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Supplementary Figure 1. Enzyme types for enzymatic sites in the dataset. (A) and 
test-set (B). Collected from E.C. number or PDB Classification. Marked as ‘other’ when 
neither could be used to identify enzyme type. 
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Supplementary Figure 2. Sphere and Sum features. 2-dimensional representation of 
sphere (A) and shell (B) regions. Different wedges represent regions where any atom 
with an α-carbon within that region will lead to that residue being used for the calculation. 
Orange wedge represents 3.5 Å cutoff, yellow wedge represents 5.0 Å cutoff, green 
wedge represents 7.5 Å cutoff, and blue wedge represents 9 Å cutoff.   

 



 
  

Supplementary Figure 3. Feature similarity. (A) Distribution of features used for 
training. The four groups of Rosetta terms each include 84 features calculated in one of 
four ways – the mean or average of residues within four shells or spheres – for a total of 
294 unique Rosetta category features. (B) Proportion of sites assigned with a filled 
coordination geometry, coordination geometry with a vacancy, and irregular coordination 
geometry. (C-F) The feature with the lowest similarity between enzymatic (green) and 
non-enzymatic (blue) values for the Lining (C), Pocket (D), Electrostatics (E) and Rosetta 
(F) categories. 
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Supplementary Figure 4. Machine learning experimental design. The test-set is left 
for evaluation of the final model while the data-set undergoes nested cross validation 
(CV). The outer k-fold CV is used for model selections and the inner shuffle split CV is 
used with grid search to find the optimal machine learning algorithm hyperparameters for 
each model. Black is the test set, darkest blue is the inner CV training data, medium blue 
is the outer CV training data, light blue is the outer CV test data and gray is the inner CV 
test data. 

 

Supplementary Figure 5. K-Fold deviation.   Kernel density estimates of all models k-
fold CV deviation during GridSearch model tuning (left panel) and when held to the single 
best hyperparameter set (right panel). dashed lines indicate standard deviation filters 
used prior to model selection. 
 

 



 

 
 

 
  

Supplementary Figure 6. Outer CV performance by optimization metric. (left panel) 
Each point represents the results for a specific model after filter (see methods). Points 
are colored according optimization metric: accuracy (Acc, red), MCC (green), combined 
MCC and Jaccard index (Multi, light blue), and precision (Prec, purple).  Right panel 
displays zoomed in blue box of left panel. 

 
 

Supplementary Figure 7. Outer CV performance by different Rosetta category 
calculation method. (left panel) Each point represents the results for a specific model 
after filtering which included the Rosetta category in its feature set (see methods). Points 
are colored according to calculation method: mean sphere (MeanSph, blue), sum shell 
(SumShell, orange), sum sphere (SumSph, green), and mean shell (MeanShell, red).  
Right panel displays zoomed in blue box of left panel. 

 



 

Supplementary Figure 8. Outer CV performance by feature set.  Each point 
represents the results for a specific model after filter. Points are colored according to 
feature set used by model (Supplementary Data 1c for feature sets). The size of the dot 
corresponds to the number of features in that feature set. The right panel zooms in on the 
blue box in the left panel.  Right panel displays zoomed in blue box of left panel. 

 

 



  

Supplementary Figure 9. Outer CV performance by algorithm for all models.  Each 
point represents the results for a specific model. All models are included, even those with 
high deviation. Points are colored according algorithm used and grouped by classifier 
type; support vector machines (SVMs) are purples, decision-tree ensemble methods are 
blues, linear models are reds, discriminant analysis are greens, no grouping for naive 
Bayes, nearest neighbor, and neural network. Better performing classifiers should be 
close to the upper right corner. The X denotes our top model (extra trees with 
AllMeanSph feature set). Right panels are zoomed in views of boxed region in left 
panels. 
 

 
 



 
 
Supplementary Tables 
Supplementary Table 1. Performance evaluations for MAHOMES: The MAHOMES outer CV 
is the average and standard deviation of the calculated metrics during the second run of our 
outer, k-fold cross validation (k=7). The other rows show the reported metrics on our hold-out 
test-set before and after the manual check and correction of a few test-set sites. 

Method Accuracy Recall MCC Precision True Negative Rate 
MAHOMES  
outer CV  

90.7%  
± 4.4% 

83.1% 
± 5.4% 

0.763  
± 0.084 

81.9%  
± 13.8% 93.1% ± 6.9% 

MAHOMES  
test-set  91.5% 89.4% 0.806 84.2% 92.5% 

MAHOMES  
test-set 
corrected* 

94.2% 90.1% 0.868 92.2% 96.2% 

 
  

Supplementary Figure 10. Coordinating atoms for enzyme and non-enzymes. 
Comparison of the average number of N, O, and S liganding atoms per site for enzyme 
and non-enzyme sites. 

 
 



Supplementary Table 2. Prediction results: The true positives, true, negatives, false 
positives, and false negatives of the various predictors on their respective T-metal sets.  

Method 
True 

Positives 
True 

Negatives 
False 

Positives 
False 

Negatives 
MAHOMES 154 332 13 17 
DeepEC 152 125 103 16 
DEEPre 170 184 39 0 
EFICAz2.5 153 210 20 17 
 
Supplementary Methods 
Covariate Shift detection 
A covariate shift is when there is a change in the distribution of input data. Developments in 
methodology to solve protein structures or changes in research funding priority could potentially 
lead to a covariate shift between our data-set and temporal, holdout test-set. To test for 
covariate shift, we adjusted our target value to be positive for sites from the test-set and 
negative for sites from our data-set. We took 300 random positive sites and 300 random 
negative sites. 80% of this set was used to train a basic random forest classifier using the 
AllMeanShell feature set, and the remaining 20% was used for evaluation. This process was 
repeated 100 times, with different random sampling, and resulted in an average MCC value of 
0.11, demonstrating that any differences between our test-set and data-set were not substantial 
enough to be used for differentiating. The process was repeated using catalytic as the target 
value, which resulted in an average MCC of 0.76, supporting that our methodology could be 
used to detect significant differences in distribution.  
 
Feature Calculation PDB Preparation 
Each PDB chain was extracted, including all header information, into a separate PDB file. The 
PDB was then relaxed 1,2 using the following command line and flags.  
 
$ROSETTA_DEV/rosetta_scripts.mpi.linuxgccrelease -s ${pdb_id}.pdb -out:path:all 
Outputs/${pdb_id}/ @Relax.flags 
 
Relax.flags: 

-parser:protocol FastRelaxScoreMetals.xml 
-nstruct 50 
-suffix _Relax 
-ignore_zero_occupancy false 
-ignore_unrecognized_res 
-out:file:scorefile Relax.score 
-ex1 
-ex2 
-relax:bb_move false 
-relax:constrain_relax_to_start_coords  
-relax:coord_cst_stdev=0.2 
-beta_nov16 
-overwrite 
-extra_res_fa MO.params NI.params FES.params CUA.params 
-chemical:exclude_patches LowerDNA UpperDNA tyr_diiodinated C_methylamidated 
VirtualBB ShoveBB VirtualDNAPhosphate VirtualNTerm CTermConnect 

 



FastRelaxScoreMetals.xml 
<ROSETTASCRIPTS> 
 <SCOREFXNS> 
  <ScoreFunction name="beta16" weights="beta_nov16" > 
   <Reweight scoretype="metalbinding_constraint" weight="1.0" /> 
  </ScoreFunction>   
 </SCOREFXNS> 
 <MOVERS> 
  <SetupMetalsMover name="setup_metals" metals_detection_LJ_multiplier="1.0" 
metals_distance_constraint_multiplier="1.2" metals_angle_constraint_multiplier="1.2" /> 
  <FastRelax name="fast_relax" scorefxn="beta16" /> 
 </MOVERS> 
 <PROTOCOLS> 
  <Add mover="setup_metals"/> 
  <Add mover="fast_relax"/> 
 </PROTOCOLS> 
</ROSETTASCRIPTS> 
 
Finally, the output structure with the best overall score 3 was kept and scored with no weights as 
follows: 
 
$ROSETTA_DEV/rosetta_scripts.linuxgccrelease -s ${pdb_id}_Relaxed.pdb @Scoring.flags > 
StdOutputRelax.txt 
 
Scoring.flags 

-parser:protocol /panfs/pfs.local/work/slusky/MSEAL/RosettaTest/ScoreOnly.xml  
-ignore_zero_occupancy false  
-ignore_unrecognized_res 
-out:file:scorefile Score.score 
-beta_nov16 
-overwrite 
-extra_res_fa /panfs/pfs.local/work/slusky/MSEAL/RosettaTest/CUA.params 
/panfs/pfs.local/work/slusky/MSEAL/RosettaTest/FES.params 
/panfs/pfs.local/work/slusky/MSEAL/RosettaTest/MO.params 
/panfs/pfs.local/work/slusky/MSEAL/RosettaTest/NI.params  

 
ScoreOnly.xml 

<ROSETTASCRIPTS> 
 <SCOREFXNS> 
  <ScoreFunction name="noweight" weights="EqualWeight"/>  
 </SCOREFXNS> 
 <FILTERS> 
  <BuriedSurfaceArea name="BSA" confidence="0"/> 
 </FILTERS> 
 <SIMPLE_METRICS> 
  <SecondaryStructureMetric name="dssp" dssp_reduced="True"/> 
  <PerResidueSasaMetric name="sasa" /> 
 </SIMPLE_METRICS> 
 <MOVERS> 
  <ScoreMover name="scoring" scorefxn="noweight"/> 
  <RunSimpleMetrics name="run_metrics1" metrics="dssp,sasa" /> 



 </MOVERS> 
 <PROTOCOLS> 
  <Add mover="scoring"/> 
  <Add mover_name="run_metrics1" /> 
  <Add filter_name="BSA"/> 
 </PROTOCOLS> 
 <OUTPUT scorefxn="noweight"/> 
</ROSETTASCRIPTS> 

 
Feature Generation 
A number of other programs also generated information from which features were calculated. In 
all cases, the PDB file is the relaxed structure from Rosetta. The command lines are shown 
below: 
 
Rosetta pocket_grid 4 for generating the pocket and pocket lining information; rosetta_res is the 
closest neighboring residue - $ROSETTA_DEV/pocket_measure.linuxgccrelease -s 
${pdb_id}.pdb -central_relax_pdb_num ${rosetta_res} -pocket_num_angles 100 -
pocket_dump_pdbs -pocket_filter_by_exemplar 1 -pocket_grid_size 15 -
ignore_unrecognized_res 
 
Bluues 5 for electrostatics information – the pqr file the required input to bluues. We generate it 
using pdb2pqr.  
#write pqr file 

/panfs/pfs.local/work/slusky/CommonPrograms/apbs-pdb2pqr/pdb2pqr/pdb2pqr.py --
ff=parse --noopt --nodebump ${pdb_id}.pdb ${pdb_id}.pqr 

#Use bluues to calculate titration curves 
/panfs/pfs.local/work/slusky/CommonPrograms/bluues/bluues ${pdb_id}.pqr 

bluues/${pdb_id:0:6}_bluues -pka 
 
FindGeo 6 for coordination geometry – FindGeo consists of a python wrapper that calls and then 
parses the output of a pre-compiled program. We extended the python wrapper (see 
CoordGeomFeatures.py at https://github.com/mwfranklin/CustomModules/) and called FindGeo 
using the following: 

python $SLUSKY/CommonPrograms/findgeo/findgeo.py -o -p ${pdb_id}.pdb -i 
${pdb_id:0:6} -t 3.5 
 
Machine learning algorithms 
The following algorithms were implemented using scikit learn7. All these algorithms are covered 
in detail as previously published 8. 
 
We chose three support vector machine (SVM) algorithms: linear SVM, radial basis function 
SVM (RBF SVM), and sigmoidal SVM. SVMs use a set of hyperplanes that separate high 
dimensional space to create predictions. Inputted feature vectors are mapped into high-
dimensional space using a kernel function.  Different kernel functions result in different high-
dimensional space. We chose SVMs using three different kernel functions: linear, radial basis 
function, and sigmoidal. Testing different high-dimensional spaces enables different 
hyperplanes which can perform differently when separating data. 
 
We chose three decision-tree based ensemble methods: random forest, extra trees and 
gradient boosting. Decision-trees use a series of splits that use a feature to separate the target 



classes. Splits result in different pathways, or branches, that form a tree-like structure. The 
ensemble methods combine a group of decision trees to create one prediction. Random forest 
and extra trees take the average of a set number of independent decision trees. Random forest 
builds its trees using the best threshold for a feature. Extra trees use random thresholds when 
splitting. Gradient boosting builds its trees sequentially, allowing new trees to compensate for 
bias in previously built trees. 
 
We chose three classifiers which fit linear models: logistic regression classifier, ridge classifier, 
and passive aggressive classifier. Linear models use a set of coefficients, one for each given 
feature, to generate a prediction. The coefficients are determined by minimizing the residual 
sum of squares for training data. The logistic regression classifier uses a logistic function to 
bound the output between 0 and 1, enabling linear models to work for classification. 
Alternatively, the ridge classifier shrinks the coefficients by adding a size-based penalty. The 
passive aggressive classifier also uses a penalty but updates after every entry during training. 
 
We chose two models that use discriminant analysis: linear discriminant analysis (LDA) and 
quadratic discriminant analysis (QDA). Discriminant analysis models probability as the density 
of a multivariate Gaussian distribution. The predictions for discriminant analysis models follow 
Bayes’ rule.  
 
The remaining algorithms cannot be grouped with each other. Naïve bayes uses the distribution 
of feature values for each target class to create probabilities which are used for future 
predictions. Nearest neighbors prediction is based on the class of the most similar feature 
vector(s) in the training data for its prediction. The neural network implements a multi-layer 
perceptron, where hidden layers of neurons adjust input data using weights and then transform 
this data into the output prediction. 
 
Supplementary Equations 
Supplementary Equation (1): Matthews Correlation Coefficient (MCC) calculation 9. TP is the 
number of true positives, TN is true negatives, FP is false positives, and FN is false negatives. 

𝑀𝐶𝐶 =	
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

-(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
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