
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors present an interesting study in the optimal treatment regimens for combination dosing 

schedules of Osimertinib (an EGFR inhibitor) and Dacomitinib (a pan-HER inhibitor). The 

mathematical modeling used in the study combines a birth-death-mutation model of tumor drug-

sensitive/resistant clones with pop pharmacokinetic models (with patient-level variability). The 

approach is suitable for the task, and the methods are extensive, and in general well-presented. 

However, there are sever major criticisms, and a few minor ones, that need to be addressed. 

 

Major criticisms: 

 

1. The foremost concern is how the proposed schedule is chosen. Figure 3C shows the 

conventional schedule and proposed schedule – how was this schedule chosen? 

 

The main text hints that other schedules were considered: “Our modeling ensemble identified 

superior dose-escalation dose levels.” Were other schedules run through the modeling ensemble? 

The authors make the bold claim of “optimal” dosing schedules but only consider 1 schedule! 

 

Secondly, some discussion/analysis of alternative schedules for patients who fail the proposed 

scheduling treatment would be appropriate. Is this “one-size-fits-all” treatment appropriate for all 

patients? If not when it fails why does it fail? 

 

2. Turnover/death rates have proven to be important for rates of evolution, clonal expansion, and 

resistance. The authors have included a supplementary figure on “assumed death rates” in 

simulations, but I would like further clarification. If I’m correct, the negative growth rate of 

maximal drug concentration is said to the death rate (constant for all drug concentrations). Here 

are maximal drug concentration, birth is assumed to be zero? All other birth rates are calculated as 

net growth minus death rate (see e.g. figure 1D). Is this correct? 

 

If so, can the birth/death ratio at max drug concentration might be quite different (resulting in 

same net growth). How would this affect rates of evolution in the birth-death-mutation model? 

 

3. figure 3 – the proposed schedules clearly show percent improvement over conventional. Do 

these depend on the time interval considered? Same question for figure S10, how do resistance 

levels compare over varied time intervals? 

 

4. Related to the previous point: in general, the key result of the manuscript is that “higher but 

less frequent doses of dacomitinib and lower but more frequent doses of osimertinib would yield 

superior results.” It would benefit the manuscript to have an expanded discussion around why this 

combination works, and what insight is gained by examining the mathematical model. 

 

The introduction only briefly mentions that combination therapy “can delay the emergence of 

acquired resistance in EGFR-mutant lung cancers,” but the logic isn’t quite clear until the Methods 

section. 

 

“If C797S develops in cells without T790M, the cells are resistant to third-generation TKIs, but 

retain sensitivity to first-generation TKIs. Our tumor evolution assumptions model the last type of 

resistant mechanism (C797S without T790M).” 

 

Is the “RI” metric of relative improvement of schedule A vs B the best metric for measuring 

delayed acquired resistance under combination therapy? Relative improvement of resistant 

subclones, as opposed to relative improvement of overall tumor size? 

 

Minor criticisms: 

 

1. Why isn’t C797S shown in figure 1C? 

2. Why is birth rate time-dependent in figure 1b – isn’t it only drug dependent? 



3. It would be helpful if the boxes in fig 2a were colored in corresponding colors to fig b,c. Is the 

gut compartment not shown? 

4. please define QD, BID, TID at first use. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In this manuscript, the authors address the problem of EGFR targeted therapy resistance in EGFR 

mutant lung cancer. They develop a multi-variate computational model to identify optimal 

combination therapy dosing for dacomitinib and osimertinib. The model was tested in vitro, 

providing some validation of the best combination to thwart drug resistance. A phase I clinical trial 

was designed and implemented based on the findings, with immature endpoint data. 

 

The problem is important. The approach is interesting and multi-dimensional and tries to address 

the key issue of tumor heterogeneity and heterogeneity in PK among patients. There are several 

issues that diminish enthusiasm and to address to improve the depth and impact of the 

manuscript. 

 

(1) The molecular phenotypes of the cell line models are incomplete. Does the improved "tumor" 

control in vitro correlate significantly with increased cell death and downstream pathway 

suppression? 

 

(2) How drug specific are findings? Does the model and validation hold for other inhibitors of the 

same classes? 

 

(3) As a control, the authors should show that an EGFR mutant cell line model that harbors both 

T790M and C797S is resistant to the combination therapy across all dose levels. 

 

(4) There are no studies performed in vivo, in particular using a range of EGFR mutant lung cancer 

PDX models which capture more of the genetic heterogeneity observed in patient tumors. 

 

(5) The response rate in the clinical trial appears low. Response rates to osimertinib alone in these 

patients are typically higher. How do the authors explain this, especially since the main point is 

that the modeling aims to identify the optimal dosing regime for phase I dosing. This issue appears 

to contradict the main thrust of the work. 

 

(6) How does the authors modeling move beyond other related published work that should be 

discussed in the text for context (e.g. PMIDs: 25349424, 28287179)? 

 



REVIEWER COMMENTS 
 
We would like to thank both reviewers as well as the editor for their careful reading of our paper 
and their thoughtful suggestions and comments. We have now addressed all comments in a 
revised version of the manuscript. Please find below a detailed point-by-point response to all 
issues raised, in which our responses are displayed in blue and edits made to the manuscript are 
in red. 
  
Reviewer #1 (Remarks to the Author): 
 
The authors present an interesting study in the optimal treatment regimens for combination 
dosing schedules of Osimertinib (an EGFR inhibitor) and Dacomitinib (a pan-HER inhibitor). 
The mathematical modeling used in the study combines a birth-death-mutation model of tumor 
drug-sensitive/resistant clones with pop pharmacokinetic models (with patient-level variability). 
The approach is suitable for the task, and the methods are extensive, and in general well-
presented. However, there are sever major criticisms, and a few minor ones, that need to be 
addressed. 
 
Major criticisms: 
 
1. The foremost concern is how the proposed schedule is chosen. Figure 3C shows the 
conventional schedule and proposed schedule – how was this schedule chosen? 
 
The main text hints that other schedules were considered: “Our modeling ensemble identified 
superior dose-escalation dose levels.” Were other schedules run through the modeling ensemble? 
The authors make the bold claim of “optimal” dosing schedules but only consider 1 schedule! 
 
Response: Thank you for alerting us to this unclear writing. Indeed, we did consider many other 
schedules. The goal of the optimization was to identify a schedule that would minimize the 
number of tumor cells one year after the start of treatment while adhering to optimization 
constraints such as maximum tolerability previously established with clinicians and 
commercially available doses in tablets. We searched through multiple schedules to arrive at the 
optimum conditional on the constraints, which is shown in the main text. As an example, Fig 3D 
shows the different schedules we considered for level 2 of the dose escalation schedule. We have 
now revised the manuscript to clarify this point. 
 
Revisions: page 5, line 260, added the following sentence to clarify and summarize our methods: 
“All considered schedules adhered to optimization constraints such as tolerability at each dose 
level and commercially available doses in tablets. Among the considered schedules, we identified 
the one that would minimize the number of tumor cells one year after the start of treatment.”  

Page 13, line 802, added the following material to describe constraints of considered 
schedules: “We considered schedules that adhered to two optimization constraints: 1) an 
approximation of maximum drug exposure was established with clinicians at each dose level, 
and 2) schedule options depended on commercial dose availability. Osimertinib is available in 
40 mg and 80 mg tablets, whereas dacomitinib is available in 15, 30, and 45 mg tablets. Thus, 



we used these doses in our simulations and varied the frequency of administration while 
complying to first constraint.” 
 
Secondly, some discussion/analysis of alternative schedules for patients who fail the proposed 
scheduling treatment would be appropriate. Is this “one-size-fits-all” treatment appropriate for all 
patients? If not when it fails why does it fail? 
 
Response: Thank you for bringing up this issue. After 8 weeks of treatment, about 80% of 
simulated patients had a similar outcome with the proposed and conventional schedules (Fig 3e). 
After one year of treatment, all of 100% simulated patients seemed to perform better with our 
proposed schedule (Fig 3f). Figure S10B shows a similar trend for patients with a larger BMI. 
Thus, these findings were summarized as a one-size-fits-all approach in the original version of 
the manuscript. However, to address the comment from this reviewer, we have now expanded 
the discussion in the paper to clarify the issue. Furthermore, we have also included a discussion 
on how our approach could be further personalized to individual patients in the future, for 
instance by obtaining patient-specific PK information before initiating a trial. 
 
Revisions: Page 6, line 283, we added: “Thus our proposed dose-escalation schedule 
outperformed the conventional schedule across all simulated patients, even after incorporating 
inter-patient variability in drug concentration and tumor heterogeneity. This result is 
encouraging for clinical implementation because customization of schedules for each individual 
patient was able to be avoided.” 
 
Page 9, line 444, we added: “Our modeling platform can be used to personalize treatment for 
individual patients. We envision that, with the advent of methodology to obtain real-time patient-
specific PK information, our models can be used to identify the best dosing schedule for each 
patient. Drugs that are administered intravenously or drugs that can be obtained in a larger 
number of concentrations per tablet may be better suited for individual optimization.” 
 
2. Turnover/death rates have proven to be important for rates of evolution, clonal expansion, and 
resistance. The authors have included a supplementary figure on “assumed death rates” in 
simulations, but I would like further clarification. If I’m correct, the negative growth rate of 
maximal drug concentration is said to the death rate (constant for all drug concentrations). Here 
are maximal drug concentration, birth is assumed to be zero? All other birth rates are calculated 
as net growth minus death rate (see e.g. figure 1D). Is this correct? 
  
If so, can the birth/death ratio at max drug concentration might be quite different (resulting in 
same net growth). How would this affect rates of evolution in the birth-death-mutation model?  
 
Response: Thank you for bringing up this important issue. A negative growth rate of maximal 
drug concentration from drug assays is indeed due to the death rate. Therefore, at the maximum 
drug concentration the birth rate is zero, but it is important to note that this maximum 
concentration was never reached in the simulated clinical trials. Additionally, this assumed death 
rate was comparable to what has been observed in previous experiments (Fig 5B and D in PMID: 
21734175). If we changed the ratio of rates while keeping the net growth rate constant, this 
would not affect the growth kinetics of one cell type. However, it would affect events generating 



a drug-resistant cell from a drug-sensitive cell.  In order to investigate this topic, we had 
performed sensitivity analyses by changing the death rates to those shown in Fig S4b. These 
death rates are in general lower than the death rates used in our main analysis, shown in Fig S4a, 
and resulted in a non-zero birth rate at the maximum drug concentration. Nevertheless, we still 
observed a uniform superiority of our proposed schedule relative to the conventional schedule. 
The NRAS cell type was an exception, as this cell never displayed a negative growth rate. Thus, 
we selected a birth rate that would be similar to that of the drug-sensitive cell in the absence of 
drugs (Fig 2d). In order to clarify these issues, we have revised the methods and results sections. 
 
Revisions: Added a panel to Fig S4 showing simulation results from using time-dependent rates 
and updated the figure to reflect this change. 
 

 
 
3. figure 3 – the proposed schedules clearly show percent improvement over conventional. Do 
these depend on the time interval considered? Same question for figure S10, how do resistance 
levels compare over varied time intervals? 
 
Response: Indeed, these results are time-dependent which is why we had considered the results 
at two different time points in the original version of the paper: after two treatment cycles and 1 
year of therapy (Figure 3e-d). We have now rewritten the paper to better explain these results. 
 
Revisions: page 5, line 263 added “Additionally, we opted to compare schedules at two different 
time-points: after eight weeks of treatment (first planned follow-up of patients) and after one 
year treatment (when resistance to drug is typically observed).” 
 
4. Related to the previous point: in general, the key result of the manuscript is that “higher but 
less frequent doses of dacomitinib and lower but more frequent doses of osimertinib would yield 
superior results.” It would benefit the manuscript to have an expanded discussion around why 
this combination works, and what insight is gained by examining the mathematical model. 
 
Response: Thank you for this suggestion. We have followed this advice and expanded the 
discussion directly relating to this key result. In brief, we now describe the drugs’ PK and PD 
profiles that explain our observations and how our model is able to measure the difference of 
these schedules in order to arrive this conclusion.  
 



Revisions: Page 8, line 407, added: “This observation is due to the pharmacodynamic and 
pharmacokinetic profiles of the individual cell types and drugs under consideration. Dacomitinib 
has a narrower therapeutic index than osimertinib, and therefore it is necessary to maintain a 
sufficiently high concentration in plasma, which is reached by administering a larger dose. Also, 
the drug’s pharmacokinetics suggest a slow depletion in plasma, making frequent doses les 
necessary to maintain the drug concentration within the therapeutic window (Fig 2B). On the 
other hand, osimertinib has a large therapeutic index and its concentration in plasma is depleted 
relatively fast (Fig 2C). As a result, it is not necessary to administer large doses of osimertinib 
since a lower dose will still reach the therapeutic window, but to maintain the drug-
concentration within this window, frequent dosing is required to keep pace with the drug’s rapid 
elimination from the system. Our mathematical modeling approach yields the additional 
advantage of a quantitative comparison of the performance of various schedules. Our modeling 
approach, based on extensive human PK data and in vitro dose response information, provided 
sufficient support to approve the recommended dosing regimen for a clinical trial, without the 
necessity of any additional in vivo experiments.” 
 
The introduction only briefly mentions that combination therapy “can delay the emergence of 
acquired resistance in EGFR-mutant lung cancers,” but the logic isn’t quite clear until the 
Methods section. 
  
“If C797S develops in cells without T790M, the cells are resistant to third-generation TKIs, but 
retain sensitivity to first-generation TKIs. Our tumor evolution assumptions model the last type 
of resistant mechanism (C797S without T790M).” 
 
Response: Thank you for bringing up this issue. In response, we have rewritten the introduction 
section to make the logic of this combination therapy more apparent.  
 
Revisions: Page 2, line 60, we added: “Specifically, osimertinib would be effective in the 
presence of EGFR T790M while dacomitinib would be effective in the setting of EGFR C797S.” 
 
Is the “RI” metric of relative improvement of schedule A vs B the best metric for measuring 
delayed acquired resistance under combination therapy? Relative improvement of resistant 
subclones, as opposed to relative improvement of overall tumor size? 
 
Response: We have considered other metrics in addition to the RI metric and have found that this 
metric is less variant with time (as compared to the % change from baseline, PMID: 28566331). 
We have estimated the relative improvement with regard to the number of resistant clones (Fig 
S10), but eventually opted to present the relative improvement of the overall tumor cell count 
since we aimed to identify the schedule that would be most effective across all subclones. We 
have clarified this issue in the revised version of the paper. 

Revisions: Page 13, line 814, we added: “ ௌܰ(ݐ) is the number of tumor cells of all or one 
subclone under schedule ܵ. We reported the comparisons of the total cell count to identify 
schedule that performed better across all subclones.” 

 
 



 
Minor criticisms: 
 
1. Why isn’t C797S shown in figure 1C? 
 
Response: Thank you for catching this oversight – we have now added it to the figure and 
removed it from Figure S2.  
 
Revisions: Updated Figure 1 C to include C797S. Fig1 C is shown below for convenience. 

 
 
2. Why is birth rate time-dependent in figure 1b – isn’t it only drug dependent? 
 
Response: That is correct -- the drug concentration is time-dependent, which is why the birth rate 
is also time-dependent. We have revised the figure legend to clarify this point. 
 
Revisions: Page 23, figure 1 legend, we clarified by writing: “Each cell type, i, has its own drug-
dependent birth rate and constant death rate, bi(t) and di, respectively. Because drug 
concentration was modeled as a function of time t, the rates are therefore time-dependent.” 
 
3. It would be helpful if the boxes in fig 2a were colored in corresponding colors to fig b,c. Is the 
gut compartment not shown? 
 
Response: We have implemented these changes. The gut compartment is not shown because the 
units of drug in this compartment (mg or mol) are different than that of the central and peripheral 
compartments (nanomolars, nM). In other words, there is no drug concentration in the gut 
compartment, but a drug amount which is the administered dose. 
 
Revisions: Changed the colors of the central and peripheral compartment in Fig 2a 
corresponding to Fig 2b. Updated Fig 2 a-c is shown below: 

Birth rate
( h )

103

103.5

104

30 40 50 60 70

Time (hr)

103

103.5

104

30 40 50 60 70

Time (hr)

30 40 50 60 70

Time (hr)

30 40 50 60 70

Time (hr)

30 40 50 60 70

Time (hr)

30 40 50 60 70

Time (hr)

Dacomitinib (nM)
0
1
25
80

Osimertinib (nM)
0
5
10
100
1000

c PC9 PC9-T790M PC9-C797S

O
bs

er
ve

d 
Ce

ll 
Co

un
t



 
 
 
4. please define QD, BID, TID at first use. 
 
Response: Addressed.  
 
Revisions: Page 4, line 201, defined “QD”. Page 5, line 245, defined “BID” and “TID”. 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
In this manuscript, the authors address the problem of EGFR targeted therapy resistance in 
EGFR mutant lung cancer. They develop a multi-variate computational model to identify optimal 
combination therapy dosing for dacomitinib and osimertinib. The model was tested in vitro, 
providing some validation of the best combination to thwart drug resistance. A phase I clinical 
trial was designed and implemented based on the findings, with immature endpoint data. 
 
The problem is important. The approach is interesting and multi-dimensional and tries to address 
the key issue of tumor heterogeneity and heterogeneity in PK among patients. There are several 
issues that diminish enthusiasm and to address to improve the depth and impact of the 
manuscript.  
 
(1) The molecular phenotypes of the cell line models are incomplete. Does the improved "tumor" 
control in vitro correlate significantly with increased cell death and downstream pathway 
suppression? 
 
Response: We have included a detailed description of the cell line models including allele 
frequencies of the driver and resistance mutations in the methods and results sections, as well as 
provided references to prior characterization of these cell lines. In our prior studies we have 
observed very close correlation between downstream pathway inhibition and cell viability in 
response to different classes of EGFR inhibitors that differentially target EGFR resistance 
mutations (Niederst et al. Clinical Cancer Research 2015, Fig S3C-D. We have now included 
additional information on independent validation of single-agent dacomitinib and osimertinib 

Gut

Central

Peripheral

k12 k21

ka

ke

PopPK model 
compartment structure

a

0

50

100

150

200

0.0 0.5 1.0 1.5 2.0

C
on

ce
nt

ra
tio

n 
(n

M
)

0

250

500

750

0.0 0.5 1.0 1.5 2.0

Time (weeks)

C
on

ce
nt

ra
tio

n 
(n

M
)

Time (weeks)

O
sim

er
tin

ib
Co

nc
en

tr
at

io
n 

(n
M

)
Da

co
m

iti
ni

b 
Co

nc
en

tr
at

io
n 

(n
M

)b

c



IC50 values in PC9 parental, PC9 T790M, and PC9 C797S cells to provide additional clarity, as 
well as Fig S3C showing correlation between downstream pathway inhibition and cell viability. 
 
Revisions: 
Line 137 added: agreeing with the IC50 value of 51.2 nM (Fig. S3A), and consistent with the 

correlation of viability sensitivity with suppression of downstream signaling (Fig S3C and 
S3D). Lines 141-144 added: ”in line with independent assessment of IC50 values of 11.7 nM 
and > 1mM, respectively, as well as previous reports comparing sensitivity and suppression 
of downstream signaling in response to other second and third generation EGFR inhibitors 
(Niederst et al. CCR 2015).” 

Lines 418, 456-473, and 673 added methods and reference to support Fig S3: “Immunoblotting 
analysis: Cells were treated with compound for 6 h, harvested, and stored at -80°C until 
further analysis.  Cell pellets were lysed in lysis buffer (150 mM NaCl, 1.5 mM MgCl2, 
50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 10% glycerol, 1 mM 
ethylene glycol tetraacetic acid (EGTA), 1% Triton ® X-100, 0.5% NP-40) supplemented 
with 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM NaF, 1 mM β-
glycerophosphate, cOmplete Mini EDTA-free Protease Inhibitor Cocktail Tablets, and 
PhosSTOP prior to use. Protein concentration was determined using the BCA Protein Assay 
(Pierce/Thermo Fisher Scientific, Rockford, IL, USA) per the manufacturer’s instructions. 
Ten µg of total protein were resolved by sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) and transferred onto nitrocellulose membrane. Blots were 
probed with primary antibodies overnight at 4°C in the manufacturer’s recommended buffer 
to detect proteins of interest.  After incubation with secondary antibodies, signals were 
visualized by chemiluminescence (Pierce/Thermo Fisher Scientific) on a FluorChem™ Q 
digital imager (Protein Simple™, Santa Clara, CA, USA).  Antibodies against EGFR (4267), 
p-EGFR Y1068 (3777), extracellular signal-regulated kinase (ERK) (9102), phosphorylated-
ERK (p-ERK) T202/Y204 (9101), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
(sc-25778) were purchased from Santa Cruz Biotechnology® (Dallas, TX, USA).” 

 
Added the following figure to the Supplementary data (Fig. S3) with the following description in 

the legend: “Dose-response curves of relative cell count to control over drug concentration. 
IC50 in PC9 cells of dacomitinib and osimertinib are 0.63 nM and 7.51 nM, respectively. 
The IC50 of osimertinib in the PC9-T790M cell line is 51.2 nM, and IC50 of dacomitinib in 
PC9-C797S cells is 11.7 nM. (c-d) Signaling pathway inhibition compared with cell viability 
effects in response to different classes of EGFR inhibitors. (c) Immunoblot analysis of EGFR 
signaling in PC9 and PC9-DRH cell lines. Cells were treated with the indicated 
concentrations of dacomitinib (PF-804) or PF-06459988 (PF-9988) for 6h, cell lysates were 
prepared and analyzed by immunoblotting with antibodies to the indicated proteins and 
phospho-proteins. PF-06459988 is a third generation EGFR TKI with selective and 
irreversible activity against EGFR harboring activating mutations (del exon 19 and L858R) 
as well as T790M, an activity profile closely matched to that of osimertinib19. (d) Cell 
viability assay IC50 values for dacomitinib and PF-06459988 in PC9 and PC9-DRH cell 
lines after 72h of drug treatment.” 



 
 
(2) How drug specific are findings? Does the model and validation hold for other inhibitors of 
the same classes? 
 
Response: From a clinical perspective, the other second-generation EGFR inhibitor (afatinib) is 
seen as equivalent to dacomitinib and osimertinib is the only approved third-generation EGFR 
TKI. We conclude equivalence by both comparable efficacy (response rate, progression-free 
survival) and similar mechanisms of resistance (for second-generation inhibitors resistance is 
dominated by EGFR T790M). 
 
From a modeling and validation perspective, our approach can be used to design optimum dosing 
strategies for other combinations as well if data was available to parameterize the model. In order 
to focus the analysis on the osimertinib/dacomitinib combination as well as discuss the resulting 
clinical trial, we feel that applying our approach to another combination would not add to the 
current manuscript. However, we are working on other combinations for future submissions. We 
have now added a section to the discussion to clarify this point.  
 
Revisions: Line 433, added “Our mathematical model can be applied to other targeted therapies 
using proper data to parametrize tumor drug response. For instance, other second-generation 
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EGFR inhibitors elicit similar responses to dacomitinib, and we therefore expect that our 
modeling platform, together with appropriate dose response and PK data, can be applied for 
designing combination trials for other agents as well.” 
 
(3) As a control, the authors should show that an EGFR mutant cell line model that harbors both 
T790M and C797S is resistant to the combination therapy across all dose levels. 
 
Response: Thank you for this important comment. We have now performed the appropriate 
experiments to address this concern. We measured drug-response in a T790M and C797S clone 
to demonstrate that, as expected, this cell line is resistant to both dacomitinib and osimertinib. 
 
Revisions: Figure S2, we added the following panel that demonstrates the resistance of the 
T790M and C797S clone. We have also added to the figure legend: “Combined dacomitinib plus 
osimertinib does not suppress cells harboring compound T790M and C797S mutations in the 
used cell line. MGH 121 Res#1 cells with acquired in cis T790M/C797S resistance mutations 38 
were treated with increasing concentrations of dacomitinib or osimertinib alone or in the 
presence of a fixed concentration (1mM) of osimertinib or dacomitinib, respectively. After 72 
hours, cell proliferation was assessed by CellTiter-Glo assay. Data are combined from three 
independent biological replicates (mean, S.E.M.).” 
 

  
 
(4) There are no studies performed in vivo, in particular using a range of EGFR mutant lung 
cancer PDX models which capture more of the genetic heterogeneity observed in patient tumors.  
 
Response: This is correct. We decided that in vitro and mathematical modeling evidence is 
sufficient to initiate a clinical trial. This approach is similar to what we have taken in a previous 
study (PMIDs: 21734175 and 28073786). In addition, there are other ongoing studies of 
combination EGFR tyrosine kinase inhibitors (osimertinib/gefitinib NCT03122717, 
EGF816/gefitinib NCT03292133) suggesting that our approach should be tolerable and 
efficacious. We have revised the manuscript to discuss this issue.   
 
Revisions: Line 418, we added “Our modeling approach, based on extensive human PK data and 
in vitro dose response information, provided sufficient support to approve the recommended 
dosing regimen for a clinical trial, without the necessity of any additional in vivo experiments.” 
 
(5) The response rate in the clinical trial appears low. Response rates to osimertinib alone in 
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these patients are typically higher. How do the authors explain this, especially since the main 
point is that the modeling aims to identify the optimal dosing regimen for phase I dosing. This 
issue appears to contradict the main thrust of the work.  
 
Response: The aim of combination EGFR treatment is to prevent on-target resistance by 
inhibiting emergence of EGFR second site mutations. Preventing or delaying resistance would 
not improve upon the overall response rate but may lengthen the progression-free survival. The 
response rate to osimertinib single-agent is 80%, which is similar to the 73% we observed in our 
combination study. However, follow-up is ongoing and we will be able to report on the final 
efficacy in about 2 years. We have revised the manuscript to address this point.  
 
Revisions: Line 389-395, we have addressed our point above and updated response data: 
“Efficacy endpoints remain immature. The median follow-up is 9.7 months. Of the 22 patients 
treated, 21 have had radiographic assessments of their disease. 16 of 22 have had a confirmed 
partial or complete response to treatment resulting in an overall response rate of 73%. One 
patient came off treatment for disease progression. He had concurrent EGFR/TP53/RB1 mutant 
lung cancer; he did not respond to further treatment and died within 8 months of the diagnosis of 
metastatic disease. No additional patients have had disease progression. Follow up is ongoing 
and final efficacy will be reported in the near future.” 
 
(6) How does the authors modeling move beyond other related published work that should be 
discussed in the text for context (e.g. PMIDs: 25349424, 28287179)? 
 
Response: Thank you for this comment. Briefly, our work uses a similar stochastic framework as 
that shown in PMID 25349424, but we allow for time-dependent rates, which are parametrized 
using in vitro cell line assays. PMID 28287179 uses a different optimization approach, which is 
deterministic. Neither previous article accounts for the high variability in pharmacokinetics in 
the clinical setting. We have now expanded the introduction section to address this point and 
cited these interesting articles. 

Revisions: We have cited both of these papers in the introduction in line 67: “Most approaches 
have adopted a tumor evolution model with resistant cell clones, yet few account for the complex 
drug kinetics and the inter-patient variability of drug concentrations (PMIDs: 22982659, 
25349424, 28287179).” 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Most of the major criticisms I have previously outlined are addressed in this revised manuscript, 

however, some points need clarification. The authors should be commended for a very nice 

example of clinically-relevant research driven by mathematical analysis. 

 

Brief comments on response to major criticisms: 

 

1. One size fits all. 

 

In the revised version the authors note that “customization of schedules for each individual patient 

was able to be avoided,” which is a major advantage to clinical translation. This seems to be a 

result of the PK model predicting a large dose w/ slow depletion (dacomitinib) or PK model 

predicting frequent doses w/ fast depletion (osimertinib). 

 

As the authors note in the discussion, personalization of PK may improve patient-specific 

outcomes, but likely to be similar treatment strategies based on the nature of the therapeutic 

index of each drugs. Figure 3e,f are powerful, as they show few (if any?) patients which perform at 

a negative relative improvement with the given metric. Overall tumor size is always improved, 

even if it comes at the (typically minor) expense of resistant subclones (S10). 

 

However, it is difficult to assess any underlying trend in the waterfall plots to gain any intuition 

about what patient-specific parameters would be at the largest risk of accelerating resistant 

subclones in S10. I still would like to understand better the scenarios that accelerate resistance - 

its an important point and one that deserves a little more attention than is currently given. Even 

though the proposed treatment schedules seem to have far-reaching optimality in reducing tumor 

size, some discussion about worst-case scenarios would be very beneficial, and which patient-

specific parameters are most important for resistance (figure S10). 

 

2. Turnover / death rates: 

 

Thank you for clarifying how the death rate is chosen, the method employed by the authors seems 

reasonable here. Further, authors have now shown that major conclusions draw from a constant 

death rate are not overturned with a new assumption: death as a function of drug concentration. 

This is a valuable addition to the manuscript. 

 

3. Time-dependent results 

 

This is now clarified, thank you. 

 

4. Benefit of math model 

 

This is also now clarified (see point 2, above). This new expanded discussion makes the utility of 

the math model clear, and clarifies understanding & aids intuition of the key results presented. 

Thank you. 

 

Minor criticisms: 

 

I believe that birth rate is a function of the dose concentration within the central compartment 

(based on Methods, page 12, line 675). I would suggest that the authors denote variables for the 

compartments in figure 2a (say, g(t), c(t), and p(t)), and then clarify that the birth rates in figure 

1b are functions of c(t): b(c(t)). This is relatively minor point, but an important one if we want to 

help clarify the model. 

 

 

 

Reviewer #2: 



Remarks to the Author: 

The authors have submitted a revised manuscript. My comments were only partially addressed and 

there are inaccuracies in the authors' response. First, comments 1,2 and 4 were not adequately 

experimentally addressed. No cell fate (death, cell cycle arrest, etc.) are shown and no in vivo 

studies were performed to show that the regiments extend the PFS, as the authors claim they 

should. These are major gaps that limit the depth of the current study. Second, the authors are 

incorrect that the cited publications on computational frameworks for establishing drug 

combinations to combat drug resistance do not take into account PK and variability in drug 

exposures, in particular for one of the cited publications. Thus, it remains how differentiated and 

novel the authors' computational framework is in reality. In light of these continued gaps, the 

manuscript remains a work in progress. 



Reviewer #1 (Remarks to the Author): 
 
Most of the major criticisms I have previously outlined are addressed in this revised manuscript, 
however, some points need clarification. The authors should be commended for a very nice example of 
clinically-relevant research driven by mathematical analysis.  
 
Response: We would like to thank the reviewer for his/her careful reading of the manuscript and the 
constructive comments and suggestions. We believe that our paper has become much stronger due to 
this revision. We would also like to thank him/her for the kind words regarding our work. 
 
Brief comments on response to major criticisms: 
 
1. One size fits all. 
 
In the revised version the authors note that “customization of schedules for each individual patient was 
able to be avoided,” which is a major advantage to clinical translation. This seems to be a result of the 
PK model predicting a large dose w/ slow depletion (dacomitinib) or PK model predicting frequent doses 
w/ fast depletion (osimertinib).  
 
As the authors note in the discussion, personalization of PK may improve patient-specific outcomes, but 
likely to be similar treatment strategies based on the nature of the therapeutic index of each drugs. 
Figure 3e,f are powerful, as they show few (if any?) patients which perform at a negative relative 
improvement with the given metric. Overall tumor size is always improved, even if it comes at the 
(typically minor) expense of resistant subclones (S10).  
 
However, it is difficult to assess any underlying trend in the waterfall plots to gain any intuition about 
what patient-specific parameters would be at the largest risk of accelerating resistant subclones in S10. I 
still would like to understand better the scenarios that accelerate resistance – it’s an important point 
and one that deserves a little more attention than is currently given. Even though the proposed 
treatment schedules seem to have far-reaching optimality in reducing tumor size, some discussion about 
worst-case scenarios would be very beneficial, and which patient-specific parameters are most 
important for resistance (figure S10). 
 
Response: Thank you for this helpful suggestion. The random forest analysis originally included as Fig 
S11a-b shows the importance of pre-existing clones and individual PK parameters for predicting the 
performance of particular schedules after two treatment cycles or one year. For longer treatment, the 
frequency of pre-existing T790M-posivice cells, pT790M, was more important than the proportion of 
NRAS-mutant cells, pNRAS, for predicting the performance of the schedules.  Those patients who had 
pre-existing T790M-positive clones performed significantly better under our proposed schedule than 
those without pre-existing clones; the latter still performed better under our schedule but by a smaller 
margin. In response to the reviewer’s comment regarding the dynamics of resistant subclones during 
treatment, we have now performed additional analyses. We found that some osimertinib PK parameters 
correlate with T790M cell numbers during therapy, while dacomitinib PK parameters (absorption rate, 
clearance of central compartment, and distribution rate) are associated with C797S numbers during 
therapy. We have now updated the manuscript to address these revisions. 
 
 
 



Action taken:  
• We updated the paper on line 274 with the following text: “We further explored the relationship 

of PK parameters with resistant subclones and observed that the clearance of the central and 
peripheral compartments in the osimertinib popPK model were positively correlated with 
T790M+ subclones (Fig. S11c, P < 0.001, Spearman test with Bonferroni correction). With respect 
to C797S+ subclones, the clearance of both compartments in the dacomtinib model were 
positively associated with the subclone count, whereas the absorption rate of dacomitinib was 
negatively correlated with C797S cell counts (Fig. S11d).” 
 

• Added Figure S11 c-d to the supplementary materials: 

 
• Added the following information to the figure legend:  

“Random forest analysis to identify important variables. (a) Node purity of variables from 
random forest. The higher the purity, the more important the variable is when predicting 
improvement in outcomes. Results are shown for simulations administering two weeks of 
treatment. (b) Node purity of variables after a year of treatment. The pre-existence and 
prevalence of NRAS is no longer as important after a year of treatment than after two weeks. All 
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random forests were run using 50 simulations, with 500 trees in each simulation. Mean node 
purity with standard errors are shown as black dots and error bars (n = 50 estimates), 
respectively. (c) Scatterplots of T790M+ cell numbers against values of popPK parameters, which 
are constant across different doses and time. Drug clearance from both compartments as 
specified in the osimertinib pop-PK model was highly correlated with predicted T790M+ cell 
count (Spearman correlation test with Bonferroni correction). (d) Scatterplots of C797S+ cells 
against the popPK parameters. As expected, some PK parameters from the dacomitinib popPK 
model were significantly correlated with clone size. Parameter descriptions are included in Table 
S3.” 

 
• Added the following supplementary table: 

Table S3. Description of popPK parameters from Fig S11. 
Parameter Description ݈ܥ CL1o  Clearance of central compartment (osimertinib) ݈ܥ, CL2o Clearance of peripheral compartment (osimertinib) ݈ܥௗ, CLd Clearance of central compartment (dacomitinib) ݇ௗ, kad Absorption to central compartment (dacomitinib) ݇, kao Absorption to central compartment (osimertinib) ݈ܥௗ, Qd Clearance of peripheral compartment (dacomitinib) ܸ, V1o Volume distribution of central compartment 

(osimertinib) ܸௗ, V2d Volume distribution of central compartment 
(dacomitinib) ܸ, V2o Volume distribution of peripheral compartment 
(osimertinib) ܸௗ, V3d Volume distribution of peripheral compartment 
(dacomitinib) 

 
 
2. Turnover / death rates: 
 
Thank you for clarifying how the death rate is chosen, the method employed by the authors seems 
reasonable here. Further, authors have now shown that major conclusions draw from a constant death 
rate are not overturned with a new assumption: death as a function of drug concentration. This is a 
valuable addition to the manuscript. 
 
Response: Thank you for suggesting this addition. We are glad that it has clarified our methods. 
 
3. Time-dependent results 
 
This is now clarified, thank you. 
 
Response: Thank you. 
 
4. Benefit of math model 
 



This is also now clarified (see point 2, above). This new expanded discussion makes the utility of the 
math model clear, and clarifies understanding & aids intuition of the key results presented. Thank you. 
 
Response: Thank you. 
 
Minor criticisms: 
 
I believe that birth rate is a function of the dose concentration within the central compartment (based 
on Methods, page 12, line 675). I would suggest that the authors denote variables for the compartments 
in figure 2a (say, g(t), c(t), and p(t)), and then clarify that the birth rates in figure 1b are functions of c(t): 
b(c(t)). This is relatively minor point, but an important one if we want to help clarify the model.  
 
Response: Thank you for this suggestion. We have now updated the figure to clarify this point.  
 
Action taken: We have now updated Fig 1b to show that cell division is a function of the concentration, 
which in turn is a function of time.  

 
We have also added information to the figure legend to clarify each function: “Each resistance 
mechanism arises in a one-step process. Each cell type, ݅, has its own drug-dependent birth rate and 
constant death rate, ܾ((ݐ)) and ݀, respectively. The drug concentrations of dacomitinib, ܥ(ݐ), and 
osimertinib, ܥை(ݐ), were modeled as a function of time ݐ. The vector of two drug-concentrations,	(ݐ) ,(ݐ)ܥ]=  serves as the input for the multivariate birth function, ܾ. Under a particular drug-dosing ,[(ݐ)ைܥ
schedule, the rates are therefore time-dependent.” 
 
Added labels to Fig 2 b-c to differentiate the functions of the concentrations between the central and 
peripheral compartments. These new functions are referenced in the legend of Fig 1b. Changed Fig 2b-c 
legend to: “(b) and 40 mg QD of osimertinib (c) in 1000 patients. Blue and red lines correspond to drug 
concentration in the central (ܥ(ݐ) and ܥை(ݐ)), and peripheral, ( ܲ(ݐ) and ܲ(ݐ)), compartment, 
respectively. Solid lines are median concentrations and shaded areas represent a 95% confidence interval.” 
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Reviewer #2 (Remarks to the Author): 
 
The authors have submitted a revised manuscript. My comments were only partially addressed and 
there are inaccuracies in the authors' response. First, comments 1,2 and 4 were not adequately 
experimentally addressed. No cell fate (death, cell cycle arrest, etc.) are shown and no in vivo studies 
were performed to show that the regiments extend the PFS, as the authors claim they should. These are 
major gaps that limit the depth of the current study. Second, the authors are incorrect that the cited 
publications on computational frameworks for establishing drug combinations to combat drug 
resistance do not take into account PK and variability in drug exposures, in particular for one of the cited 
publications. Thus, it remains how differentiated and novel the authors' computational framework is in 
reality. In light of these continued gaps, the manuscript remains a work in progress. 
 
Response: We very much appreciate that the reviewer took the time to readdress the points made in 
the first round of revisions. We apologize for any omissions, misunderstandings and inconsistencies that 
might have arisen/remained, which have now been fully addressed. Below we organize our response by 
separating the comments from the first revisions and devoting each point to a response to each 
comment from reviewer #2. 
 
Comment 1: “The molecular phenotypes of the cell line models are incomplete. Does the improved 
"tumor" control in vitro correlate significantly with increased cell death and downstream pathway 
suppression?” 
 
Response: Despite not parametrizing death rates from apoptosis experiments in the original version of 
the manuscript, we did perform a sensitivity analysis by varying the death rates of the cells according to 
drug concentration (Fig S4 and see response to reviewer #1 comment #2). We found that our 
recommendations were robust to these changes in death rate parametrization. In response to the 
reviewer’s comment, we have now additionally performed in vitro experiments to characterize the 
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molecular phenotypes of PC9 (Del) and RPC9-CL6 (Del/T790M) with EGFR inhibitor treatment. As shown 
in the new Figure S3C, the combination treatments with the five combination conditions (as specified in 
Figure 3C and Figure 4) resulted in stronger suppression of EGFR and downstream cell signaling and 
induction of apoptosis than osimertinib or dacomitinib alone in PC9 (Del) or RPC9-CL6 (Del/T790M) cells, 
respectively. We have updated the main text and supplement to reflect these new experimental 
findings. 
 
Action taken:  

• Added the following material to the main text: 
Line :“PC9-DRH cells, which harbor both the single-mutant (exon 19 del) and double-mutant (exon 19 
del/T790M) alleles, were found to be resistant to dacomitinib even at 250 nM, but responded to 
osimertinib at 37 nM and higher concentrations (-0.007 log-cells h-1 decrease in slope, p = 0.017), 
agreeing with the IC50 value of 51.2 nM (Fig. S3a), and consistent with the correlation of viability 
sensitivity with suppression of downstream signaling and induction of apoptosis (Fig. S3c).” 
Line 314: “The suppression of EGFR pathway and induction of apoptosis induction in PC9 and RPC9-CL6 
are consistent with long term viability effect of the combination (Fig S3C).” 

• Added procedures of immunoblot assays to Methods (starting on line 466). 
• Added the following to the supplementary material: 

Fig S3c legend: “Immunoblot analysis of EGFR signaling in PC9 and RPC9-CL6(Del/T790M) cell lines. Cells 
were treated with the indicated concentrations of dacomitinib (Daco) or osimertinib (Osi) for 24h, cell 
lysates were prepared and analyzed by immunoblotting with antibodies to the indicated proteins and 
phospho-proteins.” 

 



 
Comment 2: “How drug specific are findings? Does the model and validation hold for other 
inhibitors of the same classes?” 
 
Response: We did not experimentally address this question because in this paper, we were 
interested in the combination of osimertinib and dacomitinib to identify an optimal dosing 
schedule for the phase I/II trial we subsequently conducted at MSKCC. Currently, we are 
constructing similar models to identify optimal schedules using other inhibitors of the same 
class in combination with different class inhibitors for the treatment of EGFR-m NSCLC, but 
these are separate projects. We have updated the text to reflect this approach. 
 
Action taken: Added the following to the discussion, line 444: 
“We intend to increase the practicality of our model by incorporating other resistance 
mechanisms commonly observed in treated EGFR-m NSCLC and feature other targeted therapies 
in combination with EGFR inhibitors and will do so in future applications.” 
 
Comment 4: “There are no studies performed in vivo, in particular using a range of EGFR mutant 
lung cancer PDX models which capture more of the genetic heterogeneity observed in patient 
tumors.” 
 
Response: Thank you for raising this issue. We did not experimentally address this comment 
because, when starting this project, we had established a short timeline for a phase I trial. Since 
each drug has been studied rigorously as a single treatment and was proven to be tolerable and 
effective, and the proposed trial protocol was accepted by the MSKCC IRB, we opted to not do 
in vivo experiments. We have now commented on this choice in the revised version of the text. 
 
Action taken: Added the following text to the discussion section, line 367: 
“Our modeling approach, based on extensive human PK data and in vitro dose response 
information, provided sufficient support to approve the recommended dosing regimen for a 
clinical trial, without the necessity of any additional in vivo experiments. We therefore 
performed a phase 1b study incorporating the dosing schedule derived from our predictive 
modeling platform and demonstrated the safety and tolerability of the combination, a proof of 
concept that could justify broader use of this technique in future phase 1 combination trials.” 
 
Lastly, we would like to respond the reviewer’s comment about an inaccuracy from our 
response, particularly regarding our previous paper (PMID 22982659 Foo et al 2012). In that 
paper, we used a non-compartmental exponential model to describe erlotinib PK. In this model, 
the only variation of drug concentrations between patients came from the patients’ smoking 
status, as an example of how PK variability could arise and how large it could be between 
different patient groups. These PK estimates were based on 32 male subjects in a two-arm 
study (PMID: 16609030). Unfortunately, at the time at which we wrote the 2012 paper, we 
were not able to include any other additional PK data. In contrast, in the current paper, we use 
population PK models obtained from larger patient cohorts; these models include several other 
predictive factors for PK dynamics. After all variables are accounted for in the model, there is an 



additional and unexplained variability in drug-concentration between patients, which is 
incorporated into our modeling platform. We have now reformulated the corresponding 
section in the introduction to make this distinction more apparent. 
 
Action taken: Changed the corresponding section in the introduction to the following on page 
66: “Most approaches have adopted a tumor evolution model with resistant cell clones in 
different patient groups13,16,17, yet few account for the complex pharmacokinetics and the inter-
patient variability of drug concentrations identified from large patient cohorts.”  


