S

PCo2 (6%)

hort-term total fiber

50

30
20
10

PCo2 (6%)

PCo1 (11%)

long-term cereal fiber

PCo1 (11%)

long-term total fiber

3 .
o 30
o]
(6] 20
a
L] L
S e .
.
L]
L
L]
PCo1 (11%)
long-term vegetable fiber
—_ 16
E}Z * 12
Q 8
(6]
a 4

PCo1 (11%)



Figure S1: Principal coordinate analysis based on species-level Bray-Curtis dissimilarity. Long-term
fiber intake was represented by a cumulative average of dietary intake values based on seven validated,
semi-quantitative food frequency questionnaires from 1986 through 2010. In 2012-2013, 307 participants
provided up to four stool samples over a six-month study period with concurrent blood samples and
assessments of recent dietary intake using 7-day dietary records. Shotgun metagenomic and
metatranscriptomic sequencing and profiling were conducted, with bacteria abundance determined using
MetaPhlAn 2. A total of 139 microbial species were included in the analysis after filtering by minimum
prevalence (>10%) and relative abundance (>0.01%). Dietary fiber did not explain overall microbial

communities.
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Figure S2: Omnibus testing with permutational analysis of variance testing (PERMANOVA) of Bray-
Curtis dissimilarities (999 permutations). In our study, 307 generally healthy men (mean age: 70.6+4.3
years) provided up to four stool samples over a six-month study period with concurrent blood samples.
They also provided assessments of recent dietary intake using 7-day dietary records and lifestyle
information via questionnaires. A total of 925 metagenomes and 372 metatranscriptomes were included in
the analysis. Bacteria abundance was determined using MetaPhlAn 2, with 139 microbial species retained
after filtering by minimum prevalence (>10%) and relative abundance (>0.01%). Functional profiles of
DNA and RNA reads were generated using HUMANN 2. Individual factors including age, lifestyle, diet
and clinical biomarkers only explained a minimal amount of the variation of the gut microbiome profile
(all R?<0.01; Additional file 2: Table S1). Among them, fiber intake was the leading factor explaining
small but significant variance in taxonomic composition (R?=0.0095, p=0.005) and functional potential

(R?=0.0085, p=0.001).
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Figure S3: Species abundances significantly associated with C-reactive protein and dietary fiber
intake (FDR-corrected p<0.25). We included 925 metagenomic samples from 307 participants in this
analysis. Comparisons used log-transformed CRP and fiber assessed as recent intake using both 7-day
dietary records and long-term cumulative averages from food frequency questionnaires over 1986-2010.
Significant associations between recent and long-term dietary fiber and CRP and metagenomic microbial
species abundances were obtained using multivariate linear association testing (Methods). Models were
adjusted for age, recent antibiotics, and total calorie intake; models for CRP were additionally adjusted for
body mass index. Both recent and long-term higher dietary fiber were associated with shifts in individual
microbial species such as Clostridiales. Greater microbial differences were observed in association with
intake of pectin and fiber from fruits and to a lesser extent, cereals, compared to vegetable fiber. Higher
CRP levels were associated with an inflammation-associated gut microbial configuration. Data are also

shown in Additional file 2: Table S2.
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Figure S4. Metagenomic pathways significantly associated with C-reactive protein and dietary fiber
intake. We included 925 metagenomic samples from 307 participants in this analysis. Comparisons used
log-transformed CRP and fiber assessed as recent intake using both 7-day dietary records and long-term
cumulative averages from food frequency questionnaires over 1986-2010. Significant associations between
recent and long-term dietary fiber and CRP and metagenomic pathways were obtained using multivariate
linear association testing (Methods). Models were adjusted for age, recent antibiotics, and total calorie
intake; models for CRP were additionally adjusted for body mass index. Dietary fiber intake in particular
recent intake from pectin was significantly associated with a large number of metagenomic functional
pathways involved in the metabolism of carbohydrates and amino acids. Data are also shown in Additional

file 2: Table S3.
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Figure S5. Microbial functional potential abundances significantly associated with C-reactive protein
and dietary fiber intake. We included 925 metagenomic samples from 307 participants in this analysis.
Comparisons used log-transformed CRP and fiber assessed as recent intake using both 7-day dietary records
and long-term cumulative averages from food frequency questionnaires over 1986-2010. Significant
associations between recent and long-term dietary fiber and CRP and abundances of 100 most abundant,
uncorrelated metagenomic enzyme commissions were obtained using multivariate linear association testing
(Methods). Models were adjusted for age, recent antibiotics, and total calorie intake; models for CRP were
additionally adjusted for body mass index. Both recent and long-term dietary fiber were significantly
associated with a large number of metagenomic functional features involved in metabolism of
carbohydrates, amino acids, vitamins, and other compounds. Greater differences were observed associated

with pectin and fruit fiber. Data are also shown in Additional file 2: Table S4.
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Figure S6: Functional activity of CAZy polysaccharide lyase family 9 (PL9) associated with recent
dietary fiber/pectin intake. We included 372 samples with both metatranscriptomes and metagenomes
from a subset of 96 participants selected because they provided stool at both sampling periods and did not
report antibiotic use during the past year. Multivariate linear mixed models were adjusted for age, recent
antibiotics, and total calorie intake. Functional activity of PL9 was represented by RNA/DNA ratio and
log2 transformed. Positive associations were observed between functional activity of PL9 and dietary intake

of fiber or pectin. All results for multivariable-adjusted associations between fiber and CAZy RNA/DNA

ratios are shown in Additional file 2: Table S6.
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