) .692 (.018) .666 (.023) .700 (.057) 

- Wald test, b=.69 .669 .969 .238 .902 

Weibull .651 (.015) .622 (.016) .596 (.016) .372 (.019) 

- Wald test, b=.69 .007** .000*** .000*** .000*** 

Weibull w anc p .606 (.015) .570 (.016) .530 (.016) .432 (.019) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

     

Cox regression .619 (.015) .578 (.016) .529 (.016) .424 (.019) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Cox w tvcoeff .700 (.016) .693 (.018) .666 (.023) .703 (.057) 

- Wald test, b=.69 .660 .977 .240 .860 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D24. 

Simulation H1: Non-PH specification, bell-shaped baseline hazard, U time-constant covariate, 

left-truncated sample 

 

Estimator 

Simulation 1: 

very mild  

hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .648 (.019) .627 (.020) .614 (.020) .518 (.025) 

- Wald test, b=.69 .020* .001*** .000*** .000*** 

Logit w t quad. .619 (.019) .588 (.020) .564 (.020) .448 (.025) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Logit w t tvcoeff .700 (.021) .703 (.023) .699 (.027) .720 (.067) 

- Wald test, b=.69 .733 .655 .831 .694 

     

Continuous-time     

Exponential .643 (.019) .622 (.020) .610 (.020) .515 (.025) 

- Wald test, b=.69 .009** .000*** .000*** .000*** 

Exp. w t quad. .614 (.019) .582 (.020) .558 (.020) .441 (.025) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t tvcoeff .695 (.021) .699 (.023) .694 (.027) .716 (.067) 

- Wald test, b=.69 .918 .815 .987 .734 

Weibull .638 (.019) .612 (.020) .597 (.020) .494 (.025) 

- Wald test, b=.69 .004** .000*** .000*** .000*** 

Weibull w anc p .615 (.019) .582 (.020) .556 (.020) .431 (.025) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

     

Cox regression .628 (.019) .601 (.020) .583 (.020) .481 (.025) 

- Wald test, b=.69 .001*** .000*** .000*** .000*** 

Cox w tvcoeff .624 (.021) .572 (.022) .474 (.024) -.349 (.048) 

- Wald test, b=.69 .001*** .000*** .000*** .000*** 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D25. 

Simulation H2: Non-PH specification, bell-shaped baseline hazard, U time-varying covariate but 

uncorrelated with process time, left-truncated sample 

 

Estimator 

Simulation 1: 

very mild  

hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .628 (.020) .627 (.020) .597 (.020) .402 (.026) 

- Wald test, b=.69 .001*** .001*** .000*** .000*** 

Logit w t quad. .616 (.020) .606 (.020) .570 (.020) .500 (.026) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Logit w t tvcoeff .686 (.021) .714 (.023) .683 (.027) .837 (.070) 

- Wald test, b=.69 .722 .370 .715 .041* 

     

Continuous-time     

Exponential .623 (.020) .622 (.020) .593 (.020) .400 (.026) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t quad. .611 (.020) .600 (.020) .564 (.020) .492 (.026) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Exp. w t tvcoeff .681 (.021) .709 (.023) .678 (.027) .834 (.070) 

- Wald test, b=.69 .557 .498 .580 .043* 

Weibull .626 (.020) .627 (.020) .601 (.020) .437 (.026) 

- Wald test, b=.69 .001*** .001** .000*** .000*** 

Weibull w anc p .612 (.020) .608 (.020) .592 (.020) .545 (.026) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

     

Cox regression .623 (.020) .621 (.020) .592 (.020) .441 (.026) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

Cox w tvcoeff .611 (.021) .585 (.022) .454 (.024) -.484 (.051) 

- Wald test, b=.69 .000*** .000*** .000*** .000*** 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 
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Table D26. 

Simulation H3: Non-PH specification, bell-shaped baseline hazard, U time-varying covariate and 

positively correlated with process time, left-truncated sample 

 

Estimator 

Simulation 1: 

very mild  

hump-shape 

(ea1 = 1.01,  

ea2 = .9997) 

Simulation 2: 

mild hump-shape 

(ea1 = 1.02,  

ea2 = .9995) 

Simulation 3: 

moderate  

hump-shape 

(ea1 = 1.05,  

ea2 = .999) 

Simulation 4: 

very strong hump-

shape 

(ea1 = 1.10,  

ea2 = .997) 

Discrete-time     

Logit .660 (.020) .606 (.020) .551 (.021) .275 (.028) 

- Wald test, b=.69 .099 .000*** .000*** .000*** 

Logit w t quad. .665 (.020) .616 (.020) .555 (.021) .453 (.028) 

- Wald test, b=.69 .154 .000*** .000*** .000*** 

Logit w t tvcoeff .726 (.021) .691 (.023) .669 (.027) .795 (.072) 

- Wald test, b=.69 .110 .924 .359 .156 

     

Continuous-time     

Exponential .655 (.020) .602 (.020) .547 (.021) .273 (.028) 

- Wald test, b=.69 .055 .000*** .000*** .000*** 

Exp. w t quad. .659 (.020) .610 (.020) .549 (.021) .446 (.028) 

- Wald test, b=.69 .086 .000*** .000*** .000*** 

Exp. w t tvcoeff .721 (.021) .686 (.023) .664 (.027) .793 (.072) 

- Wald test, b=.69 .177 .756 .271 .164 

Weibull .661 (.020) .612 (.020) .564 (.021) .332 (.028) 

- Wald test, b=.69 .102 .000*** .000*** .000*** 

Weibull w anc p .663 (.020) .626 (.020) .583 (.021) .500 (.028) 

- Wald test, b=.69 .123 .001*** .000*** .000*** 

     

Cox regression .662 (.020) .612 (.020) .565 (.021) .360 (.028) 

- Wald test, b=.69 .114 .000*** .000*** .000*** 

Cox w tvcoeff .656 (.020) .563 (.022) .444 (.024) –.528 (.053) 

- Wald test, b=.69 .069 .000*** .000*** .000*** 

     

Note: N = 100.000, true b = .693 (hazard ratio of eb = 2); Wald tests of b = ln(2) 

* p<.05, ** p<.01, *** p<.001; biased parameter estimates in boldface (significance level at least at p < .05) 


