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Supplementary Note 1. Material Characterization 

Possible sources of entropy in halide perovskite memristor PUFs (HP memPUFs): 

HPs are ionic solids that exhibit relatively low activation energies for migration of both anions and cations 

due to the presence of vacancies, interstitials and antisite defects1. There are several mechanisms capable 

of modulating the conductivity and hence, memristive characteristics in HPs2. Unique to halide perovskites 

(HPs), is the co-existence and coupling of ionic and electronic components of current and capacitance, 

resulting in demonstrations of switchable majority carrier concentrations, giant dielectric constants, 

intrinsic localized doping and above bandgap photo-voltages2–5. Modulation via electrical and optical-fields 

gives rise to reversible local doping and phase segregation6, resulting in tunable photoluminescence, and 

hysteretic resistive and capacitive behaviours. Like organic semiconductors, they allow facile deposition 

through solution processing while maintaining excellent semiconducting properties. Their unique orbital 

characteristics such as an anti-bonding valence band maximum (VBM) and a bonding conduction band 

minimum (CBM), result in defect tolerance and hence local doping and modulation of carriers7. The organic 

cation in the hybrid structure also allows for structural tunability, enabling modulation of the material's 

charge transport and band gap8. 

 

Electrochemical reaction of HPs with the metallic electrodes (e.g. Ag, Al) can result in the formation of 

metallic lead9/B-site cation10 within the HP active layer or metal halides species (e.g. AgI) at the interface 

between HPs and the metal contact. This could lead to filament formation with modulatable conductivity 

depending on the type of metal and bias application11. Apart from that, the soft bonding and interconnected 

inorganic lattice also allows the ions to move relatively easily within the material’s matrix. In particular, 

halide anions have been shown to exhibit much faster diffusion rate in comparison to the organic cation 

counterparts1. Such intrinsic halide vacancy migration can create tunable low resistance paths that can be 

broken on demand by applying voltages of opposite polarity, resulting in strong memresistance12,13. Lastly, 

the defect tolerance nature of these materials enables the motion of ions to subtly change the injection 

barriers at the perovskite-transport layer interfaces, hence modulating the electronic conductivity. Such 

ionic-electronic coupling effects have been shown to be capable of inducing interfacial doping near the 

electrodes. Specifically, field-assisted ionic drift and built-in voltage-assisted ionic back-diffusion can 

result in self p- and n-doping of the perovskite active layer and the transport layer interfaces upon 

application and removal of poling voltages, modulating the carrier injection barriers and hence the 

conductivity3,11,14. The dependence of defect concentrations on the fabrication methodology utilized 

(solvent choice, mixing time, fabrication conditions, annealing temperature, precursor source) as well as 

the morphology of the films formed, further provide a rich source of entropy for cryptographic primitives 

to generate device-specific secret bits.  
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Advantages of 1D HPs: 

Here, we utilize a pyridinium-based HP material featuring molecular one-dimensional (1-D) lead-iodide 

lattices, namely PrPyr[PbI3]. It was chosen over the 3D and 2D counterparts due to the higher electronic 

confinement imparted to the inorganic framework, which results in larger resistivity. This, in turn, is 

beneficial in obtaining superior performance of resistive switching15. Additionally, charge trap states 

present within the material can also be used to modulate the memristive characteristics. Such states are 

caused by point defects typically found in low-dimensional lead-halide hybrids as a result of the highly 

distorted nature of the constituent haloplumbate octahedra16–18. Furthermore, PrPyr[PbI3]’s switching 

capability is also governed by the movement of iodide ion along the 1-D chain19,20. Such ionic migration is 

facilitated by the soft lead-iodide bonding as well as intrinsic iodide vacancy within the inorganic lattices. 

Following this halide movement, electrode polarization at the interface between the PrPyr[PbI3] and 

interfacial layers is anticipated21,22. Although diffusion of the bulky organic species has lower probability, 

it is nonetheless expected to facilitate transient dipole formation upon application of bias as a result of the 

ease of polarizability of the pyridinium core23–25. We hypothesize that all of these factors would contribute 

to the stochasticity in conductive path formation in PrPyr[PbI3] memristors as proxies to create PUFs that 

generate cryptographic keys with multiple challenge-response pairs.  

 

The PrPyr[PbI3] films are deposited using a single-step solution-based method as detailed in the methods 

section. Physically, 1-D PrPyr[PbI3] appears colourless and the UV-vis absorption spectrum of this material 

confirms its high bandgap nature (ca. 2.8 eV via extrapolation of the absorption edge; Supplementary Figure 

1a, red curve). The feature is similar to those of other 1-D lead-iodide hybrids, in as much as the dielectric 

mismatch between organic and inorganic layers leads to strongly bound excitons, which leads to sharp 

excitonic absorption band at ca. 375 nm region26,27. Upon photoexcitation by 350 nm UV light, PrPyr[PbI3] 

exhibits relatively strong photoluminescence (PL) at room temperature. The emission band is broad, with 

a maxima at 577 nm, an emission width of ca. 1.29 eV, and a full width at half maximum (FWHM) of ca. 

540 meV (Supplementary Figure 1a, blue curve). Relative to its absorption onset, the observed PL exhibits 

a large Stokes shift of ca. 0.65 eV.  

Such broad emission has been reported for related pyridinium-templated 1-D iodoplumbate systems and is 

attributed to a combination of band edge emissions and energy transfer from the excited state of the 

inorganic chains to the excited triplet state of the organic components19,21,22. However, it is also anticipated 

that coupling between excitons and phonons can occur (leading to self-trapped excitons) in hybrids having 

distorted inorganic lattices28,29 (Supplementary Table 1). Time-resolved PL is additionally conducted 

(Supplementary Figure 1b) and it is found that the effective PL lifetime of PrPyr[PbI3] is relatively short at 

room temperature (ca. 6.1 ns). This suggests that the broadband emission does not originate from triplet 

excited state(s) which could be obtained from excited-state structural reorganization of the 1-D 
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iodoplumbate chain moiety. In the material systems that involve such mechanism, long lifetime of hundreds 

to thousands of ns have been observed even at room temperature30–32. 

 

Supplementary Figure 1. Physical Characterization of PrPyr[PbI3]. a UV-Vis absorption and 

photoluminescence (PL) spectra of 1-D PrPyr[PbI3]. b Time-resolved photoluminescence (PL) spectrum 

of 1-D PrPyr[PbI3], recorded at an emission wavelength of 575 nm. Monoexponential fittings afforded PL 

lifetimes of ca. 6.10 ns. c Glancing angle X-ray diffraction (GAXRD) pattern of 1-D PrPyr[PbI3]. For 

comparison, the simulated room temperature (RT) powder XRD/PXRD pattern is included. d Photoelectron 

spectroscopy in air (PESA) measurements for PrPyr[PbI3]. Solid lines represent linear fits of the two 

distinct domains and the intersection between them provides an estimate of the valence band energy of the 

1-D material (i.e. ca. -5.52 eV). e Band energy diagrams of PrPyr[PbI3], with the energies of the charge 

transport materials and electrodes comprising the memristor devices included for reference. Valence band 

energy is estimated using c photoelectron spectroscopy in air (PESA) measurement and the band gap is 

extracted from a UV-Vis absorbance spectrum. 

 

 

a b

c d
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Supplementary Table 1. Summary of distortion parameters for PrPyr[PbI3]. 

λoct α σoct2β Δd (x10-4)γ 

1.0108 36.14 7.88 

αOctahedral elongation (λoct); βoctahedral angle variance (σoct2); and γoctahedral bond length distortion 

(∆oct). The equations for each parameter and an explanation of their meanings are as the followings: 

Octahedral elongation33,34 l!"# =
$
%
∑ #&!

&"
$
'

%
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Octahedral angle variance33–36: σ'!"# =
$
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∑ (a( − 90)'$'
()$ …………………………(2) 

Bond length distortion35: ∆!"#=
$
%
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'

%
()$ ………………………………………(3) 

where di = Pb–Br bond length, dm = average bond length, d0 = center-to-vertex distance for a regular 

polyhedron of the same volume, and ai = individual Br–Pb–Br angle. λoct, σ2oct and ∆oct provide a 

quantitative measure of polyhedral distortion, independent of the polyhedron effective size.  

Glancing angle X-ray diffraction (GAXRD) measurement suggests that on top of substrates, PrPyr[PbI3] 

tends to crystallize with a preferred orientation. In particular, strong peaks at 2θ ca. 8.8 and 10.4o in 

Supplementary Figure 1c correspond to the orientations along (002) and (011) directions of the material’s 

crystal lattices. Estimation of the valence band energies for PrPyr[PbI3] using photoelectron spectroscopy 

in air (PESA) yields a value of −5.52 eV (Supplementary Figure 1d), which is similar to the ones observed 

in other low-dimensional lead-halide hybrids26,37. Coupling this data with that obtained from the UV−vis 

measurement allows construction of the band energy diagrams shown in Supplementary Figure 1e, 

highlighting the effect of dimensionality quantization to the high bandgap nature of the material. 
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Supplementary Note 2. Cumulative Distribution Function (CDF)-Entropy Source Selection: 

 

Supplementary Figure 2. Cumulative probability distribution plot of the LRS (green) and 2 HRSs (pink 

and violet) measured across 1024 devices respectively. Coefficient of variation is larger for HRS; hence we 

choose HRS as the entropy source. 

Since conduction in the HRS is expected to be determined by the distribution of ions throughout the 

perovskite matrix, atomistic variations in the ionic distribution, tunnelling gap distance between the residual 

filament formation and the electrode, interfacial barriers, and charge trapping-detrapping dynamics can 

result in significant variations in the HRS between devices, serving as excellent sources of entropy. This is 

reflected in the cumulative distribution function (CDF) of the LRS and HRS. The coefficient of variation 

(CV), +
,
, expressing the spread of the distribution, is measured to be 2.54 for LRS and 9.07 for HRS. Larger 

variation in the HRS-1 distribution over LRS-1 justifies its selection as the entropy source38. 
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Supplementary Note 3. Bit generation protocol and Write Back 

Bit generation protocol 

Our PUF consists of a 32×32 array of RRAM dot-point devices as shown in Fig. 3a, which we logically 

treat as a crossbar (future work will physically implement a crossbar). Consecutive 1-D HP RRAM pairs 

in one row are considered as a differential unit cell (2R cell). Hence, for an A×B array of RRAM, challenge 

bits can be used to select any of the A rows and any of the B/2 column pairs leading to maximum number 

of CRPs given by:  

Cmax = AB/2 …………………………. .(4) 

The selected row is connected to a bias voltage VB while other rows are floating. The two selected columns 

are connected to a current comparator to produce a response bit bR. This can be mathematically represented 

as:  

bR = 1 if VBG+(C) > VBG-(C) 

= 0 otherwise ……………………… (5) 

where G+(C)/G-(C) denotes the two differential conductances of the cell chosen by challenge C. 

 

Differential current sensing is employed to generate a single bit. This differential design we adopt helps to 

cancel out first-order environmental dependencies. Since there are 1024 devices, we can obtain 512 

independent pairs and therefore 512 bits. Independent pairs prevent exploitable correlation amongst pairs 

and increases the randomness of the 512-bit long bitstream. Row and column selections determine which 

pair of devices is selected in the 32×32 crossbar. The selected devices’ currents are then fed into a 

comparator (such as sense amplifier) to generate one response bit. To further reduce the temporal 

fluctuations in resistance/read-out noise, the sensing margin is increased by adopting a write back process 

(explained below).  

 

Write Back 

Memristor cells with very closely spaced resistances are always vulnerable to noisy operating conditions 

that could result in bit flips and compromised crypto operations. To eliminate bit flips and the need for 

helper data, we exploit the widely separated bimodal resistance profiles of the HP memPUFs to reliably 

determine bits “1” and “0”39. Supplementary Figure 2 shows the resistance distribution of the HP memristor 

cells programmed into the 1st high resistance state (HRS-1) after the forming process. This distribution 

represents the entropy source for the HP memPUF. A complementary technique is used to increase the 

sensing gap. In a pair of memristor cells, the cell with higher current is reprogrammed/set to LRS while the 

other cell is left undisturbed in the HRS. The resultant large gap between these profiles due to the high on-

off ratio of the HP memristor cells preserves the bit string across cycles and under varying operating 

conditions, allowing us to overcome bit-flip errors without fuzzy extractors or majority voting. This write 

back digitization strategy39 does not affect the uniqueness in any way since the addresses of memristor cells 
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that need to be reprogrammed are based on the high analog entropy of HRS-1’s distribution. Additionally, 

this approach also helps us overcome the issue of having memristor cells that are stuck at either the LRS or 

HRS, as they will be identified within one of the well-separated bimodal resistance profiles. This 

digitization also makes our HP memPUFs compatible with the CMOS digital peripheral circuits for facile 

generation of bitstreams from raw analog values. 

 

We would also like to point out that the write-back may also be applied to each RRAM in a single ended 

fashion by using a median resistance to split the distribution40. This would result in twice the number of 

generated bits (Cmax = AB). However, such implementations will be more susceptible to bit-errors due to 

changes in temperature, power supply voltage, etc., as well as require additional circuits to compute the 

median. 

 

 

Supplementary Note 4. Reliability, Uniformity and Uniqueness on Raw Data 

Some useful metrics for PUF are reliability (REL), uniformity (UF) and uniqueness (UQ)41. In short, UF is 

measured by the percentage of bit ‘1’ or ‘0’ in the response bit string with an ideal value of 50 %. UQ is 

measured by the inter-chip Hamming distance (inter-HD) defined as the HD between the responses of 

different PUF devices when subjected to the same challenge with an ideal inter-HD again as 50 %. Finally, 

REL (ideal value of 100 %) is quantified using the intra-chip HD (intra-HD) defined by the HD between 

responses measured on the same device at different times and conditions for the same challenge. A 

normalized value of intra-HD, defined as ratio of the number of error bits to the length of the response, is 

also called bit error rate (BER) which is (1 - REL). Practically, a large separation between the inter-HD and 

intra-HD reduces the false identification rates.  

 

Uniformity (UF): UF is the number of times the PUF response is 1 out of m observations, as shown in the 

following equation: 

UF = $
-
∑ r.-
()$ ……………………… (6) 

where ri is the ith response bit out of m observations. We ensure that uniformity is close to the 50 % mark 

(UF = 0.5) before we determine the reliability, in order to ensure there is no bias evident in the responses. 

Also, uniformity can also be thought of as the lower bound of machine learning (ML) prediction accuracy. 

In other words if uniformity were much further away from the ideal value of 50 %, there would not be any 

need to perform ML attacks and the attacker can plainly guess the response, whether 1 or 0, depending on 

the uniformity.  

 

Supplementary Note 4 Supplementary Figure 3a shows a scatter plot of the average resistance difference 

of each differential pair (∆R = RHRS, left – RLRS, right) and the probability of outputting a “1” bit from that pair 
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in each trial across the switching cycles, for 1024 devices. A large value of |∆R| indicates differential pairs 

that can produce reliable bits “1” or “0”, while a small value of |∆R| suggests comparable resistance values 

that can produce either “0” or “1” due to read noise (resulting in bit flips). A mean UF of 49.02 % is 

obtained for the 512 bits as shown in Supplementary Figure 3b, which shows the generated bitstream is 

very close to being perfectly unbiased. 

 

Uniqueness (UQ): When several instances of a single PUF design are fabricated, it is expected that the 

different instances will give different responses to the same challenge. The set of responses generated by 

each instance can be called the instance's signature. Uniqueness, UQ, of a PUF quantifies these signature 

differences and can be obtained using the following equation: 

UQ = '
/(/*$)

∑ ∑ 23(4$,4%)
6

/
7)(8$

/*$
()$ ……………………… (7) 

 

where the term '
/(/*$)

 represents the inverse of 5/'6 possible comparisons of the signatures amongst the 

different instances, and n is the length of the signature for each ri and rj comparison over which the HD is 

obtained. The ideal value of uniqueness is 50 % (UQ = 0.5) which suggests that different instances of a 

particular PUF have their own unique signature. If uniqueness were to be diverge away from this ideal 

value, it would mean the different instances of the PUF become less distinguishable from each other 

because the number of combinations nCr, where n is the response bit length and r is the number of bit 

difference between two signatures, will deviate from the maximum if r ≠ n/2. As discussed in the main text, 

to calculate inter-HD or uniqueness for our 1024 devices, we create eight groups of 128 devices each. For 

each group we generate 64-bit keys out of 128 analog values, and we calculate the HD for 59'6 = 28 pairs 

of devices. We obtain a mean value of 48.3 % with 6.8 % standard deviation, showing excellent separation 

between inter and intra-HD. 

Reliability (REL): Reliability is a measure of the consistency of a PUF's response regardless of 

environmental variations such as temperature, voltage, aging and temporal noise. The response at nominal 

environmental conditions, also called the golden response, is compared with the response at any other time/ 

voltage / temperature to determine if the responses are different (unreliable) or not (reliable). If r0 is the 

golden response and re is the response at any condition other than the nominal environmental condition, 

then reliability REL of m observations can be mathematically expressed in terms of Bit Error Rate (BER): 

REL = 1 − BER = 1 − $
-
5∑ HD(r:, r;,<)-

6)$ 6……………………… (8) 
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We calculate the temporal, voltage and temperature-induced reliability, and the results are discussed in 

Supplementary Notes 5 and 6. The HD calculated in this case is also referred to as intra-HD since it is HD 

of responses within one chip. The 1 kb HP memPUF array bits are evaluated for 100 consecutive cycles to 

assess reliability (inversely BER) due to temporal noise. The resultant BER is 2.3 % without any correction 

schemes such as write-back, also known as native BER. Supplementary Note 6 shows further improvements 

attainable by different correction schemes. 

 

Supplementary Figure 3. a Scatter plot of differential resistance for 1024 devices. A centred plot 

demonstrates the equal likelihood of generating a 1 or 0 depending on positive or negative differential 

resistance. Note: The plot in the middle is a magnified view of the plot on the left. b Uniformity histogram 

for 64 groups of 8 bits each. A mean value of 49.02 % shows close to ideal uniformity and therefore 

excellent randomness.  

 

Supplementary Note 5. Robustness to temporal, voltage and temperature fluctuations 

The PUFs are analysed for robustness to temporal, voltage and temperature fluctuations as explained below. 

Robustness to temporal variations or transient effects are first evaluated. For assessing the robustness to 

temporal fluctuations, the testing procedure involves measuring the currents of all the devices for 100 cycles 

each. Temporal reliability is critical to be analysed from a PUF perspective since this determines the 

stability of the generated CRPs with time42. Since memristors are vulnerable to read variations over time, 

this analysis becomes even more critical. In this work, after we generate the CRP space in the enrolment 

phase, we experimentally measure the temporal stability of each of the 1024 devices of the HP memPUF 

array over 100 read cycles. The BER or intra-HD values presented in Supplementary Figure 5a shows the 

Bit-error rates (BER) due to temporal noise only.  

 

a b
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For assessing the robustness to noisy voltage channels, the testing procedure involves measuring the 

currents of 16 representative devices with a read voltage of 0.1 V, and then measuring the current again 

with a read voltage of 0.15 V (Supplementary Figures 4a and 5b). We choose 0.15 V because it represents 

a 50 % deviation from the nominal value of 0.1 V. The measurements are repeated 100 times (hence, these 

results naturally captures the effects of both voltage and temporal fluctuations). This is in line with the 

standard test protocols adopted in literature42. We use a nominal read voltage of 0.1 V as a reference, and 

calculate the raw BER, without write-back, with respect to 0.1 V. Supplementary Figures 4ai-iii shows one 

example of the obtained bit map at 0.1 V and 0.15 V respectively. Without write-back, 3 of the bits are 

observed to flip (Supplementary Figure 4a-ii), but with write-back the bit flips are reduced to 0 

(Supplementary Figure 4a-iii). Without write-back, we obtain an average BER of 19.25 % with the 

individual bit error rates plotted in Supplementary Figure 4a-iv. This value of BER is too large for the PUF 

to be used effectively in real-world applications. Fortunately, with write-back, the average BER with 

voltage and temporal fluctuations is reduced to 0 % (Supplementary Figure 4a-v). 

 

To evaluate our HP memPUF array against temperature variations, the devices are heated up to 85oC and 

the data is collected at this constant thermal stress. The experimental measurements at room temperature 

are compared to the measurements under the 60oC and 85oC stress and the reliability of the devices are 

analysed without and with the write back step (Supplementary Figures 4b, c and 5c, d). At each temperature, 

the measurements are repeated 100 times and hence, these results naturally capture the effects of both 

temperature and temporal fluctuations. A checker board pattern of 16 representative devices is presented in 

Supplementary Figures 4b, c-i-v, along with the associated bit error rate (BER) values. The HP memPUFs 

are observed to be vulnerable to thermal stress and the extracted BER values are as high as 63.71 % without 

write back. However, once again, the write back strategy we adopt, allows us to maintain the integrity of 

the generated bits and CRP space at temperatures as high as 85oC by exploiting the widely separated 

bimodal resistance profiles of the HP memristors to reliably set the devices to their complimentary states.  
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Supplementary Figure 4: Robustness to temporal, voltage and temperature fluctuations. a Reliability 

results with voltage and temporal fluctuations for 16 memristors. a-i shows the initial checkboard pattern 

obtained from 16 devices. Out of 100 measurements taken over time, the checkerboard patterns in a-i, a-ii, 
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a-iii are shown for one representative measurement. After applying a 50 % change in read voltage, 

checkerboard pattern in a-ii shows 3 bits flipping without write-back compared with a-i, and no bits flipping 

with write-back when a-iii is compared with a-i. BER color map shows errors across temporal and voltage 

variations in a-iv without write-back and no errors in a-v with write-back. 100 consecutive reads are done 

for both a-iv and a-v. b-c Reliability results with temperature and temporal fluctuations. b-i and c-i shows 

the initial checkboard pattern obtained from 16 devices. Out of 100 measurements taken over time, the 

checkerboard patterns in b and c: i-iii are shown for one representative measurement. After applying a 

thermal stress of b 60oC (c 85oC), the checkerboard pattern in b-ii (c-ii) shows 4 (3) bits flipping without 

write-back compared with b-i (c-i), and no bits flipping with write-back when b-iii (c-iii) is compared with 

b-i (c-i). BER color map shows errors across temporal and temperature variations in b-iv and c-iv without 

write-back and no errors in b-v and c-v with write-back. Note: 100 consecutive reads are done for b-iv, b-

v, c-iv and c-v. The PUF instances shown in b and c are representative distinct responses. 

 

Supplementary Note 6. BER Results and Strategies to improve BER 

Since PUFs suffer from reliability issues due to environmental variations, we have to implement strategies 

in order to reduce the BER or intra-HD. Temporal Majority Voting (TMV) is a popular technique that 

reduces BER by applying majority voting across a chosen odd number of cycles and generating a single 

bit. Increasing the number of cycles improves the error reduction because it is akin to averaging over a 

greater number of samples to give a smoother result. However, TMV methods suffer from a strong trade-

off between error reduction and latency incurred leading to generally modest improvements in BER only. 

Another technique we can use for RRAM PUFs is write-back as described in detail in Supplementary Note 

3. Since write-back does not incur this latency-improvement trade-off, it is chosen for its superior 

performance. 

 

Supplementary Figure 5 illustrates the BER results of the HP memPUFs under different strategies- (i) raw 

values without TMV, (ii) with different TMV settings and (iii) Write Back (WB). We measured data for 

the 1 kb array over 100 cycles, giving us 100 bits over temporal variation for each of the 1024 devices. For 

example with TMV-5, we generate a single bit by applying majority voting to every 5 successive bit 

groupings, resulting in 20 bits. We then measure BER for these 20 bits, which will be lower due to the 

averaging effect compared with 100 bits. Our results indicate that TMV is at most effective in reducing the 

native BER by 90-94 %. However, TMV is still not as effective as the write-back technique which can 

reduce BER to very near 0 %. 
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Supplementary Figure 5. Bit-error rates (BER) due to a temporal noise obtained by performing 100 

consecutive reads, b 50 % change in read voltage, and temperature fluctuations of c 60oC and d 85oC. 

Improvements in BER by using Temporal Majority Voting and Write-Back (WB) are shown for all cases. 

WB reduces BER to 0 % and outperforms other TMV schemes. 
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Supplementary Note 7. Reconfigurability 

Reconfiguration is possible for both strong and weak PUFs. For strong PUFs, authentication requires a 

secret challenge–response table to be established in the enrolment phase. This requires the server to securely 

communicate with the PUF device prior to any authentication rounds in a ‘‘secure bootstrapping’’ phase. 

In the deployment phase, once a CRP is used, it must be discarded and never used again. Therefore, the 

server must either store enough CRPs so that it will not run out, store an associated ‘‘secret model’’ that 

emulates the PUF CRP behaviour, or the PUF owner must periodically ‘‘update’’ the table at the secure 

site by replacing the old CRPs with new CRPs. Due to the large number of PUF devices that a single sever 

has to support and due to the finite storage space available on a server, the latter methodology of updating 

is the most feasible option. However, this in turn means that the physical functions of the PUF must be 

“updatable” or “reconfigurable”. While logic reconfiguration strategies exist43, they require additional area 

and power overheads. Moreover, most of the common CMOS PUF implementations that rely solely on 

manufacturing process variations exhibit a static CRP space and do not support true reconfiguration of their 

physical functions or physical reconfigurability.  

 

Memristor-based PUFs have a special characteristic of irreversible reconfigurability due to their cycle-to-

cycle variations, where each cycle constitutes a SET-RESET sequence. The cycle-to-cycle variation makes 

the CRP relationship completely different compared with the relationship before reconfiguration. The 

reconfiguration being irreversible means an attacker who was able to predict the response based on 

collected CRPs before reconfiguration will not be able to predict the response after reconfiguration. For 

weak PUFs, reconfiguration can produce a key that is orthogonal to the previous key and ensure freshness 

of the keys. This can prevent chosen plaintext attacks and make previously collected plaintext and 

ciphertext pairs redundant. Here, we report a truly physical reconfigurable HP memPUF whose 

reconfiguration HD is measured to be 40.06 % over 10 cycles. The mean value is 40.06 % with a standard 

deviation of 4.61 %. Since 10 cycles result in 10 keys, we compare 5$:' 6 times to get 45 measurements and 

calculate the statistics using these 45 HD values. 
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Supplementary Note 8. Strong PUF Design 

The construction of strong PUF (Fig. 5a) requires summing up of current values of cells in rows where row 

challenge bit is 1 and compare summed up currents in a column pair with each other to generate a response 

bit. For an A × B crossbar, the challenge would thus be both the row addresses (A bits) and column pair 

selection (log2(B/2)). In this manner an exponential number of CRPs can be generated. For this design we 

do not write-back and use the raw HRS or LRS conductance values, though write-back can be used as done 

for the weak PUF. A 1 kb array can be arranged into a square-shaped 32 × 32 crossbar such that A= B= 32. 

As a result the maximum number of CRPs (Cmax) we can get are: 

 

𝐶-=> =	2?' ×
32
2 = 6.87 × 10$: 

 

Although we have a maximum of 5?'' 6 ways we can choose column pairs, we only choose 16 column pairs 

because they are independent of each other. If dependant column pairs are chosen such as A-B, B-C and 

A-C, the attacker can glean the relationship of, for example, A-C if he/she knows the CRPs of the other 

two column pairs44. 

 

Recurrent construction to combat Machine learning (ML) attacks : 

A further method of information leakage for strong PUF is through modelling attacks since a very large 

number of CRPs used for authentication purposes may be available to an attacker using man-in-the-middle 

attacks45–47. Machine learning (ML) attacks can then be mounted by using algorithms to model the 

correlations between CRPs. Due to the linear addition of conductances in our strong PUF, it is expected to 

be vulnerable to such attacks, similar to the problem faced by arbiter PUFs46. Using 128,000 CRPs for 

training and 28,000 CRPs for testing, a variety of ML algorithms were used to model the PUF response 

with bagged trees achieving the highest test accuracy of ~ 86 % (Fig. 5b).  

 

One method of improving ML attack resistance at the expense of using more devices is to create multi-

layer PUFs48 by cascading crossbar PUFs to implement more obfuscation in the challenge-response 

relationship. Instead, to save area and get better resistance in the same number of devices, we chose to fold 

the multiple layer obfuscation into the same PUF crossbar using recurrence (Fig. 5c). Similar trade-offs in 

area vs speed is achieved in the design of algorithmic vs pipeline analog to digital converters as well49. The 

usage of recurrence in PUFs involves generating an intermediate response from the PUF which is then fed 

back and XOR’ed with the challenge to obtain the final response bit44. Testing ML attacks on these new 

CRPs with the same training-testing split produces a maximum attack accuracy of 52 % (Fig. 5d), far lower 

than the results without recurrence and close to the 50 % accuracy of random guessing.  
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Training with 10x increased number of samples, i.e. 106 samples, reveals similar trends of better attack 

resilience with recurrence. Firstly, it is noted that the trend of better attack resilience with recurrence still 

holds true with higher number of CRPs (Supplementary Figure 6 b vs a). Secondly, it can be seen from 

Supplementary Figure 6b that the rate of increase of ML attack accuracy drops sharply on increasing the 

number of samples and is expected to saturate at values < 60 %. Although Supplementary Figure 6b shows 

the accuracies increasing with number of CRPs for the Bagged Trees and Adaboost algorithms, the rate of 

increase is approximately 0.7 % for every doubling of training CRPs even after collecting around 1.6 

million CRPs. For the worst case assuming constant slope and extrapolating from 220 CRPs as shown in 

Supplementary Figure 6c, for which the accuracy is 54 %, the attacker would need to collect 288 CRPs to 

increase the accuracy by 46 % to 100 %. With an accuracy of 100 %, the PUF has been successfully 

impersonated by the attacker because the accuracy has increased beyond the reliability of our PUF50. 

However, the rate at which CRPs are collected do not typically exceed 2Mbps51. Nevertheless, even if we 

assume an aggressive 10Mbps CRP collection rate, it will take 9.8x1011 years for the attacker to collect 288 

CRPs and achieve close to 100 % accuracy, demonstrating that our HP memPUFs are secure against the 

aforementioned ML attacks. 
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Supplementary Figure 6. 1-D HP Strong memPUF resilient to Machine Learning Attacks. a Machine 

learning (ML) results for strong PUF without recurrence upon training with 106 samples. Accuracies close 

to 90 % reveals the HP memPUF to be highly susceptible to such attacks. b ML results for strong PUF with 

recurrence upon training with 106 samples. Accuracies reduce to almost wild guess probability with 

recurrence compared to a, proving that recurrence improves resistance to ML attacks. c Extrapolation of 

the attack accuracy for very large number of training samples. Plot shows accuracy reaching almost 100 % 

for 288 CRPs, however collecting these many CRPs in a reasonable amount of time is not feasible. 
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Supplementary Note 9. Power estimation 

We estimate power consumption for all the three constructions: weak PUF, strong PUF without recurrence 

and strong PUF with recurrence by running SPICE simulations. For the weak PUF, we only select two 

devices after write-back and compare their currents. We assume the current in HRS is ~ 100 nA and the 

current in LRS ~ 1 µA48. We use a latch-based comparator with offset-cancellation44 whose power 

consumption is 3.61 µW and propagation delay is 8.3 ns. As a result we obtain energy/bit of 29.9 fJ/bit. 

For the strong PUF without recurrence, we assume a randomly chosen challenge activates on average half 

the number of rows, i.e., 16 rows or 16 devices per column. Since we use two columns to generate a single 

bit, the simulated energy/bit obtained is 51.4 fJ/bit. The strong PUF with recurrence consumes more power 

due to the extra power burned during intermediate response generation and the recurrence loop. Since we 

generate two intermediate response bits and apply recurrence once, we are selecting column pairs three 

times and burning power in the comparator three times. Furthermore, the 32 XOR gates consume a minimal 

energy of 0.24 fJ as well. As a result, we obtain a value of 0.102 pJ for the energy/bit of the strong PUF 

with recurrence. 

 

 

Supplementary Note 10. National Institute of Standards and Technology (NIST) Tests 

We run NIST tests (Supplementary Table 2) to check the randomness properties of our HP memPUF. Since 

we only have 1024 bits from 1024 devices for use as a weak PUF, we apply post-processing to generate 

few million bits necessary to run these tests. MATLAB is used for the subsequent analysis and bit 

generation. The weak PUF bit generation algorithm exploiting combinations is used to generate 

approximately 12.5 million bits from the 1024 raw conductance values52. Each bit is generated by 

comparing a group of “N” summed up conductance values with another such group. In our case we choose 

“N” = 3 resulting in a total number of CRPs, Cmax = 1024C6. Theoretically, “N” can be any number however 

if “N” gets too large, the speed of summation calculation reduces drastically. The two groups to be 

compared against each other are chosen at random from the 1024 conductance values, making sure there 

are no duplicates. Once the bits are generated, they are passed into the NIST test suite and the results are 

generated. 

 

We also run NIST tests to check the randomness quality of the strong PUF responses as reported in Table 

1 of main text. The strong PUF response generation scheme is discussed in Supplementary Note 8. The 

results demonstrate that both the weak and strong HP memPUFs qualify as having random enough 

bitstreams. 
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Supplementary Table 2: Results of NIST test for weak PUF construction. Approximately 12.5 million 

bits are generated using a post-processing technique of comparing groups of 3 devices’ summed up 

conductances. 

Test P-value No. of runs Pass No. Pass? 

Frequency 0.3838 200 198 Yes 

Block Frequency 0.6059 200 199 Yes 

Cumulative Sums 0.5141 200 198 Yes 

Runs 0.9357 200 200 Yes 

Longest Run 0.0179 200 195 Yes 

FFT 0.6163 200 197 Yes 

Serial 0.6267 200 200 Yes 

Linear Complexity 0.1223 200 198 Yes 

Rank 0.0805 100 99 Yes 

Approximate Entropy 0.8832 50 50 Yes 

Random Excursions - 6 6 Yes 

Random Excursions Variant - 6 6 Yes 

Non Overlapping Template 0.4559 50 49 Yes 

Overlapping Template 0.5955 200 199 Yes 

Universal 0.2133 20 20 Yes 
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Supplementary Note 11: Comparison with Literature 

Supplementary Table 3. Benchmark comparison 
Reference Miller, 

Avi, et al. 

2019 IEEE 

Custom 

Integrated 

Circuits 

Conferenc

e (CICC). 

IEEE, 

2019.53 

Pang, 

Yachuan, 

et al. 

IEEE 

Electron 

Device 

Letters 

38.2 

(2017): 

168-

171.54 

Liu, Rui, et 

al. 2016 

IEEE 

International 

Symposium 

on Hardware 

Oriented 

Security and 

Trust 

(HOST). 

IEEE, 2016.55 

Pang, 

Yachuan, 

et al. 2019 

IEEE 

Internation

al Solid-

State 

Circuits 

Conference

-(ISSCC). 

IEEE, 

2019.56 

 

Nili, H., et 

al. Nature 

Electronics 

1.3 (2018): 

197-202.48 

Jiang, H., 

et al. 

Nature 

Electronics 

1.10 

(2018): 

548-554.57 

This work 

Technology SRAM TaOx 

/HfAlyOx 

memristor 

HfO2  

 memristor 

HfO2  

 memristor 

TiO2-x  

memristor 

HfO2  

 memristor 

1-D Halide 

perovskite 

PrPyr[PbI3] 

memristor 

Methodology - Variation

s in HRS 

Variations in 

HRS 

Variations 

in HRS 

I-V non-

linearity 

variation 

Variations 

in LRS 

Variations in 

HRS 

Source of entropy Vt 

mismatch 

Oxygen 

Vacancies 

Oxygen 

Vacancies 

Oxygen 

Vacancies 

Oxygen 

Vacancies 

Oxygen 

Vacancies 

Ion migration, 

electrochemical 

metallization, 

interfacial 

doping 

Array Size 800b 1 kb 1 kb 8 kb 2x10x10 128 × 64 1 kb 

Uniformity (%)       51.4         -              - 50.01 + 

2.87 

      49.5 - 

50.0  

         -         49.02 

Uniqueness/ 

Interclass HD (%) 

50.27 49.8 ~ 42 49.99 + 

4.35 

50.0 + 6.26 50.06 + 

4.52 

48.3 + 6.8 

Intraclass HD (%) 19.7 % 

(pre-tilt), < 

7.4e-10 

(post-tilt) 

1 0 0 1.22 + 1 13.82 + 

6.57 

2.33 + 8.08 (no 

WB); 

0 + 0 (with 

WB) 

Reconfigurability No No               No Yes Yes Yes Yes 

NIST Tests No No               No Yes Passes 13 

tests 

No Passes 15 tests 

Flexible No No No No No No Yes 

This work- in bold 
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Supplementary Note 12: Future-proofing for large crossbar implementations 

We expect all our findings to remain valid even with future implementations of large crossbar arrays of HP 

memristors. The only scenario where our experimental measurements on dot point devices could differ 

from crossbar implementations would be when the resistance of the contacts lines in the crossbar interferes 

with our measurements of the high (HRS) and low resistance states (LRS). To determine this, a small 8x8 

crossbar array of HP memPUFs was fabricated and the contact resistance of the lines (thickness = 50 nm, 

width = 200 µm and length: 17.5 mm) were extracted. The resistance of the top and bottom electrodes were 

found to be equal to 65 ohms, far lower than our LRS of ~ 350-400 ohms (Supplementary Figure 7a). 

Further, dividing this by 8 results in an unit cell resistance of the wiring to be only ~ 8 ohms. Hence, we 

expect our results and approach to hold well with future implementations of large crossbar arrays of halide 

perovskite memristors. We also show below the representative IV characteristics of a dot point and crossbar 

HP memristor with the same device area (Supplementary Figures 7b-c). Both configurations yield similar 

results per se. However, we are currently limited by the poor yield of large crossbar arrays of halide 

perovskite memristors with reasonable endurance and hence, we implement dot point arrays for this work. 

With focussed engineering efforts to improve the yield of perovskite crossbar memristors, we expect to 

experimentally fabricate large-scale halide perovskite PUF chips in the near future. 

 

 
Supplementary Figure 7. a Contact line resistance of the top and bottom electrodes of a 8x8 crossbar array 

of HP memristors. Representative IV characteristics of a b dot point and c crossbar HP memristor with the 

same device area. 
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