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Supplementary Figure 1: Gene correlation in the ISH and the scRNA-seq data 

Pearson’s correlation coefficients between all pairs of landmark genes for the ISH data (a, c, e) and scRNA-seq data (b, d, f) of 
the Drosophila dataset (a, b), zebrafish dataset (c, d) and mouse cortex dataset (e, f). 
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Supplementary Figure 2: Linear mapping property of Perler 

(a–c) Histograms of the distributions of the estimated parameters of generative linear mapping: A (left), b (middle), and Σ (right) 
(see Methods). Note that because A and Σ are diagonal matrices, only the diagonal elements of A and Σ are shown in the middle 
and right panels. (d) Scatter plot of scRNA-seq and ISH data points before (left) and after (right) mapping and corresponding to 
Fig. 1b and Fig. 2a. Principal component analysis

14
 was used to visualize high-dimensional gene-expression data into two 

dimensions. (e) Histograms of the assigned confidence corresponding to Fig. 2d. Each histogram shows the detailed distributions 
of each boxplot in Fig. 2d. Parameters of Perler are listed in Supplementary Table 7.  
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Supplementary Figure 3: Generative linear mapping on each metagene level for the Drosophila data 

Comparison of distribution differences for each metagene expression level between the ISH and scRNA-seq data and those 
between the mapped ISH and scRNA-seq data in the Drosophila dataset. (a) Kernel density estimation of each metagene 
expression level in the ISH (Blue line), mapped ISH (Red line), and scRNA-seq data (Black line). For the band width parameters 
of the kernel density estimation in mapped ISH data, the estimated noise parameter (ci in equation (1)) was used. (b) Scatter 
plot for the distribution difference. Each dot indicates the distribution difference calculated by Kullback-Leibler divergence 
between the ISH or the mapped ISH data and the scRNA-seq data for each metagene. Grey dashed line depicts an auxiliary 
line showing the same Kullback-Leibler divergence before and after the generative linear mapping. GLM, generative linear 
mapping. Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Figure 4: Comparison of origin prediction for scRNA-seq data 

(a-c) Histograms for the assigned specificity (related to Figure 2c) of other methods (Liger, Seurat v.3, and DistMap). The 
assigned specificity was evaluated by the distance between the best assigned location and the following best three locations. 
(d) Merged histogram of Figure 2c and (a-c). (e) Comparison of the assigned specificity evaluated using the different number of 
the following locations. Parameters of Perler are listed in Supplementary Table 7. Note, although the same analysis was 
performed in Karaiskos et al., we generated worse results than original on our usage of DistMap.  
  



 

7 
 

 



 

8 
 

Supplementary Figure 5: Improved correlation via hyperparameter optimization 

Improved correlation between predicted and referenced data in the scRNA-seq space by optimizing the weighting function for 
all landmark genes. Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Figure 6: Spatial reconstruction of all landmark genes 

Spatial reconstruction of all landmark genes (84 genes) by Perler, Liger, Seurat (v.3), and DistMap. Parameters of Perler are 
listed in Supplementary Table 7. This supplementary figure continues the following 4 pages. 
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Supplementary Figure 6 (2) 
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Supplementary Figure 6 (3) 
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Supplementary Figure 6 (4) 
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Supplementary Figure 6 (5) 
  



 

14 
 

 

Supplementary Figure 7: Spatial prediction of landmark genes 

(a) Predictions of landmark gene expression by Perler. Left and right panels depict the spatial reference maps and the predicted 
spatial gene-expression profiles. For each prediction, the predicted gene was removed from the reference ISH data (LOOCV). 
(b) Performance comparison of Perler with Liger (left, two-sided Wilcoxon test: p = 2.3 × 10

-9
), Seurat (v.3) (middle, two-sided 

Wilcoxon test: p = 3.4 × 10
-3

), and DistMap (right, two-sided Wilcoxon test: p = 6.6 × 10
-11

). Each dot indicates the predictive 
accuracies for each gene by Perler and previous methods. Red lines depict auxiliary lines showing the same performance of 
two methods. Parameters of Perler are listed in Supplementary Table 7. 
  



 

15 
 

 

Supplementary Figure 8: Spatial prediction of all landmark genes 
Spatial prediction of all landmark genes (84 genes) by Perler, Liger, Seurat (v.3), and DistMap. The spatial prediction was 
generated by LOOCV experiments. Parameters of Perler are listed in Supplementary Table 7. This supplementary figure 
continues the following 4 pages. 
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Supplementary Figure 8 (2) 
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Supplementary Figure 8 (3) 
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Supplementary Figure 8 (4) 
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Supplementary Figure 8 (5) 
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Supplementary Figure 9: The well-predicted and poorly-predicted genes 
(a) Comparison between Perler’s reconstruction accuracy and its predictive accuracy for Drosophila data. Each dot indicates 
the reconstruction/prediction accuracy of each gene by Perler. The green dashed line indicates the criterion used to classify 
landmark genes as well- or poorly-predicted genes. Red lines depict auxiliary lines showing the same reconstruction and 
prediction performance. Parameters of Perler are listed in Supplementary Table 7. (b, c) Each dot indicates the relationship 
between 'correlation with all landmark genes in ISH dataset' and 'correlation with all landmark genes in scRNA-seq dataset' for 
each well-predicted gene (b) and each poorly-predicted gene (c). Correlation coefficients for these scatter plots were evaluated 
as the similarities in the gene expression pattern between the ISH and the scRNA-seq data for each gene. (d) Each dot indicates 
the correlation coefficient for the scatter plots in (b) and (c), which represent the similarity of the gene expression pattern between 
the ISH and scRNA-seq data for each gene based on the correlated data structures among all genes.  
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Supplementary Figure 10: Performance improvement by dimensionality reduction 
Comparison between Perler’s performance with and without dimensionality reduction. (a) Comparison of the reconstruction 
accuracy in the Drosophila data. Average correlation coefficient (aCC) is 0.83 and 0.79 for the performance with and without 
dimensionality reduction, respectively. (b) Comparison of the predictive accuracy in the Drosophila data. aCC is 0.59 and 0.48 
for the performance with and without dimensionality reduction, respectively. (c) Comparison of the reconstruction accuracy in 
the zebrafish data. Median ROC score is 1.0 and 1.0 for the performance with and without dimensionality reduction, respectively. 
Note, the lower panel indicates the enlarged panel of the upper panel. (d) Comparison of the predictive accuracy in the zebrafish 
data. Median ROC score is 0.97 and 0.96 for the performance with and without dimensionality reduction, respectively. Each dot 
indicates the reconstruction/prediction accuracy for each landmark gene by Perler. Note, we did not conduct this type of 
experiment using the mammalian liver data or mouse cortex data because the mammalian liver data has too few landmark genes 
(6 genes) to utilize for dimensionality reduction, while the mouse cortex data has too many landmark genes (1,080 genes) to 
examine Perler's performance without dimensionality reduction. Red lines depict auxiliary lines showing the same performance 
with and without dimensionality reduction. Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Figure 11: Performance improvement via hyperparameter optimization 
Comparison between Perler’s performance with and without hyperparameter optimization. (a) Comparison in the Drosophila 
data. Average correlation coefficient (aCC) is 0.83 and 0.65 for the performance with and without hyperparameter optimization, 
respectively. (b) Comparison in the zebrafish data. Median ROC score is 1.0 and 1.0 for the performance with and without 
hyperparameter optimization, respectively. (c) Comparison in the mammalian liver data. Average correlation coefficient (aCC) 
is 0.95 and 0.92 for the performance with and without hyperparameter optimization. (d) Comparison in the mouse cortex data. 
Each dot indicates the reconstruction accuracy for each gene by Perler. Median ROC score is 0.65 and 0.60 for the performance 
with and without hyperparameter optimization, respectively. Red lines depict auxiliary lines showing the same performance with 
and without hyperparameter optimization. Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Figure 12: Performance depending on the number of landmark genes 
Perler's reconstruction performance was examined by randomly down-sampling different numbers of landmark genes for the 
Drosophila data (a), zebrafish data (b), and mouse cortex data (c). Each blue line indicates mean of all ten trials. Each error bar 
represents standard deviation. Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Figure 13: Assigned specificity depending on the number of landmark genes 
The assigned specificity (related to Figure 2d) was examined by randomly down-sampling different numbers of landmark genes 
for the Drosophila data (a), zebrafish data (b), and mouse cortex data (c). The assigned specificity was calculated by the posterior 
probabilities of circular regions for each scRNA-seq data point according to radius, with the center of each region representing 
the optimally assigned location for each data point. The radius was calculated by path length on the k-NN graph comprising all 
cells in the tissue. For the box signifies the upper and lower quartiles, and the median is represented by a short black line within 
the box. The whiskers in the boxplot have a maximum 1.5 interquartile range, with black points indicating outliers. n=1297 (a), 
851 (b), and 14249 (c) biologically independent cells (scRNA-seq data points). Parameters of Perler are listed in Supplementary 
Table 7. 
  



 

26 
 

 
 

Supplementary Figure 14: Identification of spatially restricted genes (SRGs) 

Scatter plot identifying SRGs. The red and grey points indicate SRGs and other genes, respectively. The black line indicates the 
linear regression. The region of SRGs was defined by the area under the minus-2 standard deviations of the regression line. 
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Supplementary Figure 15: Spatial prediction of non-landmark spatially restricted genes (SRGs) 
Predictions of expression of non-landmark SRGs (310 genes) were selected in Supplementary Fig. 14 by Perler, Liger, Seurat 
(v.3), and DistMap. Parameters of Perler are listed in Supplementary Table 7. This supplementary figure continues the following 
15 pages. 
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Supplementary Figure 15 (2) 
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Supplementary Figure 15 (3) 



 

30 
 

 

Supplementary Figure 15 (4) 
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Supplementary Figure 15 (5) 
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Supplementary Figure 15 (6) 
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Supplementary Figure 15 (7) 
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Supplementary Figure 15 (8) 
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Supplementary Figure 15 (9) 
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Supplementary Figure 15 (10) 
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Supplementary Figure 15 (11) 
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Supplementary Figure 15 (12) 
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Supplementary Figure 15 (13) 
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Supplementary Figure 15 (14) 
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Supplementary Figure 15 (15) 
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Supplementary Figure 15 (16) 
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Supplementary Figure 16: Linear mapping property of Perler in the zebrafish data 

(a–c) Histograms depicting the distribution of the estimated parameters for generative linear mapping: A (left), b (middle), and 
Σ (right) (see Methods). Note that because A and Σ are diagonal matrices, only the diagonal elements of A and Σ are shown in 
the middle and right panels. (d) Scatter plot of scRNA-seq and ISH data points before (left) and after (right) mapping. Principal 
component analysis14 was used to visualize high-dimensional gene-expression data into two dimensions. (e) Histogram of the 
assigned specificity evaluated by the distance between the optimally assigned location and the following best three locations. 
The distance was calculated by mean path length on the k-NN graph comprising all cells in the tissue (k = 6). (f) Boxplot of the 
assigned specificity (related to Figure 2d) calculated as the posterior probabilities of circular regions for each scRNA-seq data 
point according to radius, with the center of each region representing the optimally assigned location for each data point. For 
the box signifies the upper and lower quartiles, and the median is represented by a short black line within the box. The 
whiskers on the boxplot have a maximum 1.5 interquartile range, with black points indicating outliers. The radius was 
calculated by path length on the k-NN graph comprising all cells in the tissue. n=851 biologically independent cells (scRNA-
seq data points). (g) Histograms of the assigned confidence corresponding to (f). Each histogram shows the detailed 
distributions of each boxplot in (f). Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Figure 17: Generative linear mapping on each metagene level for zebrafish data 

Comparison of the distribution difference for each metagene expression level between the ISH and scRNA-seq data with those 
between the mapped ISH and scRNA-seq data in the zebrafish dataset. (a) Kernel density estimation of each metagene 
expression level in the ISH (Blue line), mapped ISH (Red line), and scRNA-seq data (Black line). For the band width 
parameters of the kernel density estimation in the mapped ISH data, the estimated noise parameter (ci in equation (1)) was 
used. (b) Scatter plot of the distribution difference. GLM, Generative linear mapping; each dot indicates the distribution 
difference calculated by Kullback-Leibler divergence between the ISH or mapped ISH data and the scRNA-seq data for each 
metagene; grey dashed line depicts an auxiliary line showing the same Kullback-Leibler divergence before and after 
generative linear mapping. Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Figure 18: Linear mapping property of Perler in the mammalian liver data 

(a–c) Histograms depicting the distribution of the estimated parameters for generative linear mapping: A (left), b (middle), and 
Σ (right) (see Methods). Note that because A and Σ are diagonal matrices, only the diagonal elements of A and Σ are shown in 
the middle and right panels. (d) Scatter plot of scRNA-seq and ISH data points before (upper left) and after (right) mapping. 
Note that lower left panel depicts the enlarged panel of the upper left panel. Principal component analysis14 was used to 
visualize high-dimensional gene-expression data into two dimensions. (e) Histogram of the assigned specificity evaluated by 
the distance between the best assigned location and the following best three locations. The distance was calculated by mean 
path length on the k-NN graph comprising all cells in the tissue (k = 2). (f) Boxplot of the assigned specificity (related to Figure 
2d) calculated as the posterior probabilities of circular regions for each scRNA-seq data point according to radius, with the 
center of each region representing the best assigned location for each data point. For the box signifies the upper and lower 
quartiles, and the median is represented by a short black line within the box. The whiskers on the boxplot have a maximum 1.5 
interquartile range, with black points indicating outliers. The radius was calculated by path length on the k-NN graph 
comprising all cells in the tissue. n=1415 biologically independent cells (scRNA-seq data points). (g) Histograms of the 
assigned confidence corresponding to (f). Each histogram shows the detailed distributions of each boxplot in (f). Parameters of 
Perler are listed in Supplementary Table 7. 
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Supplementary Figure 19: Generative linear mapping on each metagene level in the mammalian liver data 

Comparison of the distribution difference of each metagene expression level between the ISH and scRNA-seq data with those 
between the mapped ISH and scRNA-seq data in the mammalian liver dataset. (a) Kernel density estimation of each 
metagene expression level in the ISH (Blue line), mapped ISH (Red line), and scRNA-seq data (Black line). For the band width 
parameters of the kernel density estimation in the mapped ISH data, the estimated noise parameter (ci in equation (1)) was 
used. (b) Enlargement of blue lines in (a). (c) Scatter plot of the distribution difference. GLM, generative linear mapping; each 
dot indicates the distribution difference calculated by Kullback-Leibler divergence between the ISH or mapped ISH data and 
the scRNA-seq data for each metagene. Note, Kullback-Leibler divergence between the ISH and scRNA-seq data before the 
generative linear mapping numerically diverge to infinity. Grey dashed line depicts an auxiliary line showing the same 
Kullback-Leibler divergence before and after generative linear mapping. Parameters of Perler are listed in Supplementary 
Table 7. 



 

49 
 

 

  



 

50 
 

 

Supplementary Figure 20: Linear mapping property of Perler in the mouse cortex data 

(a–c) Histograms depicting the distribution of the estimated parameters for generative linear mapping: A (left), b (middle), and 
Σ (right) (see Methods). Note, because A and Σ are diagonal matrices, only the diagonal elements of A and Σ are shown in the 
middle and right panels. (d) Scatter plot of scRNA-seq and ISH data points before (left) and after (right) mapping. Principal 
component analysis14 was used to visualize high-dimensional gene-expression data in two dimensions. (e) Histogram of the 
assigned specificity evaluated by the distance between the optimally assigned location and the following best three locations. 
The distance was calculated by mean path length on the k-NN graph comprising all cells in the tissue (k = 6). (f) Boxplot of the 
assigned specificity (related to Figure 2d) calculated as the posterior probabilities of circular regions for each scRNA-seq data 
point according to radius, with the center of each region representing the optimally assigned location for each data point. For 
the box signifies the upper and lower quartiles, and the median is represented by a short black line within the box. The 
whiskers on the boxplot have a maximum 1.5 interquartile range, with black points indicating outliers. The radius was 
calculated by path length on the k-NN graph comprising all cells in the tissue. n=14249 biologically independent cells (scRNA-
seq data points). (g) Histograms of the assigned confidence corresponding to (f). Each histogram shows the detailed 
distributions of each boxplot in (f). Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Figure 21: Generative linear mapping on each metagene level for the mouse cortex data 

Comparison of the distribution difference for each metagene expression level between the ISH and scRNA-seq data with those 
between the mapped ISH and scRNA-seq data in the mouse cortex dataset (Allen Brain Atlas data). (a) Kernel density 
estimation of each metagene expression level in the ISH (Blue line), mapped ISH (Red line), and scRNA-seq data (Black line). 
For the band width parameters of the kernel density estimation in the mapped ISH data, the estimated noise parameter (ci in 
equation (1)) was used. (b) Scatter plot depicting the distribution difference. GLM, generative linear mapping; each dot 
indicates the distribution difference calculated by Kullback-Leibler divergence between the ISH or the mapped ISH data and 
the scRNA-seq data for each metagene. Grey dashed line depicts an auxiliary line showing the same Kullback-Leibler 
divergence before and after the generative linear mapping. Parameters of Perler are listed in Supplementary Table 7. 



 

53 
 

 

  



 

54 
 

Supplementary Figure 22: Linear mapping property of Perler in Drop-viz data for the mouse cortex 

(a–c) Histograms depicting the distribution of the estimated parameters for generative linear mapping: A (left), b (middle), and 
Σ (right) (see Methods). Note, because A and Σ are diagonal matrices, only the diagonal elements of A and Σ are shown in the 
middle and right panels. (d) Scatter plot depicting the scRNA-seq and ISH data points before (left) and after (right) mapping. 
Principal component analysis14 was used to visualize high-dimensional gene-expression data in two dimensions. (e) Histogram 
of the assigned specificity evaluated by the distance between the optimally assigned location and the following best three 
locations. The distance was calculated by mean path length on the k-NN graph comprising all cells in the tissue (k = 6). (f) 
Boxplot of the assigned specificity (related to Figure 2d) calculated as the posterior probabilities of circular regions for each 
scRNA-seq data point according to radius, with the center of each region representing the optimally assigned location for each 
data point. For the box signifies the upper and lower quartiles, and the median is represented by a short black line within the 
box. The whiskers in the boxplot have a maximum 1.5 interquartile range, with black points indicating outliers. The radius was 
calculated by path length on the k-NN graph comprising all cells in the tissue. n=194027 biologically independent cells 
(scRNA-seq data points). (g) Histograms of the assigned confidence corresponding to (f). Each histogram depicts the detailed 
distribution of each boxplot in (f). Note, Drop-viz data is used for scRNA-seq data. Parameters of Perler are listed in 
Supplementary Table 7. 
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Supplementary Figure 23: Generative linear mapping on each metagene level in Drop-viz data for the 
mouse cortex 

Comparison of the distribution differences for each metagene expression level between the ISH and scRNA-seq data with 
those between the mapped ISH and scRNA-seq data in the mouse cortex dataset (Drop-viz data). (a) Kernel density 
estimation of each metagene expression level in the ISH (Blue line), mapped ISH (Red line), and scRNA-seq data (Black line). 
For the band width parameters of the kernel density estimation in the mapped ISH data, the estimated noise parameter (ci in 
equation (1)) was used. (b) Scatter plot of the distribution differences. GLM, generative linear mapping; each dot indicates the 
distribution difference calculated by Kullback-Leibler divergence between the ISH or mapped ISH data and the scRNA-seq 
data for each metagene. Grey dashed line depicts an auxiliary line showing the same Kullback-Leibler divergence before and 
after generative linear mapping. Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Figure 24: Application of Perler to Drop-viz data for the mouse cortex 

(a) Application of Perler to the mouse cortex (Drop-viz) data. The reference ISH data is the same as that presented in Figure 
6. The upper and lower panels show the referenced ISH data and predicted gene-expression profiles, respectively. (b) ROC 
curve for the 10-fold CV experiments for genes shown in (a). (c) Violin plot for the predictive accuracies of Perler in the 10-fold 
CV experiments for all genes in the reference ISH data according to ROC score. The median ROC score is 0.64. (d) 
Histogram depicting correlations between gene expression predictions of Perler based on Allen Brain Atlas (Figure 6) and 
Drop-viz (this figure) for all landmark genes by 10-fold CV experiments. The average correlation coefficient (aCC) was 0.70. 
Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Figure 25: Linear mapping property of Perler in Drosophila data using pk optimization 

(a–c) Histograms depicting the distributions of estimated parameters for generative linear mapping: A (left), b (middle), and Σ 
(right) (see Methods). Note, because A and Σ are diagonal matrices, only the diagonal elements of A and Σ are shown in the 
middle and right panels. (d) Scatter plot of scRNA-seq and ISH data points before (left) and after (right) mapping. Principal 
component analysis14 was used to visualize high-dimensional gene-expression data in two dimensions. (e) Histogram of the 
assigned specificity evaluated by the distance between the optimally assigned location and the following best three locations. 
The distance was calculated by mean path length on the k-NN graph comprising all cells in the tissue (k = 6). (f) Boxplot of the 
assigned specificity (related to Figure 2d) calculated as the posterior probabilities of circular regions for each scRNA-seq data 
point according to the radius, with the center of each region representing the optimally assigned location for each data point. 
For the box signifies the upper and lower quartiles, and the median is represented by a short black line within the box. The 
whiskers in the boxplot have a maximum 1.5 interquartile range, with black points indicating outliers. The radius was 
calculated by path length on the k-NN graph comprising all cells in the tissue. n=1297 biologically independent cells (scRNA-
seq data points). (g) Convergence difference of EM algorithm between analysis with and without optimization of pk. (h) 
Histograms of the assigned confidence corresponding to (f). Each histogram depicts the detailed distribution of each boxplot in 
(f). Note that pk was optimized in this experiment. Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Figure 26: Generative linear mapping on each metagene level for Drosophila data using pk 
optimization 

Comparison of the distribution difference of each metagene expression level between the ISH and scRNA-seq data with those 
between the mapped ISH and scRNA-seq data in the Drosophila dataset. Note that pk was optimized in this experiment. (a) 
Kernel density estimation of each metagene expression level in the ISH (Blue line), mapped ISH (Red line), and scRNA-seq 
data (Black line). For the band width parameters of the kernel density estimation in the mapped ISH data, the estimated noise 
parameter (ci in equation (1)) was used. (b) Scatter plot depicts the distribution difference. GLM, generative linear mapping; 
each dot indicates the distribution difference calculated by Kullback-Leibler divergence between the ISH or mapped ISH data 
and the scRNA-seq data for each metagene. Grey dashed line depicts an auxiliary line showing the same Kullback-Leibler 
divergence before and after generative linear mapping. Parameters of Perler are listed in Supplementary Table 7. 
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Supplementary Table 1: The well-predicted and poorly-predicted genes 
Well-predicted genes Ama Ance Antp apt Blimp-1 bmm bowl brk Btk29A bun 

 cad CenG1A CG10479 CG11208 CG17724 CG17786 CG43394 CG8147 cnc croc 

 Cyp310a1 dan danr Dfd disco Doc2 Doc3 dpn ems erm 

 eve exex fkh ftz gk gt h hb hkb htl 

 Ilp4 ImpE2 ImpL2 ken kni knrl Kr lok Mdr49 Mes2 

 MESR3 mfas Nek2 NetA noc nub numb oc odd prd 

 pxb rau rho run sna srp tll toc Traf4 trn 

 tsh twi zen        

Poorly-predicted genes aay CG14427 D edl Esp E(spl)m5-HLH fj peb tkv zen2 
 zfh1          
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Supplementary Table 2: 10-fold CV of DREAM Single-Cell Transcriptomics challenge (s1) 

Comparison of Perler performance with that of Liger and Seurat v.3 using s1, one of the metrics used in DREAM Single-Cell 
Transcriptomics challenge22. 

   s1   
 Peler (PCA) Perler (NA) Seurat v.3 Liger Christoph 

Hafemeister 
SC1 0.61(±0.03) 0.59(±0.04) 0.58(±0.02) 0.52(±0.03) 0.67(±0.04) 
SC2 0.61(±0.04) 0.59(±0.04) 0.59(±0.03) 0.51(±0.04) 0.66(±0.04) 
SC3 0.62(±0.03) 0.61(±0.05) 0.62(±0.04) 0.57(±0.02) 0.61(±0.05) 

SC1, 2, and 3 represent sub-challenge 1, 2, and 3 in this DREAM challenge, respectively. Each bold character indicates the 
optimal performance score in each sub-challenge. As a reference, the scores of Christoph Hafemeister, one of the top-ranked 
submissions in this DREAM challenge, are also shown. NA indicates cases without dimensionality reduction. s1 represents the 
correlation between the ISH expressions at the cells predicted by the proposed method and DistMap. Note, s1 was designed 
assuming that DistMap prediction was ground truth. For the CV scheme in Perler, we used PCA as dimensionality reduction 
instead of PLSC, as PLSC cannot split scRNA-seq data points into test and training data due to the singular value decomposition 
of the cross-covariance matrix between scRNA-seq data and ISH data (Equations (4–7)). 
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Supplementary Table 3: 10-fold CV of DREAM Single-Cell Transcriptomics challenge (s2) 

Comparison of Perler performance with that of Liger and Seurat v.3 using s2, one of the metrics used in DREAM Single-Cell 
Transcriptomics challenge22.  

   s2   
 Peler (PCA) Perler (NA) Seurat v.3 Liger Christoph 

Hafemeister 
SC1 1.01(±0.09) 1.01(±0.12) 1.00(±0.07) 0.65(±0.06) 1.05(±0.06) 
SC2 1.00(±0.12) 0.97(±0.14) 1.00(±0.10) 0.72(±0.06) 0.99(±0.08) 
SC3 0.87(±0.10) 0.73(±0.10) 0.81(±0.11) 0.67(±0.04) 0.90(±0.07) 

SC1, 2, and 3 represent sub-challenge 1, 2, and 3 in this DREAM challenge, respectively. Each bold character indicates the 
optimal performance score in each sub-challenge. As a reference, the scores of Christoph Hafemeister, one of the top-ranked 
submissions in this DREAM challenge, are also shown. NA indicates cases without dimensionality reduction. s2 represents the 
inverse distance of the cells predicted by the proposed method to the most probable location predicted by DistMap. Note, s2 
was designed assuming that DistMap prediction was ground truth. For the CV scheme in Perler, we used PCA as dimensionality 
reduction instead of PLSC, as PLSC cannot split scRNA-seq data points into test and training data due to the singular value 
decomposition of the cross-covariance matrix between scRNA-seq data and ISH data (Equations (4–7)).  
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Supplementary Table 4: Ten-fold CV of DREAM Single-Cell Transcriptomics challenge (s3) 

Comparison of Perler performance with that of Liger and Seurat v.3 using s3, one of the metrics used in DREAM Single-Cell 
Transcriptomics challenge22.  

   s3   
 Peler (PCA) Perler (NA) Seurat v.3 Liger Christoph 

Hafemeister 
SC1 0.55(±0.01) 0.56(±0.01) 0.53(±0.01) 0.37(±0.03) 0.66(±0.01) 
SC2 0.58(±0.02) 0.58(±0.02) 0.55(±0.03) 0.43(±0.02) 0.70(±0.01) 
SC3 0.69(±0.02) 0.67(±0.02) 0.68(±0.01) 0.59(±0.04) 0.64(±0.02) 

SC1, 2, and 3 represent sub-challenge 1, 2, and 3 in this DREAM challenge, respectively. Each bold character indicates the 
optimal performance score in each sub-challenge. As a reference, the scores of Christoph Hafemeister, one of the top-ranked 
submissions in this DREAM challenge, are also shown. NA indicates cases without dimensionality reduction. s3 represents the 
gene-wise correlations between the scRNA-seq expressions of landmark genes and the ISH expressions of the most probable 
cell predicted by the proposed method. Note that the calculated correlations are biasedly weighted by DistMap predictability for 
each gene.In this metric, the genes that cannot be well predicted by DistMap are less weighted. For the CV scheme in Perler, 
we used PCA as dimensionality reduction instead of PLSC, as PLSC cannot split scRNA-seq data points into test and training 
data due to the singular value decomposition of the cross-covariance matrix between scRNA-seq data and ISH data (Equations 
(4–7)).  
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Supplementary Table 5: Comparison of Perler with existing methods 

Perler characteristics relative to Liger, Seurat (v.3), DistMap, the method described by Halpern et al.7, and Seurat (v.1). 
 Perler Liger Seurat v.3 DistMap Halpern et al,. Seurat v.1 

Continuous (not binary) ü ü ü × ü × 

Applicability ü ü ü üb × üb 
Dimensinality reduction üa ü ü × × × 

Generative model ü × × × ü ü 

Linear mapping model ü × × × × × 
Generalization ü × × × - - 

aPerler used a dimensionality reduction technique (PLSC) as a preprocessing 
bDistMap and Seurat v.1 are applicable to the datasets whose ISH data is binarized 
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Supplementary Table 6: Perler usage in Python code 

The minimum usage of Perler. Underlined text indicates the controlled parameters that potentially affect the performance of 
Perler. 
import perler 
plr = perler.PERLER(data=scRNAseq, reference=ISH, n_metagenes, DR) 
 
#Generative linear mapping (the first step of perler) 
##The parameter fitting by EM algorithm 
plr.em_algorithm(optimize_pi) 
##Calculate the pair-wise distance between scRNAseq data and reference data 
plr.calc_dist() 
 
#Hyperparameter estimation 
##conducting LOOCV experiment 
##in the case that number of landmark genes are large, please use plr.k_fold_cv() 
plr.loocv() 
##fitting the hyperparameters by grid search 
plr.grid_search() 
 
#spatial reconstruction (the second step of perler) 
plr.spatial_reconstruction(location = location) 
 
#show results 
print(plr.result_with_location.head()) 
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Supplementary Table 7: Parameter used in this study 

Controlled parameters are also shown in Supplementary Table 6. 
Data set n_metagenes DR optimize_pi Hyperparameters 

Drosophila (Fig. 2-5, Supplementary Fig. 2-9, 11, and 15) 60 PLSC False Optimized 
Zebrafish (Fig. 6, Supplementary Fig. 10, 11, 16, and 17) 20 PLSC False Optimized 

Mammalian liver (Fig. 6, Supplementary Fig. 11, 18, and 19) - - False Optimized 
Mouse cortex (Fig. 6, Supplementary Fig. 11, 20, and 21) 40 PLSC False Optimized 

Drosophila (Supplementary Fig. 10) -/60 -/PLSC False a = 0, b = 1 
Zebrafish (Supplementary Fig. 10) -/20 -/PLSC False Optimized 

Drosophila (Supplementary Fig. 11) 60 PLSC False Unoptimizeda/Optimized 
Zebrafish (Supplementary Fig. 11) 60 PLSC False Unoptimizeda/Optimized 

Mammalian liver (Supplementary Fig. 11) - - False Unoptimizeda/Optimized 
Mouse cortex (Supplementary Fig. 11) 40 PLSC False Unoptimizeda/Optimized 

Drosophila (Supplementary Fig. 12 and 13) b PLSC False a = 0, b = 1 
Zebrafish (Supplementary Fig. 12 and 13) c PLSC False a = 0, b = 1 

Mouse cortex (Supplementary Fig. 12 and 13) 40 PLSC False a = 0, b = 1 
Mouse cortex (Drop-viz) (Supplementary Fig. 22-24) 40 PLSC False a = 0, b = 1 

Drosophila (Supplementary Fig. 25 and 26) 60 PLSC True Optimized 
a a = !

"
, b = 0. 

bn_metagenes are the same as the number of landmark genes. 

c n_metagenes are the half of the number of landmark genes. 
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Supplementary Table 8: The computational cost of Perler 

The running time and peak memory usage for the Perler procedures presented in Figure 2 and 6. Note that Perler uses 
multiprocessing (16 processes are used in our experiments) to accelerate the computation of the hyperparameter optimization. 

Data set Time (sec) Memory (MiB) 
Drosophila (Figure 2) 2818.53 8146.44 
Zebrafish (Figure 6) 31.34 665.09 
Mammalian liver (Figure 6) 397.88 1204.03 
Mouse cortex (Figure 6) 3215.19 22074.47 

sec, seconds; MiB, Mebibytes 

 


