
Supplementary Figures

Supplementary Figure 1. Enzyme types for enzymatic sites in the dataset. (A) and
test-set (B). Collected from E.C. number or PDB Classification. Marked as ‘other’ when
neither could be used to identify enzyme type.

data-set catalytic site enzyme types test-set catalytic site enzyme types
A B

Supplementary Figure 2. Sphere and Sum features. 2-dimensional representation of
sphere (A) and shell (B) regions. Different wedges represent regions where any atom
with an α-carbon within that region will lead to that residue being used for the calculation.
Orange wedge represents 3.5 Å cutoff, yellow wedge represents 5.0 Å cutoff, green
wedge represents 7.5 Å cutoff, and blue wedge represents 9 Å cutoff.

Supplementary Figure 3. Feature similarity. (A) Distribution of features used for
training. The four groups of Rosetta terms each include 84 features calculated in one of
four ways – the mean or average of residues within four shells or spheres – for a total of
294 unique Rosetta category features. (B) Proportion of sites assigned with a filled
coordination geometry, coordination geometry with a vacancy, and irregular coordination
geometry. (C-F) The feature with the lowest similarity between enzymatic (green) and
non-enzymatic (blue) values for the Lining (C), Pocket (D), Electrostatics (E) and Rosetta
(F) categories.

A B C

D E F
Similarity=0.37Similarity=0.42Similarity=0.39

Similarity=0.42

Supplementary Figure 4. Machine learning experimental design. The test-set is left
for evaluation of the final model while the data-set undergoes nested cross validation
(CV). The outer k-fold CV is used for model selections and the inner shuffle split CV is
used with grid search to find the optimal machine learning algorithm hyperparameters for
each model. Black is the test set, darkest blue is the inner CV training data, medium blue
is the outer CV training data, light blue is the outer CV test data and gray is the inner CV
test data.

Supplementary Figure 5. K-Fold deviation. Kernel density estimates of all models k-
fold CV deviation during GridSearch model tuning (left panel) and when held to the single
best hyperparameter set (right panel). dashed lines indicate standard deviation filters
used prior to model selection.

Supplementary Figure 6. Outer CV performance by optimization metric. (left panel)
Each point represents the results for a specific model after filter (see methods). Points
are colored according optimization metric: accuracy (Acc, red), MCC (green), combined
MCC and Jaccard index (Multi, light blue), and precision (Prec, purple). Right panel
displays zoomed in blue box of left panel.

Supplementary Figure 7. Outer CV performance by different Rosetta category
calculation method. (left panel) Each point represents the results for a specific model
after filtering which included the Rosetta category in its feature set (see methods). Points
are colored according to calculation method: mean sphere (MeanSph, blue), sum shell
(SumShell, orange), sum sphere (SumSph, green), and mean shell (MeanShell, red).
Right panel displays zoomed in blue box of left panel.

Supplementary Figure 8. Outer CV performance by feature set. Each point
represents the results for a specific model after filter. Points are colored according to
feature set used by model (Supplementary Data 1c for feature sets). The size of the dot
corresponds to the number of features in that feature set. The right panel zooms in on the
blue box in the left panel. Right panel displays zoomed in blue box of left panel.

Supplementary Figure 9. Outer CV performance by algorithm for all models. Each
point represents the results for a specific model. All models are included, even those with
high deviation. Points are colored according algorithm used and grouped by classifier
type; support vector machines (SVMs) are purples, decision-tree ensemble methods are
blues, linear models are reds, discriminant analysis are greens, no grouping for naive
Bayes, nearest neighbor, and neural network. Better performing classifiers should be
close to the upper right corner. The X denotes our top model (extra trees with
AllMeanSph feature set). Right panels are zoomed in views of boxed region in left
panels.

Supplementary Tables
Supplementary Table 1. Performance evaluations for MAHOMES: The MAHOMES outer CV
is the average and standard deviation of the calculated metrics during the second run of our
outer, k-fold cross validation (k=7). The other rows show the reported metrics on our hold-out
test-set before and after the manual check and correction of a few test-set sites.

Method Accuracy Recall MCC Precision True Negative Rate
MAHOMES
outer CV

90.7%
± 4.4%

83.1%
± 5.4%

0.763
± 0.084

81.9%
± 13.8% 93.1% ± 6.9%

MAHOMES
test-set 91.5% 89.4% 0.806 84.2% 92.5%

MAHOMES
test-set
corrected*

94.2% 90.1% 0.868 92.2% 96.2%

Supplementary Figure 10. Coordinating atoms for enzyme and non-enzymes.
Comparison of the average number of N, O, and S liganding atoms per site for enzyme
and non-enzyme sites.

Supplementary Table 2. Prediction results: The true positives, true, negatives, false
positives, and false negatives of the various predictors on their respective T-metal sets.

Method
True

Positives
True

Negatives
False

Positives
False

Negatives
MAHOMES 154 332 13 17
DeepEC 152 125 103 16
DEEPre 170 184 39 0
EFICAz2.5 153 210 20 17

Supplementary Methods
Covariate Shift detection
A covariate shift is when there is a change in the distribution of input data. Developments in
methodology to solve protein structures or changes in research funding priority could potentially
lead to a covariate shift between our data-set and temporal, holdout test-set. To test for
covariate shift, we adjusted our target value to be positive for sites from the test-set and
negative for sites from our data-set. We took 300 random positive sites and 300 random
negative sites. 80% of this set was used to train a basic random forest classifier using the
AllMeanShell feature set, and the remaining 20% was used for evaluation. This process was
repeated 100 times, with different random sampling, and resulted in an average MCC value of
0.11, demonstrating that any differences between our test-set and data-set were not substantial
enough to be used for differentiating. The process was repeated using catalytic as the target
value, which resulted in an average MCC of 0.76, supporting that our methodology could be
used to detect significant differences in distribution.

Feature Calculation PDB Preparation
Each PDB chain was extracted, including all header information, into a separate PDB file. The
PDB was then relaxed 1,2 using the following command line and flags.

$ROSETTA_DEV/rosetta_scripts.mpi.linuxgccrelease -s ${pdb_id}.pdb -out:path:all
Outputs/${pdb_id}/ @Relax.flags

Relax.flags:

-parser:protocol FastRelaxScoreMetals.xml
-nstruct 50
-suffix _Relax
-ignore_zero_occupancy false
-ignore_unrecognized_res
-out:file:scorefile Relax.score
-ex1
-ex2
-relax:bb_move false
-relax:constrain_relax_to_start_coords
-relax:coord_cst_stdev=0.2
-beta_nov16
-overwrite
-extra_res_fa MO.params NI.params FES.params CUA.params
-chemical:exclude_patches LowerDNA UpperDNA tyr_diiodinated C_methylamidated
VirtualBB ShoveBB VirtualDNAPhosphate VirtualNTerm CTermConnect

FastRelaxScoreMetals.xml
<ROSETTASCRIPTS>
 <SCOREFXNS>
 <ScoreFunction name="beta16" weights="beta_nov16" >
 <Reweight scoretype="metalbinding_constraint" weight="1.0" />
 </ScoreFunction>
 </SCOREFXNS>
 <MOVERS>
 <SetupMetalsMover name="setup_metals" metals_detection_LJ_multiplier="1.0"
metals_distance_constraint_multiplier="1.2" metals_angle_constraint_multiplier="1.2" />
 <FastRelax name="fast_relax" scorefxn="beta16" />
 </MOVERS>
 <PROTOCOLS>
 <Add mover="setup_metals"/>
 <Add mover="fast_relax"/>
 </PROTOCOLS>
</ROSETTASCRIPTS>

Finally, the output structure with the best overall score 3 was kept and scored with no weights as
follows:

$ROSETTA_DEV/rosetta_scripts.linuxgccrelease -s ${pdb_id}_Relaxed.pdb @Scoring.flags >
StdOutputRelax.txt

Scoring.flags

-parser:protocol /panfs/pfs.local/work/slusky/MSEAL/RosettaTest/ScoreOnly.xml
-ignore_zero_occupancy false
-ignore_unrecognized_res
-out:file:scorefile Score.score
-beta_nov16
-overwrite
-extra_res_fa /panfs/pfs.local/work/slusky/MSEAL/RosettaTest/CUA.params
/panfs/pfs.local/work/slusky/MSEAL/RosettaTest/FES.params
/panfs/pfs.local/work/slusky/MSEAL/RosettaTest/MO.params
/panfs/pfs.local/work/slusky/MSEAL/RosettaTest/NI.params

ScoreOnly.xml

<ROSETTASCRIPTS>
 <SCOREFXNS>
 <ScoreFunction name="noweight" weights="EqualWeight"/>
 </SCOREFXNS>
 <FILTERS>
 <BuriedSurfaceArea name="BSA" confidence="0"/>
 </FILTERS>
 <SIMPLE_METRICS>
 <SecondaryStructureMetric name="dssp" dssp_reduced="True"/>
 <PerResidueSasaMetric name="sasa" />
 </SIMPLE_METRICS>
 <MOVERS>
 <ScoreMover name="scoring" scorefxn="noweight"/>
 <RunSimpleMetrics name="run_metrics1" metrics="dssp,sasa" />

 </MOVERS>
 <PROTOCOLS>
 <Add mover="scoring"/>
 <Add mover_name="run_metrics1" />
 <Add filter_name="BSA"/>
 </PROTOCOLS>
 <OUTPUT scorefxn="noweight"/>
</ROSETTASCRIPTS>

Feature Generation
A number of other programs also generated information from which features were calculated. In
all cases, the PDB file is the relaxed structure from Rosetta. The command lines are shown
below:

Rosetta pocket_grid 4 for generating the pocket and pocket lining information; rosetta_res is the
closest neighboring residue - $ROSETTA_DEV/pocket_measure.linuxgccrelease -s
${pdb_id}.pdb -central_relax_pdb_num ${rosetta_res} -pocket_num_angles 100 -
pocket_dump_pdbs -pocket_filter_by_exemplar 1 -pocket_grid_size 15 -
ignore_unrecognized_res

Bluues 5 for electrostatics information – the pqr file the required input to bluues. We generate it
using pdb2pqr.
#write pqr file

/panfs/pfs.local/work/slusky/CommonPrograms/apbs-pdb2pqr/pdb2pqr/pdb2pqr.py --
ff=parse --noopt --nodebump ${pdb_id}.pdb ${pdb_id}.pqr

#Use bluues to calculate titration curves
/panfs/pfs.local/work/slusky/CommonPrograms/bluues/bluues ${pdb_id}.pqr

bluues/${pdb_id:0:6}_bluues -pka

FindGeo 6 for coordination geometry – FindGeo consists of a python wrapper that calls and then
parses the output of a pre-compiled program. We extended the python wrapper (see
CoordGeomFeatures.py at https://github.com/mwfranklin/CustomModules/) and called FindGeo
using the following:

python $SLUSKY/CommonPrograms/findgeo/findgeo.py -o -p ${pdb_id}.pdb -i
${pdb_id:0:6} -t 3.5

Machine learning algorithms
The following algorithms were implemented using scikit learn7. All these algorithms are covered
in detail as previously published 8.

We chose three support vector machine (SVM) algorithms: linear SVM, radial basis function
SVM (RBF SVM), and sigmoidal SVM. SVMs use a set of hyperplanes that separate high
dimensional space to create predictions. Inputted feature vectors are mapped into high-
dimensional space using a kernel function. Different kernel functions result in different high-
dimensional space. We chose SVMs using three different kernel functions: linear, radial basis
function, and sigmoidal. Testing different high-dimensional spaces enables different
hyperplanes which can perform differently when separating data.

We chose three decision-tree based ensemble methods: random forest, extra trees and
gradient boosting. Decision-trees use a series of splits that use a feature to separate the target

classes. Splits result in different pathways, or branches, that form a tree-like structure. The
ensemble methods combine a group of decision trees to create one prediction. Random forest
and extra trees take the average of a set number of independent decision trees. Random forest
builds its trees using the best threshold for a feature. Extra trees use random thresholds when
splitting. Gradient boosting builds its trees sequentially, allowing new trees to compensate for
bias in previously built trees.

We chose three classifiers which fit linear models: logistic regression classifier, ridge classifier,
and passive aggressive classifier. Linear models use a set of coefficients, one for each given
feature, to generate a prediction. The coefficients are determined by minimizing the residual
sum of squares for training data. The logistic regression classifier uses a logistic function to
bound the output between 0 and 1, enabling linear models to work for classification.
Alternatively, the ridge classifier shrinks the coefficients by adding a size-based penalty. The
passive aggressive classifier also uses a penalty but updates after every entry during training.

We chose two models that use discriminant analysis: linear discriminant analysis (LDA) and
quadratic discriminant analysis (QDA). Discriminant analysis models probability as the density
of a multivariate Gaussian distribution. The predictions for discriminant analysis models follow
Bayes’ rule.

The remaining algorithms cannot be grouped with each other. Naïve bayes uses the distribution
of feature values for each target class to create probabilities which are used for future
predictions. Nearest neighbors prediction is based on the class of the most similar feature
vector(s) in the training data for its prediction. The neural network implements a multi-layer
perceptron, where hidden layers of neurons adjust input data using weights and then transform
this data into the output prediction.

Supplementary Equations
Supplementary Equation (1): Matthews Correlation Coefficient (MCC) calculation 9. TP is the
number of true positives, TN is true negatives, FP is false positives, and FN is false negatives.

𝑀𝐶𝐶 =	
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

-(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

Supplementary References:

1 Nivón, L. G., Moretti, R. & Baker, D. A Pareto-Optimal Refinement Method for Protein
Design Scaffolds. PLOS ONE 8, e59004, doi:10.1371/journal.pone.0059004 (2013).

2 Conway, P., Tyka, M. D., DiMaio, F., Konerding, D. E. & Baker, D. Relaxation of
backbone bond geometry improves protein energy landscape modeling. Protein Sci 23,
47-55, doi:10.1002/pro.2389 (2014).

3 Alford, R. F. et al. The Rosetta All-Atom Energy Function for Macromolecular Modeling
and Design. Journal of Chemical Theory and Computation 13, 3031-3048,
doi:10.1021/acs.jctc.7b00125 (2017).

4 Johnson, D. K. & Karanicolas, J. Druggable Protein Interaction Sites Are More
Predisposed to Surface Pocket Formation than the Rest of the Protein Surface. PLOS
Computational Biology 9, e1002951, doi:10.1371/journal.pcbi.1002951 (2013).

5 Fogolari, F. et al. Bluues: a program for the analysis of the electrostatic properties of
proteins based on generalized Born radii. BMC Bioinformatics 13, S18,
doi:10.1186/1471-2105-13-S4-S18 (2012).

6 Andreini, C., Cavallaro, G. & Lorenzini, S. FindGeo: a tool for determining metal
coordination geometry. Bioinformatics 28, 1658-1660, doi:10.1093/bioinformatics/bts246
(2012).

7 Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12,
2825–2830 (2011).

8 Hastie, T., Tibshirani, R. & Friedman, J. The elements of statistical learning: data mining,
inference, and prediction. (Springer Science & Business Media, 2009).

9 Matthews, B. W. Comparison of the predicted and observed secondary structure of T4
phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure 405, 442-451,
doi:https://doi.org/10.1016/0005-2795(75)90109-9 (1975).

