Supplementary Information

Enantioselective Synthesis of Tertiary Boronic Esters Through Catalytic Asymmetric Reversed Hydroboration

Tao-Tao Gao, Hou-Xiang Lu, Peng-Chao Gao and Bi-Jie Li*

Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University

Table of Contents

Supplementary Methods	S2
General Procedure for the Synthesis of α,β-Unsaturated Carboxylic Acid	S2
General Procedure for the Synthesis of α,β-Unsaturated Amide	S3
Characterization of Substrates	S6
Characterization of Products	S21
Synthetic Transformation of Boration Products	
Substrates and Products for Control Experiments	
General Information for Computation	S62
Copies of NMR Spectra	S84
Supplementary References	S173

Supplementary Methods

Unless otherwise noted, all reactions were assembled on a Schlenk vacuum line or in a glovebox using oven-dried glassware and were stirred with Teflon-coated magnetic stirring bars. All the ligands were purchased from Strem Chemicals and were used as received. [Rh(cod)₂OTf] was prepared according to literature methods.¹ Pinacolborane was purchased from Energy Chemical and was used as received. 1,2-Difluorobenzene was purchased from Energy Chemical and was distilled over calcium hydride. Tetrahydrofuran (THF) and acetonitrile (CH₃CN) were degassed by purging with nitrogen and then dried with a solvent purification system containing activated alumina. All other solvents and reagents were used as received. All work-up and purification procedures were carried out with reagent grade solvents in air. Reaction temperatures above 23 °C refer to temperatures of an aluminum heating block or a silicon oil bath, which were controlled by an electronic temperature modulator from IKA. NMR spectra were acquired on NMR spectrometer with 400 MHz for ¹H NMR and 101 MHz for ¹³C NMR at the NMR facility at Center of Basic Molecular Science (CBMS). Chemical shifts (δ) are reported in ppm relative to the residual solvent signal. Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). Infrared (IR) spectra were recorded on a Bruker FT-IR alpha (ATR mode) spectrophotometer. High-resolution mass spectral data was performed on a Thermo Scientific Q Exactive (positive mode) at the Mass Spectrometry Facility, CBMS. Enantiomer excess (ee) values were determined by analytical liquid chromatography (HPLC) analysis on a Shimadzu chromatograph (Daicel chiral columns Chiralpak IA, IC, ID, IE, AD, OD, AS, OJ (4.6 x 250 mm)). Specific rotations were measured on a Jasco P-2000 Polarimeter.

General procedure for the synthesis of (E)- α , β -unsaturated carboxylic acid

$$R^{1} \xrightarrow{\text{EtO}-P} OEt \xrightarrow{\text{NaH (1.5 equiv)}} THF, 0 °C-RT \xrightarrow{\text{LiOH (3.0 equiv)}} R^{2} \xrightarrow{\text{R}^{1}} OH \xrightarrow{\text{R}^{2}} OH \xrightarrow{\text{R}^{2}} OH$$

To a 250 mL flask with a Teflon-coated magnetic stir bar was added NaH (24.0 mmol, 1.2 equiv.) and THF (60 mL). Then ethyldiethylphosphonoacetate (24.0 mmol, 1.2 equiv.) was added dropwise at 0 °C. After stirring at 0 °C for 1 hour, the ketone (20.0 mmol, 1.0 equiv.) was added dropwise. After stirring 5 hours at room temperature, the reaction was cooled down and quenched with saturated NH₄Cl solution and extracted with EtOAc (3 x 50 mL). The combined organic layer was washed with water (20 mL), brine (20 mL) and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel with EtOAc/hexanes as eluent, affording the (*E*)- α , β -unsaturated ester.

To the solution of (E)- α , β -unsaturated ester (10.0 mmol, 1.0 equiv.) in THF (20 mL), H₂O (20 mL), EtOH (20 mL), and LiOH (30 mmol, 3.0 equiv.) were added at room temperature. The reaction mixture was stirred at 60 °C for 5 hours and monitored by TLC. After completion of the reaction, the reaction mixture was cooled to 0 °C and was acidified until pH=3 using 1 M HCl solution. EtOAc (50 mL) was added, and the mixture was washed with water (20 mL), brine (20 mL) and dried over Na₂SO₄. The concentrated reaction mixture was used directly in next step without further purification.

General procedure for the synthesis of α , β -unsaturated amide

To a 100 mL round-bottom flask with a Teflon-coated magnetic stir bar were added α,β -unsaturated carboxylic acid (5.0 mmol, 1.0 equiv.), 1-ethyl-3-(3-(dimethylamino)propyl)-carbodiimide hydrochloride (EDCI) (7.5 mmol, 1.5 equiv.), *N*,*N*-dimethylaminopyridine (0.50 mmol, 10 mol%), the amine (6.0 mmol, 1.2 equiv.) and dichloromethane (30.0 mL). The reaction mixture was stirred at room temperature for 12 h. Dichloromethane (50 mL) was added, and the mixture was washed with water (20 mL), brine (20 mL) and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel with EtOAc/hexanes mixture as eluent.

Synthesis of α , β -unsaturated amide **1ab**, **1ac**, **1ae**, **10** and **11**: To a 100 mL roundbottom flask with a Teflon-coated magnetic stir bar were added α , β -unsaturated carboxylic acid (5.0 mmol, 1.0 equiv.), 2-(7-azabenzotriazol-1-yl)-N,N,N',N'- tetramethyluronium hexafluorophosphate (HATU) (8.0 mmol, 1.6 equiv.), 2,4,6trimethylpyridine (10.0 mmol, 2.0 equiv.), the amine (6.0 mmol, 1.2 equiv.) and dichloromethane (30.0 mL). The reaction mixture was stirred at room temperature for 12 h. Dichloromethane (50 mL) was added, and the mixture was washed with water (20 mL), brine (20 mL) and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel with EtOAc/hexanes mixture as eluent.

According to the general procedure, the hydroboration using various additives was analyzed. It seems only weakly protic solvent additives have the beneficial effect. Our proposal is that the alcohol coordinates to the catalytic intermediates through hydrogen bonding to facilitate the catalytic cycle, but further evidence is necessary.

<i>n</i> Pr´	Me O N ^{Bn} 1a Bn	Rh(COD) ₂ OTf (5 m (+) -DIOP (6 mol HBpin (2.5 equiv additives (10 mol 1,2-C ₆ H ₄ F ₂ , -20 °C	ol%) %) v) Me <u>%)</u> , 24 h	e O N ^{Bn} 2a Bn	pinB Me C nPr 3a) N ^{Bn} Bn
	Entry	additives	2a (yield%)	3a (yield%)	3a (ee%)	
	1	-	<5	76	96	
	2	THF	16	57	93	
	3	Toluene	13	18	92	
	4	DCM	7	9	91	
	5	CHCI ₃	12	<5	-	
	6	MeOH	<5	90	96	
	7	TFEA	<5	92	95	
	8	Phenol	<5	70	96	

Reaction performed on 0.10 mmol scale. Yields were determined by GC using *n*-dodecane as an internal standard.

Supplementary Figure 1. Additives in the reversed hydroboration

Catalytic hydroboration of Z-amide was also tested. However, isomerization of the Z-isomer to E-isomer occurred at a rate comparable to the hydroboration. Thus, only moderate ee was obtained for Z-isomer. The reaction of a mixture of E/Z alkenes also provided low ee because of the isomerization.

Supplementary Figure 2. Hydroboration of (Z)-alkene and (Z), (E)-alkene mixture

Characterization of Substrates

amide 1a: colorless oil. TLC analysis (hexanes/EtOAc 11:1) $R_f = 0.21$; ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.09 (m, 10H), 5.92 (q, J = 1.3 Hz, 1H), 4.59 (s, 2H), 4.45 (s, 2H), 2.05 (td, J = 7.4, 1.2 Hz, 2H), 2.01 (s, 3H), 1.45 (h, J = 7.4 Hz, 2H), 0.85 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.1, 151.6, 137.7, 137.0, 129.0, 128.7, 128.5, 127.7, 127.4, 127.0, 117.4, 50.5, 47.3, 42.2, 20.8, 18.8, 13.8. **ESI-HR** calcd for C₂₁H₂₆NO⁺ ([M+H]⁺) 308.2009, found 308.2003. **IR** v (cm⁻¹) 2958, 2926, 2863, 1625, 697.

amide 1b: colorless oil. TLC analysis (hexanes/EtOAc 1:2) R_f = 0.42; ¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.13 (m, 5H), 5.71 (t, *J* = 1.3 Hz, 1H), 2.94 (s, 3H), 2.79 (d, *J* = 7.4 Hz, 5H), 2.42 (td, *J* = 7.7, 1.2 Hz, 2H), 1.93 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 147.5, 141.5, 128.5, 126.1, 118.9, 41.4, 37.6, 34.7, 33.9, 18.5. **ESI-HR** calcd for C₁₄H₂₀NO⁺ ([M+H]⁺) 218.1539, found 218.1537. **IR** v (cm⁻¹) 2923, 1651, 1621, 744.

amide 1c: colorless oil. TLC analysis (hexanes/EtOAc 2:1) $R_{f}=0.34$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.13 (m, 5H), 5.71 (q, J = 1.3 Hz, 1H), 3.38 (q, J = 7.1 Hz, 2H), 3.09 (q, J = 7.2 Hz, 2H), 2.81 (dd, J = 8.7, 6.8 Hz, 2H), 2.48 – 2.37 (m, 2H), 1.94 (d, J = 1.3 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H), 1.00 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 147.1, 141.5, 128.5, 128.5, 126.1, 119.1, 42.4, 41.2, 39.4, 33.8, 18.5, 14.3, 13.3.

ESI-HR calcd for C₁₆H₂₄NO⁺ ([M+H]⁺) 246.1852, found 246.1849. **IR** v (cm⁻¹) 2975, 2934, 1650, 1611, 726.

amide 1d: colorless oil. TLC analysis (hexanes/EtOAc 2:1) $R_f = 0.46$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.30 – 7.22 (m, 2H), 7.16 (d, J = 2.0 Hz, 3H), 6.05 (s, 1H), 3.52 (s, 3H), 3.15 (s, 3H), 2.80 (dd, J = 9.0, 6.6 Hz, 2H), 2.46 (dd, J = 9.0, 6.7 Hz, 2H), 2.25 – 2.13 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.0, 155.2, 141.3, 128.5, 128.5, 126.1, 114.7, 61.4, 42.8, 34.0, 32.3, 18.8. **ESI-HR** calcd for C₁₄H₂₀NO₂⁺ ([M+H]⁺) 234.1489, found 234.1485. **IR** v (cm⁻¹) 2935, 1653, 1637, 1495, 1368, 698.

amide 1e: colorless oil. TLC analysis (hexanes/EtOAc 1:1) $R_f = 0.45$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 8.6, 6.5 Hz, 2H), 7.22 – 7.11 (m, 3H), 5.65 (q, J = 1.3 Hz, 1H), 3.53 (t, J = 5.5 Hz, 2H), 3.11 (dd, J = 6.6, 4.5 Hz, 2H), 2.80 (dd, J = 8.5, 6.8 Hz, 2H), 2.42 (td, J = 7.5, 1.1 Hz, 2H), 1.86 (d, J = 1.2 Hz, 3H), 1.63 – 1.48 (m, 4H), 1.39 (dq, J = 11.3, 5.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 145.4, 141.4, 128.5, 128.4, 126.0, 119.6, 47.2, 42.2, 40.9, 33.7, 26.7, 25.7, 24.7, 18.4. **ESI-HR** calcd for C₁₇H₂₄NO⁺ ([M+H]⁺) 258.1852, found 258.1849. **IR** v (cm⁻¹) 2935, 1650, 1616, 731.

amide 1f: colorless oil. TLC analysis (hexanes/EtOAc 1:1) R_J= 0.50; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.14 (m, 5H), 5.71 (s, 1H), 3.50 (td, *J* = 6.1, 1.5 Hz, 2H), 3.17 (dt, *J* = 6.0, 2.5 Hz, 2H), 2.80 (t, *J* = 7.7 Hz, 2H), 2.43 (t, *J* = 7.7 Hz, 2H), 1.94 (d, *J* = 1.4 Hz, 3H), 1.74 – 1.67 (m, 2H), 1.57 – 1.46 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.4,

147.0, 141.5, 128.5, 126.0, 119.4, 48.2, 45.4, 41.2, 33.8, 29.3, 27.7, 27.4, 27.0, 18.6. **ESI-HR** calcd for C₁₈H₂₆NO⁺ ([M+H]⁺) 272.2009, found 272.2005.**IR** v (cm⁻¹) 2927, 1650, 1607, 725, 698.

amide 1g: colorless oil. TLC analysis (hexanes/EtOAc 1:1) $R_{f}=0.44$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.31 – 7.15 (m, 5H), 5.72 (q, J = 1.3 Hz, 1H), 3.48 – 3.42 (m, 2H), 3.19 – 3.08 (m, 2H), 2.81 (dd, J = 8.5, 6.8 Hz, 2H), 2.43 (ddd, J = 8.6, 6.8, 1.1 Hz, 2H), 1.96 (d, J = 1.2 Hz, 3H), 1.73 (td, J = 8.5, 7.3, 4.6 Hz, 2H), 1.50 (d, J = 4.2 Hz, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 168.4, 147.4, 141.5, 128.5, 126.0, 119.5, 49.5, 46.8, 41.4, 33.8, 27.5, 27.1, 26.2, 25.5, 25.3, 18.6. **ESI-HR** calcd for C₁₉H₂₈NO⁺ ([M+H]⁺) 286.2165, found 286.2160. **IR** v (cm⁻¹) 2928, 1650, 1605, 907, 726.

amide 1h: colorless oil. TLC analysis (hexanes/EtOAc 3:1) $R_{f}=0.38$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 8.5, 6.6 Hz, 2H), 7.20 – 7.14 (m, 3H), 5.57 (q, J = 1.2 Hz, 1H), 3.84 (q, J = 5.0 Hz, 2H), 3.38 – 3.25 (m, 2H), 2.81 (t, J = 7.5 Hz, 2H), 2.60 – 2.54 (m, 2H), 2.44 (td, J = 7.4, 1.1 Hz, 2H), 2.41 – 2.31 (m, 2H), 1.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 146.8, 141.2, 128.5, 128.5, 126.0, 119.2, 48.7, 43.7, 40.7, 33.5, 28.2, 27.5, 18.4. **ESI-HR** calcd for C₁₆H₂₂NOS⁺ ([M+H]⁺) 276.1417, found 276.1413. **IR** v (cm⁻¹) 3024, 2910, 1622, 743, 699.

amide 1i: colorless oil. TLC analysis (hexanes/EtOAc 1:1) R/= 0.37; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 8.5, 6.5 Hz, 2H), 7.21 – 7.12 (m, 3H), 5.58 (q, J = 1.2 Hz, 1H), 3.66 – 3.56 (m, 4H), 3.46 (t, J = 4.8 Hz, 2H), 3.06 (t, J = 4.7 Hz, 2H), 2.81 (t, J = 7.5 s8

Hz, 2H), 2.44 (td, J = 7.4, 1.1 Hz, 2H), 1.90 (d, J = 1.3 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.4, 147.4, 141.3, 128.6, 128.5, 126.1, 118.7, 67.0, 46.4, 41.6, 41.0, 33.6, 18.4. **ESI-HR** calcd for C₁₆H₂₂NO₂⁺ ([M+H]⁺) 260.1645, found 260.1640. **IR** v (cm⁻¹) 3025, 2916, 1622, 744.

amide 1j: white solid. TLC analysis (hexanes/EtOAc 2:1) $R_f = 0.32$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.21 – 7.14 (m, 3H), 5.59 (s, 1H), 3.59 – 3.51 (m, 2H), 3.37 (q, J = 5.4, 4.9 Hz, 2H), 3.22 (t, J = 5.1 Hz, 2H), 3.12 – 2.95 (m, 2H), 2.82 (t, J = 7.5 Hz, 2H), 2.45 (td, J = 7.5, 1.1 Hz, 2H), 1.88 (d, J = 1.2 Hz, 3H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 154.7, 147.4, 141.2, 128.6, 128.6, 126.2, 119.0, 80.4, 45.8, 43.8, 41.1, 41.0, 33.6, 28.5, 18.4. **ESI-HR** calcd for C₂₁H₃₀N₂NaO₃⁺ ([M+Na]⁺) 381.2149, found 381.2159. **IR** v (cm⁻¹) 2926, 2859, 1693, 1627, 737. **M. P.** 105-108 °C.

amide 1k: colorless oil. TLC analysis (hexanes/EtOAc 3:1) $R_{f}=0.15$; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, J = 8.4, 6.5 Hz, 2H), 7.18 (dd, J = 8.3, 6.5 Hz, 3H), 5.64 (d, J = 1.9 Hz, 1H), 3.97 (s, 4H), 3.67 (t, J = 5.9 Hz, 2H), 3.19 (t, J = 5.8 Hz, 2H), 2.81 (t, J = 7.6 Hz, 2H), 2.44 (t, J = 7.6 Hz, 2H), 1.86 (s, 3H), 1.65 (t, J = 5.9 Hz, 2H), 1.51 (t, J = 5.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 146.3, 141.3, 128.5, 128.5, 126.1, 119.3, 107.1, 64.5, 44.1, 40.9, 39.3, 35.9, 34.8, 33.6, 18.4. **ESI-HR** calcd for C₁₉H₂₆NO₃⁺ ([M+H]⁺) 316.1907, found 316.1903. **IR** v (cm⁻¹) 2931, 1651, 1613, 726.

amide 11: white solid. TLC analysis (hexanes/EtOAc 9:1) $R_f = 0.21$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.02 (m, 15H), 5.83 (d, J = 1.5 Hz, 1H), 4.55 (s, 2H), 4.21 (s, 2H), 2.74 (dd, J = 8.7, 6.7 Hz, 2H), 2.41 (t, J = 7.7 Hz, 2H), 2.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 149.7, 141.3, 137.6, 136.9, 128.9, 128.7, 128.5, 128.4, 128.4, 127.6, 127.4, 127.0, 126.1, 118.5, 50.4, 47.2, 41.5, 33.8, 18.9. **ESI-HR** calcd for C₂₆H₂₈NO⁺ ([M+H]⁺) 370.2165, found 370.2159. **IR** v (cm⁻¹) 3026, 2917,1625,1494, 696. **M. P.** 68-71 °C.

amide 1m: colorless oil. TLC analysis (hexanes/EtOAc 1:1) $R_f = 0.28$; ¹H NMR (400 MHz, CDCl₃) δ 7.06 (q, J = 8.0 Hz, 4H), 5.58 (q, J = 1.4 Hz, 1H), 3.62 (dq, J = 9.9, 5.3, 4.7 Hz, 4H), 3.46 (t, J = 4.8 Hz, 2H), 3.12 – 3.03 (m, 2H), 2.77 (t, J = 7.5 Hz, 2H), 2.42 (t, J = 7.5 Hz, 2H), 2.30 (s, 3H), 1.88 (d, J = 1.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 147.5, 138.2, 135.5, 129.2, 128.5, 118.7, 67.0, 46.5, 41.6, 41.2, 33.2, 21.1, 18.4. **ESI-HR** calcd for C₁₇H₂₄NO₂⁺ ([M+H]⁺) 274.1802, found 274.1797. **IR** v (cm⁻¹) 2920, 2855, 1618, 727.

amide 1n: white solid. TLC analysis (hexanes/EtOAc 2:1) R_f= 0.23; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.2 Hz, 2H), 7.10 (d, J = 8.2 Hz, 2H), 5.62 (d, J = 1.9 Hz, 1H), 3.54 (t, J = 5.5 Hz, 2H), 3.10 (t, J = 5.6 Hz, 2H), 2.78 (t, J = 7.6 Hz, 2H), 2.39 (t, J = 7.6 Hz, 2H), 1.85 (s, 3H), 1.57 (dq, J = 28.7, 6.2, 5.5 Hz, 4H), 1.41 (t, J = 5.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 145.1, 139.9, 131.8, 129.9, 128.6, 119.9, 47.3,

42.3, 40.8, 33.0, 26.7, 25.7, 24.7, 18.4. **ESI-HR** calcd for C₁₇H₂₃ClNO⁺([M+H]⁺) 292.1463, found 292.1459. **IR** ν (cm⁻¹) 2939, 1651, 1606, 724. **M. P.** 55-57 °C.

amide 10: white solid. TLC analysis (hexanes/EtOAc 2:1) $R_f = 0.19$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 2H), 7.09 – 7.01 (m, 2H), 5.62 (q, J = 1.3 Hz, 1H), 3.54 (t, J = 5.5 Hz, 2H), 3.14 – 3.05 (m, 2H), 2.76 (t, J = 7.6 Hz, 2H), 2.39 (t, J = 7.6 Hz, 2H), 1.85 (d, J = 1.2 Hz, 3H), 1.66 – 1.49 (m, 4H), 1.41 (p, J = 5.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 145.0, 140.4, 131.5, 130.3, 120.0, 119.8, 47.2, 42.2, 40.7, 33.1, 26.7, 25.7, 24.7, 18.3. **ESI-HR** calcd for C₁₇H₂₃BrNO⁺ ([M+H]⁺) 336.0958, found 336.0952. **IR** v (cm⁻¹) 2935, 1650, 1614, 731. **M. P.** 58-60 °C.

amide 1p: colorless oil. TLC analysis (hexanes/EtOAc 2:1) $R_f = 0.30$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.18 – 7.07 (m, 2H), 6.96 (t, J = 8.7 Hz, 2H), 5.64 (s, 1H), 3.54 (t, J = 5.5 Hz, 2H), 3.23 – 3.04 (m, 2H), 2.78 (t, J = 7.6 Hz, 2H), 2.39 (t, J = 7.6 Hz, 2H), 1.85 (s, 3H), 1.65 – 1.48 (m, 4H), 1.41 (p, J = 5.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 161.4 ($J_I = 243.6$ Hz), 145.2, 137.1 ($J_4 = 3.3$ Hz), 129.9 ($J_3 = 7.8$ Hz), 119.8, 115.2 ($J_2 = 21.8$ Hz), 47.3, 42.2, 41.0, 32.9, 26.7, 25.7, 24.7, 18.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -117.5. **ESI-HR** calcd for C₁₇H₂₃FNO⁺ ([M+H]⁺) 276.1758, found 276.1754. **IR** v (cm⁻¹) 2935, 2850, 1650, 1616, 822.

amide 1q: colorless oil. TLC analysis (hexanes/EtOAc 3:2) $R_f = 0.29$; ¹H NMR (400 MHz, CDCl₃) δ 7.12 - 7.01 (m, 2H), 6.86 - 6.79 (m, 2H), 5.65 (q, J = 1.3 Hz, 1H), 3.78 (s,

3H), 3.54 (t, J = 5.5 Hz, 2H), 3.14 (q, J = 4.9, 4.4 Hz, 2H), 2.74 (dd, J = 8.5, 6.8 Hz, 2H), 2.38 (ddd, J = 8.6, 6.8, 1.2 Hz, 2H), 1.85 (d, J = 1.2 Hz, 3H), 1.65 – 1.49 (m, 4H), 1.47 – 1.31 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.4, 157.9, 145.6, 133.5, 129.4, 119.6, 113.9, 55.3, 47.3, 42.2, 41.2, 32.8, 26.7, 25.7, 24.7, 18.4. **ESI-HR** calcd for C₁₈H₂₆NO₂⁺ ([M+H]⁺) 288.1959, found 288.1953. **IR** v (cm⁻¹) 2935, 1649, 1611, 728.

amide 1r: pale-yellow oil. TLC analysis (hexanes/EtOAc 1:1) $R_f = 0.53$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.03 – 6.96 (m, 2H), 6.81 – 6.75 (m, 2H), 5.66 (q, J = 1.3 Hz, 1H), 3.55 (t, J = 5.4 Hz, 2H), 3.19 (t, J = 5.5 Hz, 2H), 2.72 (dd, J = 8.6, 6.7 Hz, 2H), 2.42 – 2.33 (m, 2H), 1.85 (d, J = 1.2 Hz, 3H), 1.64 – 1.50 (m, 4H), 1.48 – 1.40 (m, 2H), 1.28 – 1.19 (m, 3H), 1.09 (d, J = 7.3 Hz, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 154.3, 145.9, 133.8, 129.3, 119.8, 119.4, 47.4, 42.3, 41.2, 33.0, 26.7, 25.8, 24.8, 18.6, 18.0, 12.8.ESI-HR calcd for C₂₆H₄₄NO₂Si⁺ ([M+H]⁺) 430.3136, found 430.3131. **IR** v (cm⁻¹) 2940, 2865, 1649, 1611, 733.

amide 1s: colorless oil. TLC analysis (hexanes/EtOAc 3:1) $R_{J}=0.25$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8.4 Hz, 2H), 6.99 – 6.91 (m, 2H), 5.65 (q, J = 1.3 Hz, 1H), 5.15 (s, 2H), 3.54 (t, J = 5.5 Hz, 2H), 3.47 (s, 3H), 3.15 (t, J = 5.6 Hz, 2H), 2.75 (dd, J = 8.6, 6.8 Hz, 2H), 2.39 (t, J = 7.7 Hz, 2H), 1.85 (d, J = 1.2 Hz, 3H), 1.64 – 1.50 (m, 4H), 1.42 (dq, J = 11.3, 5.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 155.6, 145.5, 134.9, 129.4, 119.6, 116.3, 94.6, 56.0, 47.3, 42.2, 41.1, 32.9, 26.7, 25.7, 24.7, 18.4. ESI-HR calcd for C₁₉H₂₈NO₃⁺ ([M+H]⁺) 318.2064, found 318.2059. **IR** v (cm⁻¹) 2932, 1649, 1616, 998, 828.

amide 1t: colorless oil. TLC analysis (hexanes/EtOAc 1:1) $R_f = 0.31$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.22 – 7.13 (m, 2H), 7.06 – 6.95 (m, 2H), 5.66 (q, J = 1.3 Hz, 1H), 3.54 (t, J = 5.5 Hz, 2H), 3.15 (dd, J = 6.6, 4.4 Hz, 2H), 2.80 (dd, J = 8.6, 6.8 Hz, 2H), 2.41 (td, J = 7.6, 1.2 Hz, 2H), 2.29 (s, 3H), 1.86 (d, J = 1.2 Hz, 3H), 1.64 – 1.50 (m, 4H), 1.42 (tq, J = 7.6, 5.3, 4.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 167.2, 149.0, 145.3, 139.0, 129.4, 121.5, 119.7, 47.3, 42.2, 40.9, 33.1, 26.7, 25.7, 24.7, 21.2, 18.4. ESI-HR calcd for C₁₉H₂₆NO₃⁺ ([M+H]⁺) 316.1907, found 316.1901. **IR** v (cm⁻¹) 2934, 1758, 1648, 1617, 732.

amide 1u: brown oil. TLC analysis (hexanes/EtOAc 2:1) $R_f = 0.24$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.11 (dd, J = 5.2, 1.2 Hz, 1H), 6.96 – 6.86 (m, 1H), 6.85 – 6.72 (m, 1H), 5.72 (q, J = 1.3 Hz, 1H), 3.55 (t, J = 5.5 Hz, 2H), 3.27 – 3.13 (m, 2H), 3.07 – 2.94 (m, 2H), 2.52 – 2.41 (m, 2H), 1.86 (d, J = 1.2 Hz, 3H), 1.65 – 1.48 (m, 4H), 1.43 (dp, J = 11.3, 5.6, 4.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 144.8, 144.2, 126.8, 124.6, 123.3, 120.0, 47.3, 42.3, 41.2, 27.9, 26.8, 25.8, 24.7, 18.3.. **ESI-HR** calcd for C₁₅H₂₂NOS⁺ ([M+H]⁺) 264.1417, found 264.1412. **IR** v (cm⁻¹) 2938, 1651, 1615, 729.

amide 1v: brown oil. TLC analysis (hexanes/EtOAc 1:1) $R_f = 0.47$; ¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (d, J = 2.1 Hz, 1H), 6.26 (q, J = 2.6 Hz, 1H), 5.99 (d, J = 3.0 Hz, 1H), 5.72 (q, J = 1.5 Hz, 1H), 3.55 (dd, J = 6.4, 4.0 Hz, 2H), 3.26 (dq, J = 5.6, 2.5 Hz, 2H), 2.82 (td, J = 7.5, 2.2 Hz, 2H), 2.48 – 2.38 (m, 2H), 1.84 (t, J = 1.7 Hz, 3H), 1.68 – 1.39 (m, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.3, 155.1, 145.1, 141.0, 119.6, 110.2,

105.4, 47.3, 42.3, 37.6, 26.7, 26.1, 25.7, 24.7, 18.3. **ESI-HR** calcd for C₁₅H₂₂NO₂⁺ ([M+H]⁺) 248.1645, found 248.1641. **IR** v (cm⁻¹) 2939, 1651, 1606, 724.

amide 1w: colorless oil. TLC analysis (hexanes/EtOAc 9:1) $R_{f}=0.32$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.13 (m, 10H), 5.92 (q, J = 1.3 Hz, 1H), 4.60 (s, 2H), 4.45 (s, 2H), 2.07 (ddd, J = 9.4, 6.0, 1.2 Hz, 2H), 2.01 (d, J = 1.3 Hz, 3H), 1.46 (dt, J = 13.2, 6.6 Hz, 1H), 1.36 – 1.23 (m, 2H), 0.84 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 152.0, 137.7, 137.0, 128.9, 128.6, 128.5, 127.6, 127.4, 126.9, 117.1, 50.5, 47.3, 37.9, 36.7, 27.8, 22.5, 18.9. **ESI-HR** calcd for C₂₃H₃₀NO⁺ ([M+H]⁺) 336.2322, found 336.2315. **IR** v (cm⁻¹) 2955, 1646, 1620, 728.

amide 1x: colorless oil. TLC analysis (hexanes/EtOAc 9:1) $R_{f}=0.20$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.45 – 7.04 (m, 10H), 5.98 (t, J = 1.5 Hz, 1H), 4.60 (s, 2H), 4.45 (s, 2H), 3.45 (t, J = 6.4 Hz, 2H), 2.24 (t, J = 7.5 Hz, 2H), 2.02 (d, J = 1.4 Hz, 3H), 1.89 (dq, J = 9.0, 6.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 149.5, 137.5, 136.8, 129.0, 128.7, 128.5, 127.7, 127.5, 126.8, 118.6, 50.5, 47.4, 44.3, 36.9, 30.1, 18.7.**ESI-HR** calcd for C₂₁H₂₅ClNO⁺ ([M+H]⁺) 342.1619, found 342.1613. **IR** v (cm⁻¹) 2915, 1648, 1624, 697.

amide 1y: pale-yellow oil. TLC analysis (hexanes/EtOAc 7:1) R_f= 0.35; ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.57 (m, 4H), 7.43 – 7.21 (m, 14H), 7.17 – 7.07 (m, 2H), 5.90

(q, J = 1.3 Hz, 1H), 4.58 (s, 2H), 4.39 (s, 2H), 3.62 (t, J = 6.3 Hz, 2H), 2.24 – 2.10 (m, 2H), 1.99 (S, J = 1.1 Hz, 3H), 1.71 – 1.58 (m, 2H), 1.01 (s, 9H).¹³**C** NMR (101 MHz, CDCl₃) δ 169.0, 151.2, 137.7, 136.9, 135.7, 134.0, 129.7, 129.0, 128.7, 128.5, 127.8, 127.7, 127.5, 127.0, 117.5, 63.4, 50.5, 47.4, 36.3, 30.6, 27.0, 19.3, 19.0.**ESI-HR** calcd for C₃₇H₄₄NO₂Si⁺ ([M+H]⁺) 562.3130, found 562.3131. **IR** v (cm⁻¹) 2923, 2856, 1626, 1428, 699.

amide 1z: colorless oil. TLC analysis (hexanes/EtOAc 9:1) $R_{J}=0.39$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.12 (m, 10H), 5.91 (q, J = 1.3 Hz, 1H), 5.01 (dqd, J = 6.1, 3.8, 1.6 Hz, 1H), 4.59 (s, 2H), 4.45 (s, 2H), 2.14 (dd, J = 21.8, 2.3 Hz, 4H), 2.01 (d, J = 1.2 Hz, 3H), 1.57 (d, J = 1.3 Hz, 3H), 1.52 (d, J = 1.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 150.7, 137.6, 136.9, 132.3, 128.9, 128.7, 128.5, 127.6, 127.4, 126.9, 123.5, 117.6, 50.4, 47.2, 39.9, 26.0, 25.7, 18.9, 17.8.**ESI-HR** calcd for C₂₄H₃₀NO⁺ ([M+H]⁺) 348.2322, found 348.2317. **IR** v (cm⁻¹) 2914, 1627, 732, 697.

amide 1aa: colorless oil. TLC analysis (hexanes/EtOAc 9:1) $R_f = 0.31$; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.09 (m, 10H), 5.92 (d, J = 1.7 Hz, 1H), 5.13 – 4.95 (m, 3H), 4.59 (s, 2H), 4.44 (s, 2H), 2.12 (d, J = 3.3 Hz, 4H), 2.10 – 1.84 (m, 11H), 1.67 (d, J = 1.5 Hz, 3H), 1.59 (d, J = 1.3 Hz, 3H), 1.54 (dd, J = 8.7, 1.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 151.0, 137.7, 136.9, 136.1, 135.1, 131.4, 129.0, 128.7, 128.5, 127.7, 127.4, 126.9, 124.5, 124.2, 123.3, 117.5, 50.5, 47.2, 40.0, 39.8, 39.7, 26.9, 26.7, 26.0, 25.8, 19.0, 17.8, 16.2, 16.1. **ESI-HR** calcd for C₃₄H₄₆NO⁺ ([M+H]⁺) 484.3574, found 484.3572. **IR** v (cm⁻¹) 2916, 1648, 1618, 906, 727.

amide 1ab: colorless oil. TLC analysis (hexanes/EtOAc 7:1) $R_f = 0.35$; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.21 (m, 10H), 7.18 – 7.06 (m, 5H), 5.88 (s, 1H), 4.60 (s, 2H), 4.45 (s, 2H), 2.56 (t, J = 7.8 Hz, 2H), 2.44 (q, J = 7.5 Hz, 2H), 2.13 (t, J = 7.7 Hz, 2H), 1.79 – 1.69 (m, 2H), 1.09 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 156.2, 142.0, 137.6, 136.9, 129.0, 128.7, 128.6, 128.5, 128.4, 127.7, 127.4, 126.9, 125.9, 117.1, 50.6, 47.3, 36.1, 35.6, 29.4, 25.6, 13.1. **ESI-HR** calcd for C₂₈H₃₂NO⁺ ([M+H]⁺) 398.2478, found 398.2472. **IR** v (cm⁻¹) 3027, 2934, 1626, 1494, 1216, 696.

amide 1ac: colorless oil. TLC analysis (hexanes/EtOAc 7:1) $R_f = 0.37$; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 5H), 7.23 (d, J = 7.4 Hz, 2H), 7.19 – 7.06 (m, 5H), 5.90 (s, 1H), 4.59 (s, 2H), 4.45 (s, 2H), 2.56 (t, J = 7.8 Hz, 2H), 2.46 – 2.35 (m, 2H), 2.12 (t, J = 7.7 Hz, 2H), 1.73 (p, J = 7.8 Hz, 2H), 1.49 (h, J = 7.4 Hz, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 154.4, 142.1, 137.6, 136.9, 129.0, 128.7, 128.5, 128.4, 127.7, 127.5, 126.9, 125.9, 117.8, 50.6, 47.3, 36.5, 35.6, 34.4, 29.4, 21.8, 14.4. **ESI-HR** calcd for C₂₉H₃₄NO⁺ ([M+H]⁺) 412.2635, found 412.2627. **IR** v (cm⁻¹) 2945, 1676, 1641, 1144, 710.

amide 1ad: colorless oil. TLC analysis (hexanes/EtOAc 11:1) $R_f = 0.23$; ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.12 (m, 10H), 5.92 (p, J = 1.3 Hz, 1H), 4.60 (s, 2H), 4.45 (s, 2H), 2.10 (q, J = 7.4 Hz, 2H), 2.02 (d, J = 1.1 Hz, 3H), 1.01 (t, J = 7.4 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 169.2, 152.8, 137.6, 137.0, 128.9, 128.6, 128.4, 127.6, 127.4, 126.9, 116.3, 50.5, 47.3, 32.7, 18.9, 12.1. **ESI-HR** calcd for C₂₀H₂₄NO⁺ ([M+H]⁺) 294.1852, found 294.1847. **IR** v (cm⁻¹) 2966, 1625, 1494, 1224, 697.

amide 1ae: colorless oil. TLC analysis (hexanes/EtOAc 9:1) $R_f = 0.53$; ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 6.95 (m, 10H), 5.87 (s, 1H), 4.59 (s, 2H), 4.45 (s, 2H), 2.43 (q, J = 7.5 Hz, 2H), 2.15 – 2.03 (m, 2H), 1.42 (dt, J = 14.8, 7.4 Hz, 2H), 1.10 (t, J = 7.5 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 156.6, 137.6, 136.9, 128.9, 128.6, 128.4, 127.6, 127.4, 126.9, 116.9, 50.5, 47.2, 38.7, 25.6, 20.9, 13.9, 13.1. **ESI-HR** calcd for C₂₂H₂₈NO⁺ ([M+H]⁺) 322.2165, found 322.2158. **IR** v (cm⁻¹) 2959, 1626, 1494, 1359, 1215, 697.

amide 1af: pale yellow oil. TLC analysis (hexanes/EtOAc 2:1) $R_f = 0.30$; ¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 6.92 (m, 5H), 3.62 (t, J = 7.4 Hz, 4H), 3.50 – 3.40 (m, 2H), 3.02 – 2.95 (m, 2H), 2.88 – 2.49 (m, 3H), 2.28 (s, 1H), 1.67 (d, J = 2.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 141.5, 132.7, 128.6, 128.4, 126.5, 126.1, 67.2, 66.9, 46.3, 41.4, 34.2, 33.5, 19.3, 15.8. **ESI-HR** calcd for C₁₇H₂₄NO₂⁺ ([M+H]⁺) 274.1802, found 274.1795. **IR** v (cm⁻¹) 2854, 1626, 1496, 1426, 1229, 1121, 700.

amide 1ag: colorless oil. TLC analysis (hexanes/EtOAc 11:1) $R_f = 0.26$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 6.98 (m, 15H), 5.74 (s, 1H), 4.63 (d, J = 14.8 Hz, 1H), 4.42 (d, J = 14.8 Hz, 1H), 4.15 – 3.96 (m, 2H), 2.69 (dd, J = 13.4, 8.0 Hz, 1H), 2.58 (dd, J = 13.5, 6.8 Hz, 1H), 2.50 (p, J = 6.9 Hz, 1H), 1.97 (d, J = 1.3 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 169.0, 153.0, 140.4, 137.5, 136.9, 128.9, 128.8, 128.6, 128.3, 128.3, 127.5, 127.3, 126.9, 126.0, 118.1, 50.2, 47.1, 45.1, 41.4, 18.8, 15.6. **ESI-HR** calcd for C₂₇H₃₀NO⁺ ([M+H]⁺) 384.2322, found 384.2313. **IR** v (cm⁻¹) 3019, 1618, 1265, 1215, 748, 703. [α]²⁰_D = + 48.9 (*c* = 0.70, CHCl₃)

amide 1ah: colorless oil. Two sets of peaks were observed in ¹H and ¹³C NMR spectra due to carbamate rotamers, which are assigned to major and minor rotamers, respectively. TLC analysis (hexanes/EtOAc 2:1) $R_{f}=0.38$; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.19 (m, 5H, *overlapping*), 7.15 – 7.07 (m, 1H, *overlapping*), 6.93 (t, J = 7.8 Hz, 1H, *overlapping*), 6.76 (td, J = 7.3, 4.5 Hz, 1H, *overlapping*), 6.58 (d, J = 8.2 Hz, 1H, *minor*), 6.53 (d, J = 8.2 Hz, 1H, *major*), 5.78 – 5.74 (m, 1H, *minor*), 5.71 – 5.66 (m, 1H, *major*), 5.19 (dd, J = 8.4, 4.6 Hz, 1H, *minor*), 5.13 (dd, J = 8.1, 4.2 Hz, 1H, *major*), 3.72 – 3.58 (m, 2H, *minor*), 3.46 (m, 2H, *major*), 2.95 (s, 3H, *overlapping*), 2.34 (s, 3H, *overlapping*), 2.15 (m, 3H, *overlapping*), 1.90 – 1.82 (m, 4H, *overlapping*), 1.48 (p, J = 7.4 Hz, 2H, *minor*), 1.34 (h, J = 7.3 Hz, 2H, *major*), 0.91 (t, J = 7.3 Hz, 3H, *minor*), 0.84 (t, J = 7.3 Hz, 3H, *major*). ¹³C NMR (101 MHz, CDCl₃) δ 168.7 (*major*), 168.5 (*minor*), 155.9 (*minor*), 155.5 (*major*), 150.8 (*major*), 149.4 (*minor*), 141.8 (*minor*),

141.3 (major), 130.7 (major), 130.7 (minor), 128.8 (major), 128.7 (minor), 127.8 (major), 127.6 (minor), 127.0 (minor), 126.7 (major), 126.7 (major), 126.6 (minor), 125.8, (minor) 125.6 (major), 120.5 (major), 120.3 (minor), 117.9 (minor), 116.9 (major), 112.8 (major), 112.5 (minor), 77.7 (minor), 76.3 (major), 46.9 (major), 44.8 (minor), 41.9 (overlapping), 37.5 (major), 36.6 (minor), 36.3 (minor), 32.8 (major), 20.7 (overlapping), 18.5 (major), 18.4 (minor), 16.6 (major), 16.6 (minor), 13.8 (major), 13.8 (minor). **ESI-HR** calcd for C₂₄H₃₂NO₂⁺ ([M+H]⁺) 366.2428, found 366.2420. **IR** v (cm⁻¹) 2957, 2931, 1650, 1625, 1492, 1238, 750, 701. [α]²⁰_D = - 22.3 (*c* = 6.00, CHCl₃)

amide 1ai: colorless oil. Two sets of peaks were observed in ¹H, ¹³C and ¹⁹F NMR spectra due to carbamate rotamers, which are assigned to major and minor rotamers, respectively. TLC analysis (hexanes/EtOAc 2:1) R_f = 0.32; ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.06 (m, 2H, *overlapping*), 6.98 (q, J = 7.7, 7.3 Hz, 2H, *overlapping*), 6.63 (dd, J = 8.4, 2.1 Hz, 1H, *overlapping*), 6.34 (dd, J = 17.7, 2.5 Hz, 1H, *overlapping*), 6.13 (ddd, J = 14.0, 8.4, 2.6 Hz, 1H, *overlapping*), 5.88 (d, J = 2.4 Hz, 2H, *overlapping*), 5.83 (s, 1H, *overlapping*), 4.95 (m, 1H, *minor*), 4.89 – 4.73 (m, 1H, *major*), 4.32 (d, J = 13.3 Hz, 1H, *major*), 4.08 (d, J = 13.3 Hz, 1H, *minor*), 3.62 (ddd, J = 21.0, 9.6, 2.9 Hz, 1H, *overlapping*), 3.53 – 3.38 (m, 1H, *overlapping*), 3.17 – 2.99 (m, 1H, *overlapping*), 2.89 – 2.63 (m, 2H, *overlapping*), 2.17 – 1.98 (m, 3H, *overlapping*), 1.95 – 1.83 (m, 4H, *overlapping*), 0.94 (q, J = 7.2 Hz, 3H, *overlapping*). ¹³C NMR (101 MHz, CDCl₃) δ 168.7 (*major*), 168.5 (*minor*), 155.9 (*minor*), 130.7 (*major*), 130.7 (*minor*),

128.8 (major), 128.7 (minor), 127.8 (major), 127.6 (minor), 127.0 (minor), 126.7 (major), 126.7 (major), 126.6 (minor), 125.8, (minor) 125.6 (major), 120.5 (major), 120.3 (minor), 117.9 (minor), 116.9 (major), 112.8 (major), 112.5 (minor), 77.7 (minor), 76.3 (major), 46.9 (major), 44.8 (minor), 41.9 (overlapping), 37.5 (major), 36.6 (minor), 36.3 (minor), 32.8 (major), 20.7 (overlapping), 18.5 (major), 18.4 (minor), 16.6 (major), 16.6 (minor), 13.8 (major), 13.8 (minor). 13C NMR (101 MHz, CDCl3) δ 167.6(overlapping), 161.8 (J₁ = 246.9 Hz) (overlapping), 154.4 (minor), 154.0 (major), 148.9 (minor), 148.6 (major), 148.3 (overlapping), 141.9 (major), 141.8 (minor), 138.8 (overlapping), 128.8 ($J_3 = 7.4$ Hz) (overlapping), 117.9 (overlapping), 115.7 (*J*₃ =22.9 Hz) (overlapping), 107.9 (overlapping), 105.7 (minor), 105.5 (major), 101.3 (overlapping), 98.1 (minor), 97.9 (major), 68.8 (overlapping), 49.9 (major), 46.9 (minor), 44.7 (minor), 44.6 (major), 44.0 (minor), 42.9 (major), 42.0 (minor), 41.9 (major), 41.8 (minor), 41.7 (major), 34.8 (minor), 33.9 (major), 20.7 (overlapping), 18.6 (overlapping), 13.9 (overlapping), ¹⁹F NMR (376 MHz, CDCl3) δ -115.8 (major), -116.0 (*minor*). **ESI-HR** calcd for C₂₆H₃₁FNO₄⁺ ([M+H]⁺) 440.2232, found 440.2226. **IR** v (cm⁻¹) 3015, 2961, 1607, 1510, 1183, 741. $[\alpha]^{20}_{D} = +2.7$ (c = 2.94, CHCl₃)

amide 1aj: white solid. Two sets of peaks were observed in ¹H and ¹³C NMR spectra due to carbamate rotamers, which are assigned to major and minor rotamers, respectively. TLC analysis (hexanes/EtOAc 2:1) R_f = 0.33; ¹H NMR (400 MHz, CDCl₃) δ 8.46 – 8.23 (m, 1H, *overlapping*), 7.77 (td, J = 5.5, 5.0, 2.6 Hz, 1H, *overlapping*), 7.49 (dq, J = 7.4, 3.8 Hz, 2H, *overlapping*), 7.38 (dd, J = 8.3, 4.4 Hz, 1H, *overlapping*), 7.31 – 7.15 (m, 2H, *overlapping*), 7.10 (d, J = 3.5 Hz, 1H, *minor*), 7.04 (d, J = 3.5 Hz, 1H, *major*), 6.92 (td, J = 5.2, 3.5 Hz, 1H, *overlapping*), 6.84 (d, J = 7.7 Hz, 1H, *minor*), 6.77

(d, J = 7.7 Hz, 1H, major), 5.79 - 5.53 (m, 2H, overlapping), 3.76 (ddd, J = 12.8, 10.4, 10.4)5.8 Hz, 1H, overlapping), 3.60 – 3.45 (m, 1H, overlapping), 2.97 (s, 3H, overlapping), 2.61 - 2.29 (m, 2H, overlapping), 2.05 (t, J = 7.6 Hz, 1H, overlapping), 1.88 (s, 3H, *minor*), 1.80 (s, 3H, *major*), 1.64 (td, J = 7.3, 4.4 Hz, 1H, *overlapping*), 1.47 (h, J = 7.3 Hz, 1H, overlapping), 1.18 (h, J = 7.5 Hz, 1H, overlapping), 0.90 (t, J = 7.4 Hz, 3H, *minor*), 0.68 (t, J = 7.3 Hz, 3H, *major*). ¹³C NMR (101 MHz, CDCl₃) δ 168.9 (*major*), 168.7 (minor), 153.2 (minor), 152.8 (major), 151.0 (major), 149.8 (minor), 144.9 (minor), 144.4 (major), 134.7 (major), 134.7 (minor), 127.7 (major), 127.6 (minor), 126.8 (major), 126.7 (minor), 126.5 (major), 126.4 (minor), 126.2 (minor), 126.0 (major), 125.8 (minor), 125.8 (major), 125.5 (major), 125.4 (minor), 125.0 (major), 125.0 (minor), 124.9 (minor), 124.8 (major), 122.2 (minor), 121.9 (major), 121.0 (major), 120.8 (minor), 117.8 (minor), 116.8 (major), 107.1 (minor), 106.8 (major), 74.7 (minor), 73.0 (major), 46.7 (major), 44.7 (minor), 42.0 (minor), 41.8 (major), 37.8 (major), 36.8 (minor), 36.5 (minor), 32.9 (major), 20.7 (minor), 20.6 (major), 18.6 (major), 18.5 (minor), 13.8 (minor), 13.8 (major). ESI-HR calcd for $C_{25}H_{30}NO_2S^+$ ([M+H]⁺) 408.1992, found 408.1987. **IR** v (cm⁻¹) 3018, 2962, 1610, 1470, 1214, 745. **M. P.** 100-102 °C. $[\alpha]^{20}_{D} = +142.2 \ (c = 0.59, \text{CHCl}_3)$

Characterization of Products

product 3a: Following the general procedure, amide 1a (76.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 94.8 mg (87% yield) of 3a as a white solid. TLC analysis (hexanes/EtOAc 11:1) $R_f = 0.34$; ¹H NMR(400 MHz, CDCl₃) δ 7.50 – 7.06 (m, 10H), 4.78 (d, J = 14.7 Hz, 1H), 4.45 (d, J = 16.9 Hz, 1H), 4.31 (d, J = 15.7 Hz, 2H), 2.64 (d, J = 16.6 Hz, 1H), 2.30 (d, J = 16.6 S21

Hz, 1H), 1.29 (m, J = 6.6 Hz, 16H), 1.02 (s, 3H), 0.87 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 137.4, 136.4, 129.0, 128.6, 128.5, 127.7, 127.4, 126.5, 82.5, 49.6, 48.2, 44.2, 41.2, 25.2, 25.1, 21.7, 18.4, 15.2. **ESI-HR** calcd for C₂₇H₃₉BNO₃⁺ ([M+H]⁺) 436.3018, found 436.3007. **IR** v (cm⁻¹) 2957, 1644, 1142, 751. **M. P.** 71-73 °C. [α]²⁰_D = + 56.3 (c = 0.36, CHCl₃) for a 96% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.5:0.5 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): $t_{major} = 6.579$ min, $t_{minor} = 7.906$ min.

product 3b: Following the general procedure, amide **1b** (54.3 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 46.5 mg (54% yield) of **3b** as a white solid. TLC analysis (hexanes/EtOAc 1:2) R_f= 0.36; ¹H **NMR**(400 MHz, CDCl₃) δ 7.41 – 7.06 (m, 5H), 2.95 (d, *J* = 1.6 Hz, 6H), 2.73 – 2.55 (m, 2H), 2.50 (d, *J* = 16.6 Hz, 1H), 2.25 (d, *J* = 16.6 Hz, 1H), 1.77 – 1.69 (m, 1H), 1.65 – 1.54 (m, 1H), 1.25 (d, *J* = 8.3 Hz, 12H), 1.05 (s, 3H).¹³C **NMR** (101 MHz, CDCl₃) 13C NMR (101 MHz, CDCl₃) δ 174.7, 143.9, 128.5, 128.3, 125.5, 81.9, 44.4, 41.1, 37.3, 35.9, 32.0, 25.3, 25.2, 22.2. **ESI-HR** calcd for C₂₀H₃₃BNO₃⁺ ([M+H]⁺) 346.2548, found 346.2539. **IR** v (cm⁻¹) 2982, 2927, 1637, 1140, 699. **M. P.** 88-90 °C. [α]²⁰_D = + 32.5 (*c* = 0.43, CHCl₃) for a 93% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material s22

(Chiralpak OD, 98.0:2.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =7.034 min, *t*_{minor} =6.005 min.

product 3c: Following the general procedure, amide **1c** (61.3 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 62.1 mg (67% yield) of **3c** as a colorless oil. TLC analysis (hexanes/EtOAc 2:1) R/= 0.38; ¹H **NMR**(400 MHz, CDCl₃) δ 7.36 – 7.10 (m, 5H), 3.46 (dq, *J* = 14.2, 7.2 Hz, 1H), 3.38 – 3.21 (m, 3H), 2.69 (td, *J* = 12.8, 5.0 Hz, 1H), 2.63 – 2.43 (m, 2H), 2.25 (d, *J* = 16.6 Hz, 1H), 1.78 – 1.56 (m, 2H), 1.23 (d, *J* = 6.7 Hz, 12H), 1.14 (dt, *J* = 14.2, 7.2 Hz, 6H), 1.03 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 175.0, 144.1, 128.6, 128.3, 125.5, 81.3, 44.2, 42.4, 41.3, 41.0, 32.0, 25.4, 25.3, 22.2, 14.1, 13.0. **ESI-HR** calcd for C₂₂H₃₇BNO₃⁺ ([M+H]⁺) 374.2861, found 374.2854. **IR** v (cm⁻¹) 2972, 2933, 1632, 1140, 671. [α]²⁰_D = + 16.3 (*c* = 0.52, CHCl₃) for a 95% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak OD, 99.7:0.3 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =12.201 min, *t*_{minor} =9.825 min.

product 3d-ol: Following the general procedure with amide **1d** (58.3mg, 0.25 mmol). After the reaction, the residue was dissolved in THF (2.0 mL), H₂O (2.0 mL), then sodium perborate trihydrate (4.0 equiv) was added. The reaction was stirred at room temperature for 12 h. Ethyl acetate (20 mL) was added, and the mixture was washed with water (10 mL), brine (10 mL) and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel with EtOAc/hexaness mixture as eluent to give 34.3 mg (55% yield) of **3d-ol** as a colorless oil. TLC analysis (hexanes/EtOAc 2:1) R/= 0.35; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.12 (m, 5H), 4.83 (s, 1H), 3.67 (s, 3H), 3.20 (s, 3H), 2.83 – 2.55 (m, 4H), 1.95 – 1.75 (m, 2H), 1.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 142.7, 128.5, 128.5, 125.8, 71.2, 61.5, 44.2, 40.7, 31.8, 30.4, 27.1. ESI-HR calcd for C₁₄H₂₂NO₃⁺ ([M+H]⁺) 252.1594, found 252.1591. IR v (cm⁻¹) 3432, 2936, 1634, 1455, 746. [α]²⁰_D = + 78.7 (*c* = 0.71, CHCl₃) for a 93% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 90.0:10.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} = 8.772 min, *t*_{minor} = 8.172 min.

product 3e: Following the general procedure, amide **1e** (64.3 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 81.7 mg (85% yield) of **3e** as a white solid. TLC analysis (hexanes/EtOAc 1:1) R_f = 0.44; ¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.11 (m, 5H), 3.57 (qt, *J* = 13.1, 5.4 Hz, 2H), 3.35 (q, *J* = 5.9 Hz, 2H), 2.70 (td, *J* = 12.8, 4.9 Hz, 1H), 2.63 – 2.42 (m, 2H), 2.27 (d, *J* = 16.6 Hz, 1H), 1.77 – 1.45 (m, 8H), 1.23 (d, *J* = 6.8 Hz, 12H), 1.04 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.9, 144.1, 128.6, 128.3, 125.5, 81.3, 46.8, 44.1, 41.1, 32.1, 26.3, 25.6, 25.4, 25.3, 24.3, 22.4. **ESI-HR** calcd for C₂₃H₃₇BNO₃⁺ ([M+H]⁺) 386.2861, found 386.2849. **IR** v (cm⁻¹) 2939, 2858, 1620, 1445, 1139, 730. **M. P.** 109-111 °C. $[\alpha]^{20}_{D} = + 12.3$ (*c* = 0.96, CHCl₃) for a 96% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak OD, 99.2:0.8 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} = 9.930 min, *t*_{minor} =7.229 min.

product 3f: Following the general procedure, amide **1f** (67.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 72.1

mg (65% yield) of **3f** as a white solid. TLC analysis (hexanes/EtOAc 1:1) R_f= 0.35; ¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.06 (m, 5H), 3.60 – 3.50 (m, 2H), 3.42 – 3.32 (m, 2H), 2.69 (td, J = 12.8, 5.0 Hz, 1H), 2.62 – 2.47 (m, 2H), 2.27 (d, J = 16.7 Hz, 1H), 1.79 – 1.47 (m, 10H), 1.23 (d, J = 7.1 Hz, 12H), 1.04 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 175.5, 144.1, 128.6, 128.3, 125.4, 81.3, 48.2, 46.9, 44.4, 41.0, 32.0, 28.8, 27.3, 27.1, 27.0, 25.4, 25.3, 22.2. **ESI-HR** calcd for C₂₄H₃₉BNO₃⁺ ([M+H]⁺) 400.3018, found 400.3009. **IR** v (cm⁻¹) 2927, 2863, 1632, 1145, 699. **M. P.** 75-77 °C. [α]²⁰_D = + 13.0 (c = 0.67, CHCl₃) for a 95% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak OD, 99.5:0.5 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): $t_{major} = 13.732$ min, $t_{minor} = 9.480$ min.

product 3g: Following the general procedure, amide 1g (71.3 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 62.0 mg (60% yield) of 3g as a white solid. TLC analysis (hexanes/EtOAc 11:1) $R_f = 0.38$; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.07 (m, 5), 3.48 (t, *J* = 6.0 Hz, 2H), 3.34 (t, *J* = 5.8 Hz, 2H), 2.69 (td, *J* = 12.8, 5.0 Hz, 1H), 2.63 – 2.47 (m, 2H), 2.28 (d, *J* = 16.6 Hz, 1H), 1.82 – 1.45 (m, 12H), 1.23 (d, *J* = 7.8 Hz, 12H), 1.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 144.1, 128.6, 128.3, 125.4, 81.2, 49.4, 48.0, 44.6, 40.8, 32.0, 26.9, 26.8, 25.8, 25.7, 25.4, 25.3, 24.9, 22.2. ESI-HR calcd for C₂₅H₄₁BNO₃⁺ ([M+H]⁺) 414.3174,

found 414.3163. **IR** v (cm⁻¹) 2925, 1632, 1145, 699. **M. P.** 103-105 °C. $[\alpha]^{20}_{D} = +9.5$ (c = 0.42, CHCl₃) for a 95% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak IC, 99.0:1.0 hexanes:*i*-PrOH, 0.5 mL/min, 208 nm): $t_{major} = 22.021$ min, $t_{minor} = 20.975$ min.

product 3h: Following the general procedure, amide **1h** (68.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 52.1 mg (52% yield) of **3h** as a white solid. TLC analysis (hexanes/EtOAc 3:1) R_f = 0.37; ¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.12 (m, 5H), 3.85 (dddd, *J* = 24.0, 13.5, 10.6, 5.1 Hz, 2H), 3.68 (q, *J* = 4.9 Hz, 2H), 2.73 – 2.55 (m, 6H), 2.48 (d, *J* = 16.4 Hz, 1H), 2.21 (d, *J* = 16.4 Hz, 1H), 1.74 (ddd, *J* = 13.3, 10.7, 6.4 Hz, 1H), 1.58 (ddd, *J* = 13.4, 11.1, 6.7 Hz, 1H), 1.26 (d, *J* = 10.2 Hz, 12H), 1.06 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.1, 143.7, 128.5, 128.4, 125.6, 82.5, 48.2, 44.9, 44.2, 41.2, 32.0, 27.8, 27.6, 25.2, 25.1, 22.1. **ESI-HR** calcd for C₂₂H₃₅BNO₃S⁺ ([M+H]⁺) 404.2425, found 404.2416. **IR** v (cm⁻¹) 2922, 1639, 1146, 700. **M. P.** 120-122 °C. [α]²⁰_D = + 10.0 (*c* = 1.33, CHCl₃) for a 99% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.6:0.4 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =15.877 min, *t*_{minor} =20.994 min.

product (*S*)-**3i:** Following the general procedure, amide **1i** (64.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 62.7 mg (65% yield) of (*S*)-**3i** as a white solid. TLC analysis (hexanes/EtOAc 2:1) R_f = 0.23; ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.12 (m, 5H), 3.71 – 3.54 (m, 6H), 3.41 (q, *J* = 4.8 Hz, 2H), 2.63 (tt, *J* = 10.4, 7.3 Hz, 2H), 2.49 (d, *J* = 16.4 Hz, 1H), 2.23 (d, *J* = 16.4 Hz, 1H), 1.74 (ddd, *J* = 13.3, 10.6, 6.5 Hz, 1H), 1.62 – 1.54 (m, 1H), 1.27 (d, *J* = 9.8 Hz, 12H), 1.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 143.7, 128.5, 128.4, 125.6, 82.6, 67.0, 66.6, 45.9, 43.8, 42.4, 41.3, 32.0, 25.2, 25.1, 22.1. **ESI-HR** calcd for C₂₂H₃₅BNO₄⁺ ([M+H]⁺) 388.2654, found 388.2642. **IR** v (cm⁻¹) 2970, 2856, 1638, 1114, 700. **M. P.** 130-132 °C. [α]²⁰_D = + 11.7 (*c* = 0.42, CHCl₃) for a 92% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.0:1.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} = 11.969 min, *t*_{minor} =9.958 min.

product 3j: Following the general procedure, amide **1j** (89.5 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 85.5 mg (70% yield) of **3j** as a white solid. TLC analysis (hexanes/EtOAc 2:1) R_f = 0.32; ¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.22 (m, 2H), 7.21 – 7.11 (m, 3H), 3.57 (q, *J* = 5.8 Hz, 2H), 3.39 (dt, *J* = 11.0, 6.0 Hz, 6H), 2.63 (tt, *J* = 10.3, 7.4 Hz, 2H), 2.51 (d, *J* = 16.4 Hz, 1H), 2.24 (d, *J* = 16.4 Hz, 1H), 1.74 (ddd, *J* = 13.4, 10.6, 6.5 Hz, 1H), 1.58 (ddd, *J* = 13.3, 10.9, 6.8 Hz, 1H), 1.47 (s, 9H), 1.26 (d, *J* = 10.2 Hz, 12H), 1.06 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.2, 154.7, 143.6, 128.5, 128.4, 125.6, 82.6, 80.4, 45.3, 44.0, 41.9, 41.2, 32.0, 28.5, 25.2, 25.1, 22.1. **ESI-HR** calcd for C₂₇H₄₄BN₂O₅⁺ ([M+H]⁺) 487.3338, found 487.3338. **IR** v (cm⁻¹) 2975, 2929, 1644, 1147, 707. **M. P.** 136-138 °C. [α]²⁰_D = + 13.2 (*c* = 0.65, CHCl₃) for a 92% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 98.0:2.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} = 10.235 min, *t*_{minor} =11.583 min.

product 3k: Following the general procedure, amide 1k (78.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 95.2 mg (86% yield) of 3k as a white solid. TLC analysis (hexanes/EtOAc 3:1) R_f = 0.23; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.11 (m, 5H), 3.97 (s, 4H), 3.70 (ddt, *J* = 25.3, 13.4, 6.4 Hz, 2H), 3.49 (q, *J* = 5.8 Hz, 2H), 2.69 – 2.46 (m, 3H), 2.27 (d, *J* = 16.4 Hz, 1H), 1.76 – 1.54 (m, 6H), 1.25 (d, *J* = 9.2 Hz, 12H), 1.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 143.8, 128.5, 128.3, 125.6, 106.8, 82.0, 64.6, 44.0, 43.6, 41.2, 40.7, 35.5, 34.9, 32.0, 25.3, 25.2, 22.2. ESI-HR calcd for C₂₅H₃₉BNO₅⁺ ([M+H]⁺) 444.2916, found 444.2903. IR v (cm⁻¹) 3445, 3025, 2971, 2929, 1632, 1032, 699. M. P. 105-108 °C. [α]²⁰_D = + 16.7 (*c* = 0.42, CHCl₃) for a 93% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak OD, 99.0:1.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} = 19.564 min, *t*_{minor} =17.486 min.

product 31: Following the general procedure, amide 11 (92.3 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 115.9 mg (93% yield) of 31 as a white solid. TLC analysis (hexanes/EtOAc 4:1) $R_f = 0.52$; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.18 (m, 10H), 7.17 – 7.10 (m, 5H), 4.81 (d, *J* = 14.7 Hz, 1H), 4.44 (d, *J* = 17.1 Hz, 1H), 4.35 – 4.28 (m, 2H), 2.68 (d, *J* = 16.6 Hz, 1H), 2.59 (dq, *J* = 12.7, 7.5, 6.3 Hz, 2H), 2.36 (d, *J* = 16.5 Hz, 1H), 1.82 – 1.70 (m, 1H), 1.59

(ddd, J = 13.4, 11.3, 6.5 Hz, 1H), 1.31 (d, J = 8.2 Hz, 12H), 1.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 143.7, 137.3, 136.3, 129.1, 128.6, 128.5, 128.5, 128.3, 127.8, 127.5, 126.6, 125.6, 82.6, 49.7, 48.4, 44.3, 41.1, 31.9, 25.3, 25.2, 21.8. **ESI-HR** calcd for C₃₂H₄₁BNO₃⁺ ([M+H]⁺) 498.3174, found 498.3166. **IR** v (cm⁻¹) 2973, 2927, 1642, 1145, 698. **M. P.** 119-121 °C. [α]²⁰_D = + 44.7 (c = 0.54, CHCl₃) for a 95% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.0:1.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): $t_{major} = 13.156$ min, $t_{minor} = 11.542$ min.

product 3m: Following the general procedure, amide **1m** (68.3 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 77.9 mg (77% yield) of **3m** as a white solid. TLC analysis (hexanes/EtOAc 1:1) R_f = 0.28; ¹**H NMR** (400 MHz, CDCl₃) δ 7.07 (s, 4H), 3.71 – 3.56 (m, 6H), 3.42 (m, *J* = 5.1 Hz, 2H), 2.59 (ddd, *J* = 9.9, 6.1, 2.4 Hz, 2H), 2.49 (d, *J* = 16.4 Hz, 1H), 2.31 (s, 3H), 2.22 (d, *J* = 16.4 Hz, 1H), 1.71 (ddd, *J* = 13.3, 10.3, 7.0 Hz, 1H), 1.55 (ddd, *J* = 13.3, 10.8, 7.0 Hz, 1H), 1.26 (d, *J* = 10.6 Hz, 12H), 1.06 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 172.2, 140.5, 135.1, 129.1, 128.4, 82.5, 67.0, 66.6, 45.9, 43.8, 42.4, 41.5, 31.5, 25.2, 25.1, 22.1, 21.1. **ESI-HR** calcd for C₂₃H₃₇BNO₄⁺ ([M+H]⁺) 402.2810, found 402.2797. **IR** v (cm⁻¹) 2972, 2924, 2858, 1643, 1147, 858. **M. P.** 131-133 °C. [α]²⁰_D = + 10.0 (*c* = 0.45, CHCl₃) for a 97% *ee* sample. The enantiomeric purity of this compound was determined

by HPLC analysis in comparison with authentic racemic material (Chiralpak OD, 99.0:1.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): $t_{\text{major}} = 13.718 \text{ min}, t_{\text{minor}} = 11.815 \text{ min}.$

product 3n: Following the general procedure, amide **1n** (72.9 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 65.5 mg (62% yield) of **3n** as a white solid. TLC analysis (hexanes/EtOAc 2:1) R_{f} = 0.25; ¹**H NMR** (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 3.59 (q, *J* = 5.8 Hz, 2H), 3.38 (q, *J* = 4.9 Hz, 2H), 2.69 (td, *J* = 12.9, 4.9 Hz, 1H), 2.63 – 2.43 (m, 2H), 2.30 (d, *J* = 16.6 Hz, 1H), 1.63 (ddt, *J* = 41.2, 12.9, 5.9 Hz, 8H), 1.25 (d, *J* = 5.3 Hz, 12H), 1.04 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.9, 142.6, 131.1, 129.9, 128.4, 81.3, 46.8, 44.2, 41.1, 31.5, 26.3, 25.6, 25.4, 25.3, 24.3, 22.4. **ESI-HR** calcd for C₂₃H₃₆BClNO₃⁺ ([M+H]⁺) 420.2471, found 420.2464. **IR** v (cm⁻¹) 3417, 2976, 2939, 1617, 1138, 884. **M. P.** 96-98 °C. [α]²⁰_D = + 11.8 (*c* = 0.47, CHCl₃) for a 95% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.6:0.4 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} = 10.490 min, *t*_{minor} = 13.102 min.

Single crystal suitable for X-ray analysis was obtained through slow diffusion of hexane into a solution of **3n** in dichloromethane (CCDC number 2031005).

R

product 3o: Following the general procedure, amide **1o** (83.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 72.1 mg (62% yield) of **3o** as a white solid. TLC analysis (hexanes/EtOAc 2:1) R_{f} = 0.27; ¹H **NMR** (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 2H), 7.15 – 6.99 (m, 2H), 3.57 (q, *J* = 5.7 Hz, 2H), 3.35 (q, *J* = 5.0 Hz, 2H), 2.66 (td, *J* = 12.9, 4.8 Hz, 1H), 2.53 (dt, *J* = 13.0, 6.5 Hz, 1H), 2.47 (d, *J* = 16.7 Hz, 1H), 2.28 (d, *J* = 16.7 Hz, 1H), 1.76 – 1.47 (m, 8H), 1.22 (d, *J* = 5.1 Hz, 12H), 1.02 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 173.9, 143.1, 131.3, 130.4, 119.1, 81.3, 46.8, 44.2, 41.1, 31.5, 26.3, 25.6, 25.4, 25.3, 24.3, 22.4. **ESI-HR** calcd for C₂₃H₃₆BBrNO₃⁺ ([M+H]⁺) 464.1966, found 464.1954. **IR** v (cm⁻¹) 3416, 2975, 2937, 1616, 1139, 855. **M. P.** 93-95 °C. [α]²⁰_D = + 10.9 (*c* = 0.46, CHCl₃) for a 99% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.5:0.5 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =9.068 min, *t*_{minor} =11.668 min.

Single crystal suitable for X-ray analysis was obtained through slow diffusion of hexane into a solution of **30** in dichloromethane (CCDC number 2031762).

product 3p: Following the general procedure, amide **1p** (68.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 66.5 mg (66% yield) of **3p** as a white solid. TLC analysis (hexanes/EtOAc 2:1) R_f = 0.36; ¹H **NMR** (400 MHz, CDCl₃) δ 7.16 – 7.09 (m, 2H), 6.97 – 6.88 (m, 2H), 3.58 (ddt, *J* = 15.9, 13.2, 6.6 Hz, 2H), 3.36 (q, *J* = 5.1 Hz, 2H), 2.67 (td, *J* = 12.9, 4.9 Hz, 1H), 2.55 (dt, *J* = 13.1, 6.6 Hz, 1H), 2.48 (d, *J* = 16.6 Hz, 1H), 2.27 (d, *J* = 16.7 Hz, 1H), 1.74 – 1.48 (m, 8H), 1.23 (d, *J* = 5.7 Hz, 12H), 1.02 (s, 3H). ¹³C **NMR** δ 173.9, 161.2(*J*₁ = 242.1 Hz), 139.7(*J*₄ = 3.0 Hz), 129.8(*J*₃ = 7.8 Hz), 115.0(*J*₂ = 21.2 Hz), 81.3, 46.8, 44.2, 41.3, 31.3, 26.3, 25.6, 25.4, 25.3, 24.3, 22.4. ¹⁹F **NMR** (376 MHz, CDCl3) δ -118.6. **ESI-HR** calcd for C₂₃H₃₆BFNO₃⁺ ([M+H]⁺) 404.2767, found 404.2764. **IR** v (cm⁻¹) 3425, 2974, 2937, 1618, 1140, 856. **M. P.** 55-58 °C. [α]²⁰_D = + 11.4 (*c* = 0.47, CHCl₃) for a 98% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.6:0.4 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =10.063 min, *t*_{minor} =13.392 min.

product 3q: Following the general procedure, amide **1q** (71.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 70.7 mg (68% yield) of **3q** as a white solid. TLC analysis (hexanes/EtOAc 3:2) R_{f} = 0.31; ¹**H NMR** (400 MHz, CDCl₃) δ 7.14 – 7.06 (m, 2H), 6.84 – 6.78 (m, 2H), 3.77 (s, 3H), 3.61 – 3.50 (m, 2H), 3.35 (q, *J* = 5.6 Hz, 2H), 2.63 (td, *J* = 12.8, 4.9 Hz, 1H), 2.57 – 2.39 (m, 2H), 2.26 (d, *J* = 16.6 Hz, 1H), 1.73 – 1.47 (m, 8H), 1.23 (d, *J* = 6.9 Hz, 12H), 1.02 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.8, 157.6, 136.2, 129.3, 129.3, 113.8, 113.7, 81.3, 55.4, 46.8, 44.1, 41.3, 31.0, 26.2, 25.6, 25.4, 25.3, 24.3, 22.4. **ESI-HR** calcd for C₂₄H₃₉BNO₄⁺ ([M+H]⁺) 416.2967, found 416.2957. **IR** v (cm⁻¹) 3418, 2935, 1613, 1139. 855, 667. **M. P.** 82-85 °C. [α]²⁰_D = + 16.4 (*c* = 0.53, CHCl₃) for a 94% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.0:1.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} = 9.745 min, *t*_{minor} =10.816 min.

product 3r: Following the general procedure, amide **1r** (107.3 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 95.0 mg (68% yield) of **3r** as a colorless oil. TLC analysis (hexanes/EtOAc 4:1) R_f = 0.24; ¹**H NMR** (400 MHz, CDCl₃) δ 7.01 (d, J = 8.3 Hz, 2H), 6.81 – 6.71 (m, 2H), 3.57 (ddq, J = 19.5, 13.2, 7.5, 6.5 Hz, 2H), 3.35 (q, J = 5.9 Hz, 2H), 2.69 – 2.44 (m, 3H), 2.25 (d, J = 16.6 Hz, 1H), 1.73 – 1.50 (m, 8H), 1.23 (m, J = 6.8 Hz, 15H), 1.09 (d, J = 7.2 Hz, 18H), 1.02 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.9, 153.8, 136.4, 129.2, 119.6, 81.3, 46.8, 44.1, 41.1, 31.1, 26.2, 25.6, 25.4, 25.3, 24.3, 22.3, 18.1, 12.8. **IR** v (cm⁻¹) 2945, 2865, 1633, 1254, 1140, 882, 678. **ESI-HR** calcd for C₃₂H₅₇BNO4Si⁺ ([M+H]⁺) 558.4144, found 558.4139. [α]²⁰_D = + 12.8 (*c* = 0.56, CHCl₃) for a 96% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.7:0.3 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} = 7.397 min, *t*_{minor} =9.269 min.

product 3s: Following the general procedure, amide 1s (79.3 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 93.5 mg (83% yield) of 3s as a colorless oil. TLC analysis (hexanes/EtOAc 3:1) R_f = 0.18; ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.08 (m, 2H), 6.99 – 6.89 (m, 2H), 5.14 (s, 2H), 3.58 (ddt, *J* = 17.1, 11.5, 5.6 Hz, 2H), 3.47 (s, 3H), 3.36 (td, *J* = 13.6, 7.8 Hz, 2H), 2.64 (td, *J* = 12.8, 4.9 Hz, 1H), 2.58 – 2.44 (m, 2H), 2.26 (d, *J* = 16.6 Hz, 1H), 1.72 – 1.52 (m, 8H), 1.23 (d, *J* = 6.8 Hz, 12H), 1.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, s36
155.2, 137.6, 129.4, 116.3, 94.8, 81.3, 56.0, 46.8, 44.1, 41.3, 31.2, 26.2, 25.6, 25.4, 25.3, 24.3, 22.4. **ESI-HR** calcd for $C_{25}H_{41}BNO_5^+$ ([M+H]⁺) 446.3072, found 446.3058. **IR** v (cm⁻¹) 3418, 2935, 1614, 1150, 885, 669. [α]²⁰_D = + 12.7 (*c* = 0.66, CHCl₃) for a 96% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.0:1.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =11.945 min, *t*_{minor} =13.450 min.

Product 3t: Following the general procedure, amide **1t** (78.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 74.0 mg (67% yield) of **3t** as a colorless oil. TLC analysis (hexanes/EtOAc 1:1) R_f = 0.35; ¹**H NMR** (400 MHz, CDCl₃) δ 7.19 (d, *J* = 8.2 Hz, 2H), 7.03 – 6.90 (m, 2H), 3.58 (tq, *J* = 13.2, 7.5, 6.5 Hz, 2H), 3.35 (q, *J* = 5.3 Hz, 2H), 2.70 (td, *J* = 12.9, 4.8 Hz, 1H), 2.57 (td, *J* = 12.8, 5.4 Hz, 1H), 2.47 (d, *J* = 16.7 Hz, 1H), 2.28 (s, 4H), 1.76 – 1.47 (m, 8H), 1.23 (d, *J* = 6.2 Hz, 12H), 1.02 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.0, 169.9, 148.5, 141.7, 129.4, 121.3, 81.2, 46.8, 44.2, 44.1, 41.0, 31.4, 26.2, 25.6, 25.4, 25.3, 24.3, 22.4, 21.3.**ESI-HR** calcd for C₂₅H₃₉BNO₅⁺ ([M+H]⁺) 444.2916, found 444.2907. **IR** ν (cm⁻¹) 2937, 2858, 1758, 1629, 1215, 1133, 732. **M. P.** 112-114 °C. [α]²⁰_D = + 8.6 (*c* = 0.63, CHCl₃) for a 98% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material

(Chiralpak OD, 99.2:0.8 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): $t_{major} = 19.192$ min, $t_{minor} = 16.994$ min.

product 3u: Following the general procedure, amide **1u** (65.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 68.4 mg (70% yield) of **3u** as a white solid. TLC analysis (hexanes/EtOAc 2:1) R_f = 0.30; ¹**H NMR** (400 MHz,CDCl₃) δ 7.07 (dd, J = 5.0, 1.1 Hz, 1H), 6.96 – 6.84 (m, 1H), 6.78 (d, J = 3.4 Hz, 1H), 3.57 (qt, J = 12.7, 5.4 Hz, 2H), 3.35 (q, J = 5.4 Hz, 2H), 2.86 (dttd, J = 24.5, 18.3, 12.7, 12.3, 5.2 Hz, 2H), 2.49 (d, J = 16.7 Hz, 1H), 2.27 (d, J = 16.7 Hz, 1H), 1.85 – 1.49 (m, 8H), 1.23 (d, J = 5.5 Hz, 12H), 1.01 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.1, 147.2, 126.7, 123.7, 122.6, 81.2, 46.8, 44.2, 44.0, 41.1, 26.2, 26.1, 25.6, 25.3, 25.3, 24.3, 22.4. **ESI-HR** calcd for C₂₁H₃₅BNO₃S⁺ ([M+H]⁺) 392.2425, found 392.2416. **IR** v (cm⁻¹) 3406, 2975, 1620, 1142, 852. **M. P.** 89-91 °C. [α]²⁰_D = + 17.1 (c = 0.42, CHCl₃) for a 97% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak OD, 99.2:0.8 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): t_{major} =11.188 min, t_{minor} =7.905 min.

product 3v: Following the general procedure, amide **1v** (61.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 61.6 mg (66% yield) of **3v** as a white solid. TLC analysis (hexanes/EtOAc 1:1) R/= 0.50; **¹H NMR** (400 MHz, CDCl₃) δ 7.27 (s, 1H), 6.26 (dd, J = 3.1, 1.9 Hz, 1H), 5.96 (d, J = 3.1 Hz, 1H), 3.65 – 3.49 (m, 2H), 3.35 (q, J = 5.6 Hz, 2H), 2.67 (dddd, J = 44.8, 15.6, 11.5, 5.4 Hz, 2H), 2.45 (d, J = 16.7 Hz, 1H), 2.25 (d, J = 16.7 Hz, 1H), 1.80 – 1.51 (m, 8H), 1.22 (d, J = 4.2 Hz, 12H), 0.99 (s, 3H). ^{**13**C **NMR** (101 MHz, CDCl₃) δ 174.3, 157.8, 140.5, 110.2, 104.2, 81.1, 46.8, 44.3, 43.7, 36.6, 26.2, 25.5, 25.3, 25.3, 24.3, 24.1, 22.1. **ESI-HR** calcd for C₂₁H₃₅BNO₄⁺ ([M+H]⁺) 376.2654, found 376.2643. **IR** v (cm⁻¹) 3417, 2975, 2938, 1617, 1140, 884. **M. P.** 64-66 °C. [α]²⁰_D = + 27.1 (c = 0.38, CHCl₃) for a 93% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak OD, 99.2:0.8 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =7.301 min, *t*_{minor} =8.722 min.}

product 3w: Following the general procedure, amide **1w** (83.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 81.2 mg (70% yield) of **3w** as a white solid. TLC analysis (hexanes/EtOAc 9:1) R_f = 0.33; ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.09 (m, 10H), 4.84 (d, *J* = 14.7 Hz, 1H), 4.47 (d, *J* = 16.9 Hz, 1H), 4.28 (dd, *J* = 18.6, 15.9 Hz, 2H), 2.66 (d, *J* = 16.6 Hz, 1H), 2.28 (d, *J* = 16.6 Hz, 1H), 1.43 (td, *J* = 12.9, 7.1 Hz, 2H), 1.29 (d, *J* = 6.5 Hz, 13H), 1.18 – 1.11 (m, 2H), 1.02 (s, 3H), 0.85 (dd, *J* = 6.6, 3.0 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.1, 137.4, 136.4, 129.0, 128.6, 128.5, 127.7, 127.5, 126.5, 82.5, 49.5, 48.1, 44.4, 36.4, 34.3, 29.0, 25.2, 25.2, 22.9, 22.8, 21.7. **ESI-HR** calcd for C₂₉H₄₃BNO₃⁺ ([M+H]⁺) 464.3331, found 464.3330. **IR** v (cm⁻¹) 2923, 1644, 1146, 858. **M. P.** 88-90 °C. [α]²⁰_D = + 49.3 (*c* = 0.54, CHCl₃) for a 94% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak IA, 99.6:0.4 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =7.806 min, *t*_{minor} =9.780 min.

product 3x: Following the general procedure, amide **1x** (85.3 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 104.6 mg (89% yield) of **3x** as a white solid. TLC analysis (hexanes/EtOAc 10:1) R_f = 0.25; ¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 6.99 (m, 10H), 4.64 (d, *J* = 14.7 Hz, 1H), 4.40 – 4.21 (m, 3H), 3.42 (tt, *J* = 6.8, 3.5 Hz, 2H), 2.53 (d, *J* = 16.6 Hz, 1H), 2.29 (d, *J* = 16.6 Hz, 1H), 1.81 – 1.58 (m, 2H), 1.48 (td, *J* = 12.5, 4.6 Hz, 1H), 1.33 (td, *J* = 12.7, 4.7 Hz, 1H), 1.21 (d, *J* = 3.9 Hz, 12H), 0.94 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.3, 137.1, 136.0, 129.1, 128.7, 128.5, 127.8, 127.6, 126.5, 82.5, 49.7, 48.4, 46.1, 44.2, 35.7, 28.8, 25.2, 25.1, 21.7. **ESI-HR** calcd for C₂₇H₃₈BClNO₃⁺ ([M+H]⁺) 470.2628, found 470.2622. **IR** v (cm⁻¹) 2977, 1638, 1264, 733. **M. P.** 90-92 °C. [α]²⁰_D = + 8.6 (*c* = 1.88, CHCl₃) for a 97% ee sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.5:0.5 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} = 13.804 min, *t*_{minor} =17.646 min.

product 3y: Following the general procedure with 5 mol% catalyst, amide **1y** (140.3 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 154.6 mg (90% yield) of **3y** as a colorless oil. TLC analysis (hexanes/EtOAc 7:1) R_f = 0.31; ¹**H NMR** (400 MHz,CDCl₃) δ 7.67 – 7.61 (m, 4H), 7.42 – 7.20 (m, 14H), 7.14 (d, *J* = 6.9 Hz, 2H), 4.81 (d, *J* = 14.7 Hz, 1H), 4.46 (d, *J* = 17.0 Hz, 1H), 4.28 (dd, *J* = 15.8, 13.1 Hz, 2H), 3.61 (t, *J* = 6.6 Hz, 2H), 2.62 (d, *J* = 16.5 Hz, s41

1H), 2.28 (d, J = 16.6 Hz, 1H), 1.68 – 1.40 (m, 4H), 1.27 (d, J = 5.7 Hz, 12H), 1.02 (d, J = 5.7 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 137.4, 136.4, 135.7, 134.3, 129.6, 129.1, 128.6, 128.6, 127.8, 127.7, 127.5, 126.6, 82.5, 65.0, 49.7, 48.2, 44.4, 34.8, 28.6, 27.0, 25.3, 25.1, 21.8, 19.3. **ESI-HR** calcd for C₄₃H₅₇BNO₄Si⁺ ([M+H]⁺) 690.4144, found 690.4128. **IR** v (cm⁻¹) 2930, 2837, 1642, 1146, 737. [α]²⁰_D = + 22.8 (c = 0.50, CHCl₃) for a 92% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.2:0.8 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): $t_{major} = 9.492$ min, $t_{minor} = 6,342$ min.

product 3z: Following the general procedure, amide 1z (86.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 83.9 mg (71% yield) of 3z as a white solid. TLC analysis (hexanes/EtOAc 9:1) R_f = 0.43; ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.03 (m, 10H), 5.01 (td, *J* = 7.0, 3.7 Hz, 1H), 4.76 (d, *J* = 14.7 Hz, 1H), 4.39 (d, *J* = 16.9 Hz, 1H), 4.21 (m, *J* = 15.4 Hz, 2H), 2.59 (d, *J* = 16.6 Hz, 1H), 2.24 (d, *J* = 16.6 Hz, 1H), 1.88 (q, *J* = 8.0 Hz, 2H), 1.49 (s, 3H), 1.42 – 1.33 (m, 1H), 1.22 (m, *J* = 7.1 Hz, 13H), 0.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 130.9, 129.1, 128.6, 128.5, 127.7, 127.5, 126.6, 125.4, 82.5, 49.6, 48.2, 44.3, 38.9, 25.8, 25.3, 25.1, 24.0, 21.7, 17.7. IR v (cm⁻¹) 2974, 1638, 1110, 733, 699. ESI-

HR calcd for $C_{30}H_{43}BNO_3^+$ ([M+H]⁺) 476.3331, found 476.3321. **M. P.** 80-82 °C. [α]²⁰_D = + 61.6 (c = 0.45, CHCl₃) for a 94% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.5:0.5 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): t_{major} = 9.298 min, t_{minor} =14.821 min.

product 3aa: Following the general procedure, amide **1aa** (120.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 133.4 mg (73% yield) of **3aa** as a colorless oil. TLC analysis (hexanes/EtOAc 9:1) R/= 0.44; ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.10 (m, 10H), 5.21 – 4.99 (m, 3H), 4.82 (d, *J* = 14.8 Hz, 1H), 4.46 (d, *J* = 16.9 Hz, 1H), 4.29 (dd, *J* = 15.8, 12.8 Hz, 2H), 2.66 (d, *J* = 16.6 Hz, 1H), 2.31 (d, *J* = 16.5 Hz, 1H), 2.10 – 1.89 (m, 10H), 1.67 (s, 3H), 1.58 (d, *J* = 7.6 Hz, 9H), 1.50 – 1.42 (m, 1H), 1.29 (d, *J* = 7.0 Hz, 13H), 1.05 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.1, 137.4, 136.4, 135.0, 134.5, 131.3, 129.1, 128.6, 128.5, 127.7, 127.5, 126.6, 125.3, 124.5, 124.4, 82.5, 49.6, 48.2, 44.3, 39.8, 38.9, 26.9, 26.8, 25.8, 25.3, 25.1, 23.9, 23.6, 21.8, 17.8, 16.1, 16.1.**ESI-HR** calcd for C₄₀H₅₉BNO₃⁺ ([M+H]⁺) 612.4583, found 612.4577. **IR** v (cm⁻¹) 2957, 2924, 2859, 1646, 1466. 749. [α]²⁰_D = + 58.9 (*c* = 0.65, CHCl₃) for a 94% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material

(Chiralpak AD, 99.7:0.3 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =13.280 min, *t*_{minor} =9.324 min.

product 3ab-ol: Following the general procedure with amide 1ab (99.3mg, 0.25 mmol), 7.5 mol% catalyst and 3.5 equivalent of HBpin, and the temperature was increased to 0 °C. After the reaction, the residue was dissolved in THF (2.0 mL), 3 M NaOH (2.0 mL) and methanol (2.0 mL) and was cooled to 0 °C. Then 30% aqueous H_2O_2 (0.5 mL) was added dropwise. The reaction was stirred at room temperature for 3 h. Ethyl acetate (20 mL) was added, and the mixture was washed with water (10 mL), brine (10 mL) and dried over Na₂SO₄. After removal of the solvent, the crude product was purified by column chromatography on silica gel with EtOAc/hexanes mixture as eluent to provide 55.6 mg (54% yield) of **3ab-ol** as a colorless oil. TLC analysis (hexanes/EtOAc 7:1) R_f = 0.27; ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 7H), 7.26 – 7.09 (m, 8H), 5.38 (s, 1H), 4.63 (s, 2H), 4.42 (s, 2H), 2.63 – 2.54 (m, 2H), 2.48 (s, 2H), 1.63 (dt, J = 20.8, 6.8Hz, 2H), 1.54 – 1.41 (m, 3H), 1.37 – 1.13 (m, 3H), 0.87 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 142.6, 137.0, 136.1, 129.2, 128.9, 128.5, 128.4, 128.3, 128.0, 127.8, 126.4, 125.8, 73.6, 50.2, 48.4, 39.3, 38.5, 36.5, 31.8, 25.8, 8.3.ESI-HR calcd for $C_{28}H_{34}NO_2^+$ ([M+H]⁺) 416.2584, found 416.2578. **IR** v (cm⁻¹) 3404, 3062, 3027, 937, 1620, 1212, 698. $[\alpha]^{20}_{D} = +$ 22.4 (c = 1.26, CHCl₃) for an 87% *ee* sample.

The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak OD, 90.0:10.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): $t_{major} = 10.240 \text{ min}, t_{minor} = 11.763 \text{ min}.$

product 3ac-ol: Following the procedure described above. Amide **1ac** (102.8mg, 0.25 mmol) was converted to the alcohol product. Purification by silica gel chromatography gave 53.9 mg (50% yield) of **3ac-ol** as a colorless oil. TLC analysis (hexanes/EtOAc 7:1) R_f = 0.30; ¹H NMR(400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 7H), 7.26 – 7.09 (m, 8H), 5.38 (s, 1H), 4.63 (s, 2H), 4.42 (s, 2H), 2.63 – 2.54 (m, 2H), 2.48 (s, 2H), 1.63 (dt, *J* = 20.8, 6.8 Hz, 2H), 1.54 – 1.41 (m, 3H), 1.37 – 1.13 (m, 3H), 0.87 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 142.6, 137.1, 136.2, 129.2, 128.9, 128.5, 128.4, 128.4, 128.0, 127.8, 126.4, 125.9, 73.4, 50.3, 48.4, 41.9, 39.6, 39.2, 36.5, 25.8, 17.2, 14.8. **ESI-HR** calcd for C₂₉H₃₆NO₂⁺ ([M+H]⁺) 430.2741, found 430.2726. **IR** v (cm⁻¹) 3397, 3027, 2931, 2870, 1618, 1328, 1126, 698. [α]²⁰_D = + 16.4 (*c* = 0.37, CHCl₃) for a 91% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak OD, 90.0:10.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =9.785 min, *t*_{minor} =12.031 min.

product 3ad: Following the general procedure, amide **1ad** (73.3 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 98.3 mg (93% yield) of **3ad** as a colorless oil. TLC analysis (hexanes/EtOAc 11:1) R_f = 0.36; ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.02 (m, 10H), 4.78 (d, J = 14.7 Hz, 1H), 4.46 (d, J = 17.0 Hz, 1H), 4.31 (dd, J = 15.8, 5.0 Hz, 2H), 2.62 (d, J = 16.6 Hz, 1H), 2.29 (d, J = 16.5 Hz, 1H), 1.56 – 1.44 (m, 1H), 1.29 (d, J = 6.4 Hz, 13H), 1.01 (s, 3H), 0.85 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.1, 137.5, 136.4, 129.0, 128.6, 128.5, 127.7, 127.5, 126.6, 82.5, 49.6, 48.2, 44.1, 31.1, 25.2, 25.1, 21.2, 9.6. **ESI-HR** calcd for C₂₆H₃₇BNO₃⁺ ([M+H]⁺) 422.2861, found 422.2859. **IR** v (cm⁻¹) 2972, 1644, 1495, 1207, 750. [α]²⁰_D = + 58.3 (*c* = 1.44, CHCl₃) for a 95% *ee* sample The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.2:0.8 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =5.830 min, *t*_{minor} =6.469 min.

product 3ae-ol: Following the procedure described above. Amide 1ae (80.3 mg, 0.25 mmol), 7.5 mol% catalyst and 3.5 equivalent of HBpin, and the temperature was increased to 0 °C. After the reaction, the residue was dissolved in THF (2.0 mL), 3 M NaOH (2.0 mL) and methanol (2.0 mL) and was cooled to 0 °C. Then 30% aqueous H₂O₂ (0.5 mL) was added dropwise. The reaction was stirred at room temperature for 3 h. Ethyl acetate (20 mL) was added, and the mixture was washed with water (10 mL), brine (10 mL) and dried over Na₂SO₄. After removal of the solvent, the crude product was purified by column chromatography on silica gel with EtOAc/hexanes mixture as eluent to provide 46.1 mg (54% yield) of **3ae-ol** as a colorless oil. TLC analysis (hexanes/EtOAc 9:1) $R_f = 0.48$; ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.07 (m, 10H), 5.32 (s, 1H), 4.70 – 4.58 (m, 2H), 4.46 (s, 2H), 2.50 (d, J = 2.0 Hz, 2H), 1.62 – 1.42 (m, 4H), 1.36 - 1.17 (m, 2H), 0.87 (dt, J = 21.6, 7.4 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 174.2, 137.1, 136.2, 129.2, 128.8, 128.3, 127.9, 127.7, 126.4, 73.6, 50.3, 48.4, 41.2, 39.3, 31.8, 17.1, 14.8, 8.2. ESI-HR calcd for C₂₂H₃₀NO₂⁺ ([M+H]⁺) 340.2271, found 340.2256. **IR** v (cm⁻¹) 3405, 2962, 1620, 1214, 1080, 700. $[\alpha]^{20}_{D} = +20.8$ (*c* = 1.49, CHCl₃) for a 89% ee sample The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 90.0:10.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =9.756 min, *t*_{minor} =8.924 min.

product 3ah-ol: Following the general procedure with 5 mol% catalyst, amide 1ah (91.3 mg, 0.25 mmol). After the reaction, the residue was dissolved in THF (2.0 mL), 3 M NaOH (2.0 mL) and methanol (2.0 mL) and was cooled to 0 °C. Then 30% aqueous H₂O₂ (0.5 mL) was added dropwise. The reaction was stirred at room temperature for 3 h. Ethyl acetate (20 mL) was added, and the mixture was washed with water (10 mL), brine (10 mL) and dried over Na₂SO₄. After removal of the solvent, Analysis of the crude ¹H and ¹³C NMR spectra indicates >20:1 dr. the crude product was purified by column chromatography on silica gel with EtOAc/hexanes mixture as eluent to provide 57.0 mg (59% yield) of **3ah-ol** as a colorless oil. Two sets of peaks were observed in ¹H and ¹³C NMR spectra due to carbamate rotamers, which are assigned to major and minor rotamers, respectively. TLC analysis (hexanes/EtOAc 2:1) $R_f = 0.31$; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.20 (m, 5H, overlapping), 7.12 (t, J = 8.3 Hz, 1H, overlapping), 7.02 – 6.90 (m, 1H, overlapping), 6.78 (dt, J = 10.3, 7.4 Hz, 1H, overlapping), 6.55 (dd, J = 13.1, 8.2 Hz, 1H, overlapping), 5.30 (m, J = 7.3 Hz, 1H, overlapping), 5.15 (qm, J = 7.0, 6.3 Hz, 1H, overlapping), 3.62 (m, 2H, major), 3.51 – 3.34 (m, 2H, minor), 2.94 (d, J = 2.1 Hz, 3H, overlapping), 2.47 – 2.07 (m, 7H, overlapping), 1.57 – 1.09 (m, 7H, overlapping), 0.88 (m, 3H, overlapping). ¹³C NMR (101 MHz, CDCl₃) δ 173.3 (major), 173.1 (minor), 155.8 (minor), 155.3 (major), 141.5 (minor), 140.9 (major), 130.9 (major), 130.7 (minor), 128.9 (major), 128.7 (minor), 128.0 (major), 127.7 (minor), 126.9 (minor), 126.9 (major), 126.7 (major), 126.5 (minor), 125.7 (minor), 125.5 (major), 120.8 (major), 120.5 (minor), 112.7 (minor), 112.5 (major), 77.5 (major), 76.0 (minor), 71.2 (minor), 71.1 (major), 46.4 (major), 45.4 (minor), 44.7 (minor), 44.4 (major), 41.7 (minor), 41.1 (major), 37.6 (major), 36.5 (minor), 36.2 (minor), 33.2 (major), 27.0 (minor), 26.9 (major), 17.4 (minor), 17.1 (major), 16.6 (minor), 16.6 (major), 14.7 (minor), 14.7 (major). **ESI-HR** calcd for C₂₄H₃₄NO₃⁺ ([M+H]⁺) 384.2533, found 384.2528. **IR** v (cm⁻¹) 3398, 3019, 2958, 1620, 1493, 1214, 743. $[\alpha]^{20}D = +48.7$ (*c* = 0.79, CHCl₃).

product 3ak-ol: Following the general procedure with 5 mol% catalyst and 6mol% (-)-DIOP, amide **1ah** (91.3 mg, 0.25 mmol). After the reaction, the residue was dissolved in THF (2.0 mL), 3 M NaOH (2.0 mL) and methanol (2.0 mL) and was cooled to 0 °C. Then 30% aqueous H₂O₂ (0.5 mL) was added dropwise. The reaction was stirred at room temperature for 3 h. Ethyl acetate (20 mL) was added, and the mixture was washed with water (10 mL), brine (10 mL) and dried over Na₂SO₄. After removal of the solvent, Analysis of the crude ${}^{1}H$ and ${}^{13}C$ NMR spectra indicates >20:1 dr. the crude product was purified by column chromatography on silica gel with EtOAc/hexanes mixture as eluent to provide 58.5 mg (61% yield) of **3ak-ol** as a colorless oil. Two sets of peaks were observed in ¹H and ¹³C NMR spectra due to carbamate rotamers, which are assigned to major and minor rotamers, respectively. TLC analysis (hexanes/EtOAc 2:1) $R_f = 0.31$; ¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.22 (m, 5H, overlapping), 7.19 - 7.07 (m, 1H, overlapping), 6.95 (t, J = 7.8 Hz, 1H, overlapping), 6.78 (dt, J = 10.5, 7.4 Hz, 1H, overlapping), 6.56 (dd, J = 14.3, 8.2 Hz, 1H, overlapping), 5.30 (s, 1H, overlapping), 5.22 – 5.09 (m, 1H, overlapping), 3.63 (m, 2H, major), 3.42 (m, 2H, minor), 2.95 (d, J = 3.3 Hz, 3H overlapping), 2.48 – 2.12 (m, 7H overlapping), 1.54 – 1.41 (m, 1H overlapping), 1.38 – 1.24 (m, 3H overlapping), 1.12 (m, 3H overlapping), 0.91 (m, 3H, overlapping). ¹³C NMR (101 MHz, CDCl₃) δ 173.3 (major), 173.2 (minor), 155.8 (minor), 155.4 (major), 141.6 (minor), 140.9 (major), 131.0 (major), 130.8 (minor), 129.0 (major), 128.8 (minor), 128.0 (major), 127.8 (minor), 126.9 (overlapping), 126.8 (major), 126.6 (minor), 125.8 (minor), 125.6 (major), 120.9 (major), 120.5 (minor), 112.8 (minor), 112.6 (major), 77.6 (minor), 76.1 (major), 71.3 (minor), 71.2 (major), 46.4 (major), 45.5 (minor), 44.8 (minor), 44.7 (*major*), 41.8 (*minor*), 41.1 (*major*), 37.7 (*major*), 36.6 (*minor*), 36.3 (*minor*), 33.3 (*major*), 27.0 (*minor*), 26.8 (*major*), 17.4 (*minor*), 17.2 (*major*), 16.7 (*overlapping*), 14.8 (*overlapping*). **ESI-HR** calcd for C₂₄H₃₄NO₃⁺ ([M+H]⁺) 384.2533, found 384.2524. **IR** v (cm⁻¹) 3400, 3028, 2958, 1619, 1492, 1212, 737. $[\alpha]^{20}_{D} = -17.9$ (c = 0.80, CHCl₃).

product 3ai-ol: Following the procedure described above. Amide 1aj (109.8mg, 0.25 mmol) was converted to the alcohol product. Analysis of the crude ¹H and ¹³C NMR spectra indicates >20:1 dr. Purification by silica gel chromatography gave 73.7 mg (64% yield) of **3ai-ol** as a colorless oil. Two sets of peaks were observed in ¹H, ¹³C and ¹⁹F NMR spectra due to carbamate rotamers, which are assigned to major and minor rotamers, respectively. TLC analysis (hexanes/EtOAc 2:1) $R_f = 0.27$; ¹H NMR (400 MHz, CDCl₃) δ 7.13 (dd, J = 8.2, 5.3 Hz, 2H, overlapping), 6.99 (td, J = 8.5, 6.7 Hz, 2H, overlapping), 6.63 (t, J = 8.4 Hz, 1H, overlapping), 6.36 (dd, J = 5.6, 2.5 Hz, 1H, overlapping), 6.15 (dd, J = 8.4, 2.5 Hz, 1H, overlapping), 5.89 (s, 2H, overlapping), 5.21 (s, 1H, overlapping), 5.04 – 4.95 (m, 1H, major), 4.87 – 4.76 (m, 1H, minor), 4.19 (m, 1H, major), 4.05 - 3.93 (m, 1H, minor), 3.64 (dd, J = 10.0, 2.9 Hz, 1H, overlapping), 3.58 – 3.44 (m, 1H, , overlapping), 3.23 – 3.05 (m, 1H, overlapping), 2.93 - 2.62 (m, 2H, overlapping), 2.58 - 2.39 (m, 2H, overlapping), 2.08 - 1.85 (m, 2H, overlapping), 1.69 (m, 1H, overlapping), 1.61 – 1.32 (m, 4H, overlapping), 1.26 (s, 3H, overlapping), 0.95 (m, 3H, overlapping). ¹³C NMR (101 MHz, CDCl₃) δ 171.5 (overlapping), 161.9 (J1 = 245.5 Hz) (overlapping), 154.3 (minor), 153.8 (major), 148.4 $(major), 148.3 (minor), 142.1 (major), 141.9 (minor), 138.4 (J_4 = 3.7 \text{ Hz}) (overlapping),$

128.9(J_3 = 8.1 Hz) (minor), 128.8 (J_3 = 8.1 Hz) (major), 115.9 (J_2 = 22.5 Hz) (major), 115.7 (J_2 = 22.5 Hz) (minor),108.1 (major), 108.0 (minor), 105.8 (minor), 105.7 (major), 101.4 (major), 101.2 (minor), 98.2 (minor), 98.1 (major), 71.3 (overlapping), 68.7 (overlapping), 49.2 (major), 46.3 (minor), 45.0 (major), 44.9 (minor), 44.8 (minor), 44.4 (major), 43.9 (major), 42.9 (minor), 42.2 (major), 42.1 (minor), 41.4 (minor), 41.3 (major), 34.6 (minor), 33.7 (major), 27.3 (minor), 27.1 (major), 17.5 (minor), 17.4 (major), 14.8 (major), 14.8 (minor). ¹⁹F NMR (376 MHz, CDCl3) δ -115.6 (major), -115.7 (minor). ESI-HR calcd for C₂₆H₃₃FNO₅⁺ ([M+H]⁺) 458.2337, found 458.2331. IR v (cm⁻¹) 3398, 3019, 1612, 1488, 1265, 746. [α]²⁰_D = + 39.6 (c = 0.51, CHCl₃)

product 3al-ol: Following the procedure described above. Amide **1aj** (109.8mg, 0.25 mmol) was converted to the alcohol product. Analysis of the crude ¹H and ¹³C NMR spectra indicates >20:1 dr. Purification by silica gel chromatography gave 72.3 mg (63% yield) of **3al-ol** as a colorless oil. Two sets of peaks were observed in ¹H, ¹³C and ¹⁹F NMR spectra due to carbamate rotamers, which are assigned to major and minor rotamers, respectively. TLC analysis (hexanes/EtOAc 2:1) R_f = 0.27; ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.09 (m, 2H, *overlapping*), 7.00 (m, 2H, *overlapping*), 6.63 (t, J = 8.2 Hz, 1H, *overlapping*), 6.36 (dd, J = 4.7, 2.5 Hz, 1H, *overlapping*), 6.15 (m, 1H, *overlapping*), 5.89 (d, J = 6.6 Hz, 2H, *overlapping*), 5.21 (s, 1H, *overlapping*), 4.81 (m, 1H, *overlapping*), 3.49 (m, 1H, *minor*), 4.00 (m, 1H, *major*), 3.64 (t, J = 2.1 Hz, 1H, *overlapping*), 3.49 (m, 1H, *overlapping*), 3.22 – 3.04 (m, 1H, *overlapping*), 2.85 (td, J = 11.9, 4.0 Hz, 1H, *overlapping*), 2.77 – 2.62 (m, 2H, *overlapping*), 2.57 – 2.42 (m, 2H, *overlapping*), 2.05 – 1.88 (m, 2H, *overlapping*), 1.76 – 1.66 (m, 1H, *overlapping*), 1.60

- 1.32 (m, 4H, overlapping), 1.25 (d, J = 8.1 Hz, 3H, overlapping), 0.95 (t, J = 7.1 Hz, 3H, overlapping). ¹³C NMR (101 MHz, CDCl₃) δ 171.5 (overlapping), 161.8 (J_1 = 245.5 Hz) (overlapping), 154.3 (minor), 153.9 (major), 148.4 (major), 148.3 (minor), 142.1 (major), 141.9 (minor), 138.4 (J_4 = 6.0 Hz) (overlapping), 128.9(J_3 = 9.6 Hz) (minor), 128.8(J_3 = 9.6 Hz) (major), 115.9 (J_2 = 21.2 Hz) (major), 115.8 (J_2 = 21.2 Hz) (minor), 108.1 (major), 108.0 (minor), 105.8 (overlapping), 101.4 (major), 101.2 (minor), 98.2 (minor), 98.1 (major), 71.3 (overlapping), 68.7 (major), 68.7 (minor), 49.2 (major), 46.4 (minor), 42.1 (major), 44.9 (minor), 44.8 (minor), 44.4 (major), 43.9 (minor), 33.8 (minor), 27.2 (major), 27.0 (minor), 17.5 (major), 17.4 (minor), 14.8 (minor), 14.8 (major). ¹⁹F NMR (376 MHz, CDCl3) δ -115.6 (major), -115.7 (minor). ESI-HR calcd for C₂₆H₃₃FNO₅⁺ ([M+H]⁺) 458.2337, found 458.2323. IR v (cm⁻¹) 3400, 2979, 1619, 1495, 1267, 732. [α]²⁰_D = - 21.3 (c = 1.25, CHCl₃).

product 3aj-ol: Following the procedure described above. Amide **1aj** (101.8mg, 0.25 mmol) was converted to the alcohol product. Analysis of the crude ¹H and ¹³C NMR spectra indicates >20:1 dr. Purification by silica gel chromatography gave 76.1 mg (72% yield) of **3aj-ol** as a colorless oil. Two sets of peaks were observed in ¹H and ¹³C NMR spectra due to carbamate rotamers, which are assigned to major and minor rotamers, respectively. TLC analysis (hexanes/EtOAc 2:1) R_f = 0.31; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (td, J = 8.2, 6.6, 4.5 Hz, 1H, *overlapping*), 7.88 – 7.65 (m, 1H, *overlapping*), 7.55 – 7.45 (m, 2H, *overlapping*), 7.40 (dd, J = 10.6, 8.2 Hz, 1H, *overlapping*), 7.29 – 7.16 (m, 2H, *overlapping*), 7.11 – 7.02 (m, 1H, *overlapping*), 6.93 (ddd, J = 15.3, 5.0, 3.5 Hz, 1H, *overlapping*), 6.80 (dd, J = 13.1, 7.7 Hz, 1H, *overlapping*), 5.69 (dd, J = 8.0, 4.8 Hz, 1H, *major*), 5.61 (dd, J = 8.4, 4.0 Hz, 1H, *minor*), 5.26 (s, 1H, *major*), 5.21 (s,

1H, minor), 3.83 - 3.69 (m, 1H overlapping), 3.50 (dddd, J = 40.4, 14.7, 8.3, 5.3 Hz, 1H, overlapping), 2.95 (d, J = 2.6 Hz, 3H, overlapping), 2.55 - 2.10 (m, 4H, overlapping), 1.57 – 1.23 (m, 2H, overlapping), 1.17 (s, 3H, major), 1.12 (td, J = 6.9, 3.1 Hz, 2H, overlapping), 0.91 (m, 3H, major), 0.86 (s, 3H, minor), 0.82 - 0.71 (m, 3H, *minor*). ¹³C NMR (101 MHz, CDCl₃) δ 173.4 (*major*), 173.3 (*minor*), 153.1 (*minor*), 152.7 (major), 144.6 (minor), 144.0 (major), 134.8 (major), 134.7 (minor), 127.9 (major), 127.7 (minor), 127.0 (major), 126.8 (minor), 126.7 (major), 126.4 (minor), 126.1 (minor), 125.9 (major), 125.8 (minor), 125.8 (major), 125.7 (major), 125.4 (minor), 125.2 (minor), 125.0 (major), 125.0 (major), 124.8 (minor), 122.0 (minor), 121.6 (major), 121.3 (major), 120.9 (minor), 107.1 (minor), 106.9 (major), 74.5 (minor), 72.9 (major), 71.2 (minor), 71.0 (major), 46.1 (major), 45.3 (minor), 44.8 (minor), 44.6 (major), 41.8 (minor), 41.0 (major), 37.7 (major), 36.6 (minor), 36.3 (minor), 33.2 (major), 27.0 (minor), 26.5 (major), 17.3 (minor), 17.0 (major), 14.8 (minor), 14.7 (major). ESI-HR calcd for C₂₅H₃₂NO₃S⁺ ([M+H]⁺) 426.2097, found 426.2091. **IR** v (cm⁻¹) 3401, 3052, 2959, 1620, 1264, 737. $[\alpha]^{20}_{D} = +112.3$ (c = 1.07, CHCl₃).

product 3am-ol: Following the procedure described above. Amide **1aj** (101.8mg, 0.25 mmol) was converted to the alcohol product. Analysis of the crude ¹H and ¹³C NMR spectra indicates >20:1 dr. Purification by silica gel chromatography gave 73.5 mg (69% yield) of **3am-ol** as a colorless oil. Two sets of peaks were observed in ¹H and ¹³C NMR spectra due to carbamate rotamers, which are assigned to major and minor rotamers, respectively. TLC analysis (hexanes/EtOAc 2:1) R_f = 0.31; ¹H NMR (400 MHz, CDCl₃) δ 8.41 – 8.25 (m, 1H, *overlapping*), 7.78 (t, J = 7.8, Hz, 1H, *overlapping*), 7.50

(m, 2H, overlapping), 7.41 (t, J = 9.1 Hz, 1H, overlapping), 7.33 – 7.23 (m, 2H, major), 7.23 - 7.17 (m, 2H, minor), 7.08 (t, J = 3.2 Hz, 1H, overlapping), 6.94 (m, 1H, overlapping), 6.81 (m, 1H, overlapping), 5.69 (dd, J = 8.2, 4.1 Hz, 1H, minor), 5.63 (dd, J = 8.2, 4.1 Hz, 1H, major), 5.27 (s, 1H, minor), 5.17 (s, 1H, major), 3.81 – 3.65 (m, 1H, overlapping), 3.54 (m, 1H, overlapping), 2.96 (s, 3H), 2.53 – 2.15 (m, 4H, overlapping), 1.55 – 1.29 (m, 2H, overlapping), 1.25 – 0.96 (m, 5H, overlapping), 0.91 (t, J = 7.5 Hz, 3H, , major), 0.75 (t, J = 6.9 Hz, 3H, minor). ¹³C NMR (101 MHz, CDCl₃) δ 173.4 (minor), 173.3 (major), 153.1 (major), 152.7 (minor), 144.7 (minor), 144.1 (major), 134.8 (major), 134.7 (minor), 127.9 (major), 127.7 (minor), 127.0 (major), 126.8 (minor), 126.7 (major), 126.5 (minor), 126.2 (minor), 125.9 (major), 125.8 (minor), 125.8 (minor), 125.7 (major), 125.4 (minor), 125.2 (major), 125.0 (major), 125.0 (major), 124.9 (minor), 122.1 (minor), 121.6 (major), 121.3 (major), 121.0 (minor), 107.1 (minor), 106.9 (major), 74.5 (minor), 73.0 (major), 71.3 (major), 71.1 (minor), 46.3 (major), 45.3 (minor), 44.8 (minor), 44.4 (major), 41.8 (major), 41.2 (minor), 37.8 (major), 36.7 (minor), 36.4 (minor), 33.3 (major), 27.1 (minor), 26.8 (major), 17.4 (minor), 17.0 (major), 14.8 (minor), 14.7 (major). ESI-HR calcd for $C_{25}H_{32}NO_3S^+([M+H]^+)$ 426.2097, found 426.2092. **IR** v (cm⁻¹) 3400, 3054, 2960, 1619, 1264, 732. $[\alpha]^{20}_{D} = +49.0 \ (c = 1.0, \text{CHCl}_3).$

Synthetic Transformation of Boration Products

product 4²: To a solution of hydroboration product **3i** (77.4 mg, 0.20 mmol) in THF (2.0 mL) and water (2.0 mL) was added sodium perborate trihydrate (4.0 equiv). The reaction was stirred at room temperature for 12 h. Ethyl acetate (20 mL) was added, and the mixture was washed with water (10 mL), brine (10 mL) and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel with EtOAc/hexanes mixture as eluent to give 43.6 mg (79% yield) of **4** as a

colorless oil. TLC analysis (hexanes/EtOAc 1:1) $R_f = 0.16$; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.13 (m, 5H), 5.16 (s, 1H), 3.65 (tt, J = 8.3, 4.5 Hz, 6H), 3.42 (td, J = 4.5, 2.0 Hz, 2H), 2.74 (dddd, J = 39.6, 13.5, 11.5, 5.4 Hz, 2H), 2.54 – 2.34 (m, 2H), 1.86 (dddd, J = 37.0, 13.6, 11.5, 5.6 Hz, 2H), 1.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 142.6, 128.5, 128.5, 125.9, 71.1, 66.9, 66.6, 46.1, 44.1, 41.8, 41.5, 30.4, 27.1. ESI-HR calcd for C₁₆H₂₄NO₃⁺ ([M+H]⁺) 278.1751, found 278.1743. IR v (cm⁻¹) 3406, 2917, 2857, 1613, 1113, 699. [α]²⁰_D = + 27.0 (c = 0.47, CHCl₃) for a 91% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak ID, 90.0:10.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): $t_{major} = 26.532 \text{ min}$, $t_{minor} = 27.789 \text{ min}$.

product 5³: In a 25 mL reaction tube with a magnetic stir bar, the hydroboration product **3i** (77.4 mg, 0.20 mmol) was dissolved in MeCN (2.0 mL). Water (2.0 mL) and KHF₂ (0.80 mmol, 4.0 equiv) were added. The reaction mixture was stirred at room temperature for 12 h, concentrated, and azeotroped with MeOH (5 mL×3). The resulting material was then placed on high vacuum overnight. The crude product was extracted with hot acetone, filtered and then concentrated. Et₂O (10 mL) was added to the crude material, and the mixture was sonicated for 30 min. After filtration, the trifluoroborate salt was obtained as a white solid (60.8 mg, 83% yield). ¹H NMR (400 MHz, (CD₃)₂CO) δ 7.19 (d, *J* = 4.4 Hz, 4H), 7.07 (m, 1H), 3.52 (s, 8H), 2.74 – 2.64 (m, 2H), 2.34 (d, *J* = 13.0 Hz, 1H), 1.63 – 1.55 (m, 2H), 0.90 (s, 3H).¹³C NMR (101 MHz, (CD₃)₂CO) δ 174.0, 146.8, 129.3, 128.7, 125.5, 67.6, 67.5, 48.1, 43.4, 42.4,

39.6, 32.8, 23.4. ¹⁹**F NMR** (376 MHz, (CD₃)₂CO) δ -148.57. **IR** v (cm⁻¹) 2937, 2853, 1619, 1114, 696. [α]²⁰_D = - 24.0 (c = 0.38, Acetone) **ESI-HR** calcd for C₁₆H₂₂BF₃NO₂⁻ ([**M**-K⁺]⁻) 328.1704, found 328.1701.

product 6⁴: To a solution of hydroboration product 3e (77.0 mg, 0.20 mmol) in THF (2.0 mL) was added vinylmagnesium bromide (4.0 equiv). The resultant mixture was stirred as room temperature for 1 h. To the above solution was cooled to -78 °C and iodine (4.0 equiv) in methanol (1.0 mL) was added. The reaction mixture was stirred at the -78 °C for 1 h followed by addition of a solution of NaOMe (8.0 equiv) in methanol (2.0 mL). After warming to room temp, the resultant mixture was stirred for another 1.5 h. It was then diluted with pentane (20 mL) and washed with a solution of Na₂S₂O₃ (3.0 mL). Ethyl acetate (20 mL) was added, and the mixture was washed with water (10 mL), brine (10 mL) and dried over Na₂SO₄. After removal of the solvent, the reaction mixture was concentrated. Purification by silica gel chromatography gave 26.1 mg (46% yield) of **6** as a white solid. TLC analysis (hexanes/EtOAc 4:1) $R_f = 0.23$; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.12 (m, 5H), 5.94 (dd, J = 17.5, 10.8 Hz, 1H), 5.13 – 4.92 (m, 2H), 3.55 (t, J = 5.5 Hz, 2H), 3.40 (t, J = 5.4 Hz, 2H), 2.56 (t, J = 8.6 Hz, 2H), 2.47 -2.36 (m, 2H), 1.81 (dp, J = 9.9, 6.3 Hz, 2H), 1.57 (dq, J = 35.5, 6.4, 5.8 Hz, 6H), 1.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃)δ 169.4, 146.3, 143.1, 128.5, 128.4, 125.7, 112.2, 47.8, 43.0, 42.7, 42.7, 40.0, 30.9, 26.7, 25.8, 24.7, 23.3. ESI-HR calcd for C₁₉H₂₇KNO⁺ ([M+K]⁺) 324.1724, found 324.1712. **IR** v (cm⁻¹) 2930, 2855, 1632, 1444, 1140, 700. **M. P.** 40-42 °C. $[\alpha]^{20}_{D} = +$ 21.1 (c = 0.27, CHCl₃) for a 96% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak IC, 92.0:8.0 hexanes: i-PrOH, 1.0 mL/min, 208 nm): $t_{\text{major}} = 16.846 \text{ min}, t_{\text{minor}} = 18.563 \text{ min}.$

Product 7⁵: In a 25 mL flame-dried Schlenk tube with a magnetic stir bar, the 1-bromo-3,5-dimethoxybenzene (102 mg, 0.470 mmol, 1.4 equiv) and THF (2.0 mL) were added under Ar atmosphere. Then t-BuLi (0.94 mmol, 2.8 equiv) was added dropwise at -78 °C. The reaction mixture was stirred for 1 hour at the same temperature, and then **3a** (146 mg, 0.330 mmol, 1.0 equiv) was added dropwise as a solution in THF (1.0 mL). After stirring at the -78 °C for another 1 hour, a solution of NBS (238 mg, 1.33 mmol, 4.0 equiv) in THF (2.0 mL) was added dropwise. The reaction mixture was stirred at -78 °C for 1 hour. Then the reaction mixture was quenched with saturated Na₂S₂O₃ solution (2.0 mL). Ethyl acetate (20 mL) was added, and the mixture was washed with water (10 mL), brine (10 mL) and dried over Na₂SO₄. After removal of the solvent, the reaction mixture was concentrated. Purification by silica gel chromatography gave 69.1 mg (47% yield) of **7** as a colorless oil. TLC analysis (hexanes/EtOAc 4:1) $R_f = 0.48$; ¹H **NMR** (400 MHz, CDCl₃) δ 7.42 – 7.16 (m, 6H), 7.12 – 6.96 (m, 4H), 6.49 (d, J = 2.2 Hz, 2H), 6.32 (t, J = 2.2 Hz, 1H), 4.73 (d, J = 14.9 Hz, 1H), 4.31 (dd, J = 16.1, 7.0 Hz, 2H), 4.14 (d, J = 17.3 Hz, 1H), 3.75 (s, 6H), 2.79 (d, J = 14.6 Hz, 1H), 2.58 (d, J = 14.6 Hz, 1H), 1.87 – 1.67 (m, 2H), 1.55 (s, 3H), 1.26 – 1.16 (m, 1H), 1.05 – 0.93 (m, 1H), 0.83 (t, J = 7.2 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 171.8, 160.8, 150.1, 137.6, 136.9, 129.0, 128.6, 128.1, 127.6, 127.2, 126.4, 105.1, 97.3, 55.3, 50.3, 48.2, 45.4, 45.4, 41.5, 24.5, 17.5, 14.8.**ESI-HR** calcd for C₂₉H₃₆NO₃⁺ ([M+H]⁺) 446.2690, found 446.2687.

IR v (cm⁻¹) 3010, 2935, 1615, 1216, 750. $[\alpha]^{20}_{D} = +72.2$ (c = 0.65, CHCl₃) for a 96% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak OD, 94.0:6.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): $t_{major} = 7.718$ min, $t_{minor} = 6.656$ min.

product 8⁶: In a 10 mL flame-dried Schlenk tube with a magnetic stir bar, the CICH₂I (176 mg, 1.00 mmol, 5.0 equiv), **3a** (87.0 mg, 0.20 mmol, 1.0 equiv) and THF (2.0 mL) was added under Ar atmosphere. Then *n*-BuLi (1.0 mmol, 5.0 equiv) was added dropwise at -78 °C. The reaction mixture was stirred for 10 min at the same temperature, and then the reaction was stirred at the room temperature for another 1 hour. To the reaction mixture was added 3 M NaOH (2.0 mL) and methanol (2.0 mL), and it was cooled to 0 °C. Then 30% aqueous H₂O₂ (0.5 mL) was added dropwise. The reaction was stirred for 3 h. Ethyl acetate (20 mL) was added, and the mixture was washed with water (10 mL), brine (10 mL) and dried over Na₂SO₄. After removal of the solvent, the reaction mixture was concentrated. Purification by silica gel chromatography gave 30.4 mg (45% yield) of **8** as a colorless oil. TLC analysis (hexanes/EtOAc 2:1) $R_f = 0.51$; ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.08 (m, 10H), 4.72 (t, J = 13.9 Hz, 2H), 4.59 – 4.39 (m, 3H), 3.59 – 3.37 (m, 2H), 2.59 – 2.37 (m, 2H), 1.39 – 1.17 (m, 4H), 0.98 – 0.80 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 137.2, 136.3, 129.2, 128.8, 128.4, 128.0, 127.7, 126.5, 70.5, 51.0, 48.6, 41.4, 41.0, 39.4, 22.8,

17.0, 15.0. **ESI-HR** calcd for $C_{22}H_{30}NO_2^+$ ([M+H]⁺) 340.2271, found 340.2269. **IR** v (cm⁻¹) 3396, 2956, 1615, 1417, 1265, 733. [α]²⁰_D = + 137.3 (*c* = 0.33, CHCl₃). for a 96% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 84.0:16.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): $t_{major} = 7.342$ min, $t_{minor} = 6.908$ min.

Substrates and products for control experiments

Ester 9: colorless oil. TLC analysis (hexanes/EtOAc 25:1) $R_f = 0.42$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.33 – 7.07 (m, 5H), 5.68 (q, J = 1.3 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 2.81 – 2.73 (m, 2H), 2.43 (ddd, J = 9.1, 6.0, 1.2 Hz, 2H), 2.20 (d, J = 1.3 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 166.8, 159.0, 141.2, 128.5, 128.3, 126.2, 116.1, 59.6, 42.8, 34.0, 19.0, 14.4. **ESI-HR** calcd for C₁₄H₁₈NaO₂⁺ ([M+Na]⁺) 241.1199, found 241.1191. **IR** v (cm⁻¹) 2982, 2932, 1711, 1647, 1495, 697.

amide 10: pale yellow oil. TLC analysis (hexanes/EtOAc 1:1) $R_f = 0.27$; ¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (t, J = 7.4 Hz, 2H), 7.23 – 7.13 (m, 3H), 5.52 – 5.33 (m, 1H), 3.61 (q, J = 3.1, 2.7 Hz, 4H), 3.51 (t, J = 4.7 Hz, 2H), 3.44 – 3.37 (m, 4H), 3.11 (s, 2H), 1.81 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.7, 141.0, 130.3, 128.6, 128.4, 127.0, 126.1,

67.0, 66.7, 46.4, 44.7, 42.1, 34.5, 16.6. **ESI-HR** calcd for $C_{16}H_{22}NO_2^+$ ([M+H]⁺) 260.1645, found 260.1639. **IR** v (cm⁻¹) 2919, 2864, 1634, 1494, 1113, 699.

amide 11: pale yellow oil. TLC analysis (hexanes/EtOAc 1:1) $R_f = 0.29$; ¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.16 (m, 5H), 4.98 (d, J = 1.7 Hz, 1H), 4.85 (s, 1H), 3.71 – 3.54 (m, 6H), 3.37 – 3.28 (m, 2H), 3.11 (s, 2H), 2.81 (dd, J = 9.2, 6.7 Hz, 2H), 2.42 (t, J = 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 142.9, 141.6, 128.5, 128.5, 126.1, 112.9, 67.0, 66.8, 46.5, 42.0, 42.0, 37.7, 34.1. **ESI-HR** calcd for C₁₆H₂₂NO₂⁺ ([M+H]⁺) 260.1645, found 260.1637. **IR** v (cm⁻¹) 2919, 2856, 1632, 1425, 1433, 1114, 698.

Boration product 11b: Following the general procedure, amide 9 (64.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 67.9 mg (70% yield) of 11b as a colorless oil. TLC analysis (hexanes/EtOAc 1:1) R_f = 0.28; ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.02 (m, 5H), 3.68 – 3.23 (m, 8H), 2.64 (ddd, *J* = 13.6, 10.1, 5.5 Hz, 1H), 2.51 (ddd, *J* = 13.6, 10.0, 6.4 Hz, 1H), 2.36 (dd, *J* = 14.2, 6.6 Hz, 1H), 2.20 (dd, *J* = 14.2, 7.6 Hz, 1H), 2.03 (hept, *J* = 6.7 Hz, 1H), 1.73 – 1.62 (m, 1H), 1.58 – 1.47 (m, 1H), 1.17 (s, 12H), 0.91 (dd, *J* = 15.9, 5.5 Hz, 1H), 0.80 (dd, *J* = 15.9, 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 142.7, 128.5, 128.4, 125.8, 83.2, 67.0, 46.4, 42.1, 40.1, 38.3, 33.3, 31.5, 25.0, 25.0. ESI-HR calcd for C₂₂H₃₅BNO₄⁺ ([M+H]⁺) 388.2654, found 388.2646. [α]²⁰_D = - 8.4 (*c* = 0.81, CHCl₃) for a 76% *ee* sample. IR ν (cm⁻¹) 2976, 1642, 1144, 755. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 98.0:2.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): *t*_{major} =31.069 min, *t*_{minor} =28.930 min.

Boration product (*R***)-3i:** Following the general procedure, amide **11** (64.8 mg, 0.25 mmol) was converted to the boration product. Purification by silica gel chromatography gave 11.6 mg (12% yield) of (*R*)-3i as a colorless oil. For a 70% *ee* sample. The enantiomeric purity of this compound was determined by HPLC analysis in comparison with authentic racemic material (Chiralpak AD, 99.0:1.0 hexanes:*i*-PrOH, 1.0 mL/min, 208 nm): $t_{major} = 9.6069$ min, $t_{minor} = 11.761$ min.

Amide Z-1i: Pale yellow oil. TLC analysis (hexanes/EtOAc 1:1) $R_f = 0.28$ ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.10 (m, 5H), 5.77 (d, J = 1.7 Hz, 1H), 3.67 – 3.50 (m, 6H), 3.38 – 3.29 (m, 2H), 2.84 – 2.76 (m, 2H), 2.72 – 2.61 (m, 2H), 1.87 (d, J = 1.4 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.8, 149.7, 141.8, 128.5, 128.4, 126.0, 118.5, 77.5,

77.2, 76.8, 66.9, 66.8, 46.5, 41.6, 35.5, 34.2, 23.9. **ESI-HR** calcd for $C_{16}H_{22}NO_2^+$ ([M+H]⁺) 260.1645, found 260.1639. **IR** v (cm⁻¹) 2971,2854,1621,1425,1113,698.

General Information for Computation

All calculations were performed with the Gaussian 09 program. (Full citation of Gaussian 09: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, revision B.01; Gaussian Inc.: Wallingford, CT, 2010.) Density functional theory calculations using the M06 functional ((a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241. (b) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157-167.) Geometry optimizations were conducted with the Gaussian 09 software package, B3LYP functional, and LANL2DZ basis set for Rh and 6-31g(d,p) basis set for all other atoms. Single-point energy calculations were conducted with the M06 functional and SDD basis set for Rh and the 6-311++g(d,p) basis set for all other atoms, along with the SMD o-C₆H₄Cl₂ solvent correction. Thermal corrections were applied to the optimized geometries to provide Gibbs free energies.

The energy profile of catalytic hydroboration using DIOP ligand was computed. Extensive conformational searches were conducted for all intermediates and transition states, and the lowest energy conformers are shown in Supplementary Figure 3.

Computational results revealed that migratory insertion of the alkene into rhodium hydride has the highest activation barrier. Others steps have much lower activation energies. To reveal the origin of enantioselectivity, the possible transition state structures for the migratory insertion were considered. The structures and energies were summarized in Supplementary Figure 4 and 5. The transition states leading to the *S*-enantiomer have activation energies of 21.0, 21.3 kcal/mol, respectively, while the transition states leading to the *R*-enantiomer have activation energies of 26.2, 23.4 kcal/mol, respectively. The lower activation energy of **TS-2** is consistent with the major enantiomer observed in the experiments.

reaction coordinate

Supplementary Figure 3. Energy profile for Rh-DIOP catalyzed hydroboration. Gibbs free energies in $o-C_6H_4CI_2$ ($\Delta G_{solv298K}$) are reported.

Supplementary Figure 4. transition states of migratory insertion leading to the correct enantiomer

Supplementary Figure 5. transition states of migratory insertion leading to the opposite enantiomer

Coordinates and Energies of Stationary Points

Me Q Et′ NMe₂

 $G_{\rm sol}$ = -443.4854871 Hatree

С	-1.46005500	0.04045000	-0.28059000
С	-0.24654000	-0.42012700	0.08406300
С	-2.65278100	-0.89316800	-0.24957600
Н	-2.32343600	-1.90707500	0.00379900
Н	-3.08562500	-0.94526300	-1.25918300
Н	-0.17645100	-1.46022100	0.39104200
С	0.99863500	0.39548100	0.15869800
0	0.97994200	1.61512500	0.34632100
Ν	2.19605700	-0.28810400	0.05287700
С	3.43759900	0.43358800	0.28372200
Н	4.02006700	0.52504800	-0.64310000
Н	4.05277800	-0.09477400	1.02324500
Н	3.19404100	1.42945700	0.64949400
С	-1.74079100	1.44847700	-0.73919900
Н	-2.22567700	2.01917300	0.06252000
Н	-0.83036400	1.98410700	-1.00065700
Н	-2.43563900	1.43871800	-1.58791700
С	-3.75397100	-0.45553900	0.73391900
Н	-4.58136000	-1.17217500	0.72629100
Н	-3.36488600	-0.39768400	1.75558800
Н	-4.16206100	0.52556000	0.47361200
C	2.34054100	-1.67148000	-0.36753700
Н	2.60879300	-2.33262700	0.46918300
Н	1.42450200	-2.03911300	-0.82773000
Н	3.13756500	-1.74349500	-1.11790600

HBpin

$G_{\rm sol}$	= -411.5602608	Hatree	
С	0.78913600	-0.19125300	0.04531000
С	-0.78913700	-0.19124900	-0.04531600
В	-0.00000100	1.94515800	-0.00003800
Н	-0.00001900	3.13323800	-0.00000800
0	-1.08513300	1.20021700	-0.36874600
0	1.08514700	1.20023000	0.36865200
С	1.47927800	-0.48198400	-1.29370300
Н	2.54701000	-0.26824400	-1.19527400
Н	1.36273900	-1.52889800	-1.58915600
Н	1.08169700	0.15079900	-2.09199600
С	1.37896900	-1.07502200	1.14266000

Н	1.13832900	-2.12875000	0.96668800
Н	2.46787100	-0.97331800	1.14742100
Н	1.01097000	-0.79345900	2.13077600
С	-1.37900500	-1.07509800	-1.14258700
Н	-1.13832200	-2.12880600	-0.96656200
Н	-2.46791100	-0.97343400	-1.14729700
Н	-1.01107200	-0.79358100	-2.13074000
С	-1.47925200	-0.48188300	1.29372800
Н	-2.54696700	-0.26803800	1.19534100
Н	-1.36280100	-1.52880400	1.58919400
Н	-1.08157300	0.15087000	2.09199700

$G_{\rm sol}$	= -855.0651241	Hatree	
С	0.66940700	1.47222100	0.27748200
В	-0.60124900	0.52587900	0.14513400
Н	1.79834700	0.68042600	-1.40916600
С	0.35387200	2.74890000	-0.56241800
Н	-0.55054300	3.21277700	-0.14566200
Н	0.09147700	2.43956100	-1.58241100
С	1.90282600	0.75297000	-0.31765700
Н	2.81306300	1.33376800	-0.12719300
С	2.06325200	-0.66497000	0.23060100
0	1.15401300	-1.18662600	0.88377700
Ν	3.22797500	-1.34027500	-0.02802300
С	3.40755900	-2.68379000	0.50542100
Н	4.32300900	-2.73437100	1.10803100
Н	3.49074000	-3.41625800	-0.30789600
Н	2.54718000	-2.92824700	1.12524200
С	-2.11925100	-0.89383900	-0.80955500
С	-2.72630800	-0.24662500	0.50192500
0	-0.94918100	-0.06701500	-1.05066500
0	-1.57281400	0.39369600	1.10741600
С	-3.74536500	0.86707400	0.22140400
Н	-3.96536600	1.38740100	1.15786300
Н	-4.68293900	0.47068100	-0.18033900
Н	-3.34737600	1.60099900	-0.48510900
С	-3.01907600	-0.82099900	-2.04326400
Н	-3.93966200	-1.39482200	-1.89194400
Н	-2.49363400	-1.24834000	-2.90237900
Н	-3.28630500	0.20784700	-2.29141000

С	-3 30460200	-1 24191200	1 50750700
0	0.00100200	1.21291200	1.00,00,00
Н	-4.15177400	-1.78753700	1.07806900
Н	-3.66163800	-0.70287700	2.38994300
Н	-2.55200600	-1.96137200	1.83391200
С	-1.61993600	-2.33135900	-0.60937900
Н	-1.08313300	-2.64406000	-1.51011000
Н	-2.44950600	-3.02684100	-0.44793900
Н	-0.92445800	-2.39268300	0.22987300
С	0.92031900	1.83637500	1.75528700
Н	1.06903700	0.93587500	2.35598400
Н	1.80458100	2.47475000	1.87392200
Н	0.06090700	2.36935100	2.17417400
С	1.45434000	3.81820300	-0.63671600
Н	2.36674400	3.43795700	-1.10902900
Н	1.11430400	4.67252000	-1.23198800
Н	1.72587300	4.19774900	0.35329100
С	4.32504600	-0.84367000	-0.84158300
Н	4.07684500	0.10788400	-1.30608400
Н	5.23402700	-0.71098000	-0.23916800
Н	4.55397600	-1.56054000	-1.64053900

$G_{\rm sol}$	= -2586.554189	979 Hatree	
Rh	0.58054300	0.82035700	-0.05253200
Ρ	-1.57815500	0.11261800	0.37842200
Ρ	1.54289000	-1.29962500	0.14346400
0	-0.98384100	-3.56333700	-2.16484200
0	-2.77509400	-3.11475200	-0.80055900
С	0.87337800	-2.64767600	-0.95818000
Н	1.12008000	-3.63585700	-0.55992900
Н	1.41523300	-2.55527900	-1.90310500
С	-0.61439600	-2.53835500	-1.25119400
Н	-0.81790900	-1.55020200	-1.68924200
С	-1.58347500	-2.79034600	-0.09324600
Н	-1.23371200	-3.67003800	0.47341900
С	-1.85588800	-1.66195400	0.90540400
Н	-2.88886800	-1.75789000	1.25201500
Н	-1.22090600	-1.79556100	1.78559500
С	-2.38939400	-3.83652000	-1.98404200
С	-2.55777400	-5.33847500	-1.78001900
Н	-2.16728700	-5.88217100	-2.64446400

Н	-3.61479900	-5.58798700	-1.65595000
Н	-2.01180200	-5.66641200	-0.89163300
С	-3.19322600	-3.29411500	-3.15808200
Н	-2.92238700	-3.82478300	-4.07456200
Н	-2.99548300	-2.22821000	-3.29153800
Н	-4.26308800	-3.43053500	-2.97797200
С	-2.33483900	0.93735400	1.85586400
С	-3.55377400	1.63046000	1.82522300
Н	-4.10699200	1.72698900	0.89804400
С	-4.06691000	2.21405600	2.98665600
Н	-5.01231700	2.74680000	2.94452600
С	-3.37281500	2.11437100	4.19254700
Н	-3.77562500	2.56617100	5.09388800
С	-2.15619200	1.42926700	4.23347800
Н	-1.60968400	1.34424300	5.16821100
С	-1.63883600	0.85029500	3.07471600
Н	-0.68948700	0.32572200	3.12294300
С	-2.76800800	0.36743000	-1.00584200
С	-2.32585900	0.98796200	-2.18392900
Н	-1.28456100	1.28547300	-2.26236500
С	-3.19866800	1.19109200	-3.25515100
Н	-2.84026100	1.66787100	-4.16271900
С	-4.52696700	0.77464300	-3.16000900
Н	-5.20888200	0.93297500	-3.99000100
С	-4.97500200	0.14121100	-1.99789700
Н	-6.00374200	-0.19825000	-1.92490400
С	-4.10218600	-0.06919700	-0.93111200
Н	-4.46642100	-0.57797300	-0.04515600
С	1.55940300	-1.95961300	1.86417400
С	1.70895900	-1.02981300	2.90837400
Н	1.76780400	0.02894600	2.66966300
С	1.79056000	-1.45480800	4.23465600
Н	1.91578900	-0.72508000	5.02908000
С	1.70902800	-2.81575600	4.53840800
Н	1.76441100	-3.14842500	5.57036300
С	1.56074400	-3.74758300	3.51033800
Н	1.50284900	-4.80727000	3.73954000
С	1.49516700	-3.32550000	2.18049900
Н	1.40152400	-4.07371800	1.40108100
С	3.32115300	-1.29918100	-0.35089900
С	4.35361000	-1.53682100	0.56553100
Н	4.12723800	-1.73097100	1.60786700
С	5.68557300	-1.53992900	0.14299400
Н	6.47475900	-1.73275100	0.86339300
С	6.00032600	-1.30913000	-1.19531900

S67

Н	7.03544900	-1.32216300	-1.52280500	Н	-3.06336900	2.14649900	0.57207300
С	4.97663000	-1.06449200	-2.11519500	С	-3.04098600	0.45362600	1.89569400
Н	5.21308900	-0.88825200	-3.16060100	0	-1.86646300	0.04117000	1.71163000
С	3.64804400	-1.05014800	-1.69476300	N	-3.68280800	0.08996700	3.03093300
Н	2.86535400	-0.84076200	-2.41919100	С	-3.01751600	-0.82139400	3.96398900
С	0.19409900	3.29250300	0.40367800	Н	-3.78134700	-1.36987400	4.52022400
С	0.60432700	2.99806400	-0.88444600	Н	-2.39160700	-0.26898400	4.67530100
Н	-0.08824500	3.17161700	-1.70348900	Н	-2.39362900	-1.52242000	3.41297200
C	2.02223300	2.67884700	-1.21418700	С	0.86112200	4.18231500	-0.80450400
C	-1.20197300	3.85216400	0.59418800	С	-0.70669600	4.04824200	-0.91230600
Н	-1.88295600	3.41041200	-0.13997500	0	1.24862100	2.84972500	-0.34496900
Н	-1.57456700	3.57824900	1.58378200	0	-0.99816000	3.00951900	0.08094400
C	-1.23485800	5.38805900	0.45084200	С	-1.48833900	5.30313000	-0.53120300
Н	-0.91614100	5.70319700	-0.54814600	Н	-2.56215900	5.11200300	-0.61448200
Н	-2.25337600	5.75403900	0.60782400	Н	-1.24347600	6.13004100	-1.20554900
Н	-0.59094400	5.88245700	1.18405100	Н	-1.27861000	5.61570600	0.49279100
С	1.12211500	3.44655000	1.58547300	С	1.32174000	5.16640700	0.27786000
Н	2.12526500	3.06466800	1.39949700	Н	1.13708200	6.20353400	-0.01614400
Н	1.19403800	4.50997500	1.85017700	Н	2.39555800	5.03901000	0.43677500
Н	0.70588300	2.93475100	2.45879500	Н	0.81673100	4.97952300	1.22955900
0	2.51025100	1.68750300	-0.59591100	С	-1.17858900	3.52249800	-2.27246500
N	2.71674900	3.36260100	-2.13329600	Н	-1.04391000	4.27146600	-3.05769300
С	2.22924000	4.58572900	-2.76630100	Н	-2.24465900	3.28435300	-2.21348500
Н	2.97659300	5.37732200	-2.65098700	Н	-0.64074600	2.61626700	-2.56257200
Н	2.05763200	4.42419400	-3.83614400	С	1.58000600	4.47015900	-2.12005600
Н	1.30291200	4.91829800	-2.30025700	Н	2.65799500	4.52408700	-1.94453000
С	4.06838400	2.93736600	-2.50438700	Н	1.26122500	5.43249000	-2.53294000
Н	4.14673900	2.89675300	-3.59521700	Н	1.39530100	3.69385000	-2.86477400
Н	4.80635800	3.65246800	-2.12532100	Р	-0.32280700	-1.80376300	-0.33975600
Н	4.26662100	1.95440200	-2.08191300	Р	2.39666800	0.14961200	0.56575600
				0	2.60047000	-0.45024300	-3.46508300

$G_{\rm sol}$	= -2998.104495	58 Hatree	
Rh	0.12556600	0.23943200	0.84814600
Ċ	-4.85535200	1.07981000	0.24029200
С	-3.69582600	1.31930900	0.88438000
Н	0.29375400	1.77774100	1.54552500
С	-5.32060500	2.02630300	-0.84693900
Н	-5.41587500	1.46138600	-1.78498700
Н	-4.55534300	2.79190900	-1.01404000
В	0.16233300	2.28774800	0.28976500

С	1.32174000	5.16640700	0.27786000	
Н	1.13708200	6.20353400	-0.01614400	
Η	2.39555800	5.03901000	0.43677500	
Н	0.81673100	4.97952300	1.22955900	
C	-1.17858900	3.52249800	-2.27246500	
Н	-1.04391000	4.27146600	-3.05769300	
Н	-2.24465900	3.28435300	-2.21348500	
Н	-0.64074600	2.61626700	-2.56257200	
С	1.58000600	4.47015900	-2.12005600	
Н	2.65799500	4.52408700	-1.94453000	
Н	1.26122500	5.43249000	-2.53294000	
Н	1.39530100	3.69385000	-2.86477400	
Ρ	-0.32280700	-1.80376300	-0.33975600	
Ρ	2.39666800	0.14961200	0.56575600	
0	2.60047000	-0.45024300	-3.46508300	
0	1.58272000	-2.50105600	-3.33636800	
С	2.99519900	0.14927600	-1.18726400	
Η	4.02391700	-0.21278200	-1.26629300	
Н	2.98564000	1.20002300	-1.48799100	
С	2.09093500	-0.61711700	-2.14649700	
Η	1.07420900	-0.20603200	-2.08003000	
С	2.03052500	-2.14859200	-2.03223200	
Н	3.05240600	-2.53032500	-1.87000300	
С	1.11131300	-2.80115300	-0.98835300	
Н	0.73644400	-3.73864100	-1.40846600	
Н	1.70272300	-3.06229200	-0.10881200	
С	2.15210300	-1.56228700	-4.26462700	
С	3.36672900	-2.16335800	-4.96399900	
Н	3.84858500	-1.41244000	-5.59598700	

Н	3.06462600	-3.00737400	-5.58952900
Н	4.09488400	-2.51268700	-4.22747300
С	1.05745000	-1.12192500	-5.22815300
Н	1.45792300	-0.40411100	-5.94888800
Н	0.23600700	-0.65663500	-4.67845900
Н	0.66596200	-1.98442500	-5.77439500
Ċ	-1.22222600	-3.04772200	0.68536900
С	-2.61561300	-3.18763100	0.58767900
Н	-3.17084000	-2.59643100	-0.13228700
С	-3.29533700	-4.09766400	1.39926800
Н	-4.37193800	-4.20353000	1.30166100
С	-2.59590700	-4.87721900	2.32181700
Н	-3.12444800	-5.59040500	2.94710900
Ċ	-1.21098200	-4.73930800	2.43187300
Н	-0.65802500	-5.34529000	3.14358300
Ċ	-0.52797800	-3.82915500	1.62393300
Н	0.54745100	-3.73586200	1.73344400
С	-1.41480200	-1.54087900	-1.79554700
С	-1.93250400	-0.26615400	-2.06341700
Н	-1.69266700	0.55977700	-1.40208700
С	-2.75068700	-0.05798700	-3.17724700
Н	-3.13831600	0.93551700	-3.38163000
Ċ	-3.06399100	-1.12064900	-4.02526600
Н	-3.69869800	-0.95841000	-4.89141700
С	-2.55609400	-2.39568100	-3.76072300
Н	-2.79512100	-3.22540500	-4.41896300
С	-1.73341300	-2.60565400	-2.65580600
Н	-1.34399300	-3.60094400	-2.46800300
С	3.10958400	-1.35099000	1.37884500
С	2.46583200	-1.85762600	2.52005300
Н	1.53448000	-1.40739600	2.85447500
С	3.01147700	-2.93014600	3.22804800
Н	2.50521100	-3.30519700	4.11268000
С	4.20419900	-3.51670100	2.80051400
Н	4.62825400	-4.35262700	3.34829400
С	4.85394300	-3.01893400	1.66972400
Н	5.78559000	-3.46554400	1.33580000
С	4.31613400	-1.93907700	0.96728500
Н	4.85385400	-1.55849100	0.10552600
С	3.36850200	1.48111400	1.39238100
С	3.01014800	1.86278700	2.69409900
Н	2.14536200	1.41322100	3.17341600
С	3.75086200	2.82526700	3.37862200
Н	3.46111900	3.11202000	4.38512000
С	4.85903500	3.41969700	2.77107300

н	5.43503700	4.17082900	3.30294200
С	5.22561400	3.04105500	1.47929400
Н	6.08812100	3.49581300	1.00125500
С	4.48768200	2.07447200	0.79275300
Н	4.79379300	1.79853900	-0.21024400
С	-5.73908100	-0.11711400	0.49038000
Н	-5.27124600	-0.86008100	1.13865200
Н	-6.69123200	0.17986600	0.94603500
Н	-5.99019500	-0.59991700	-0.46131300
С	-6.66598300	2.71145800	-0.54335100
Н	-6.61255400	3.29090800	0.38402200
Н	-6.93244200	3.39786900	-1.35221400
Н	-7.48089300	1.98824000	-0.44545100
С	-4.90038200	0.72509800	3.53070600
Н	-5.20728400	1.52741600	2.86403600
Н	-5.71263900	-0.00439200	3.61711200
Н	-4.70739000	1.14598400	4.52371800

 $\begin{bmatrix} Me_2N & T^+ \\ P_{M} & H \end{bmatrix}^{\ddagger}$

$G_{\rm sol}$	= -2998.096951	.95 Hatree	
Rh	0.11115500	0.17037300	-0.77514200
В	0.25348800	1.95221000	0.15796600
Н	0.38224700	1.54203500	-1.55048500
С	4.01624300	0.90636600	-0.76281000
С	5.80207600	1.81057900	0.69452700
Н	6.05314500	1.32855100	1.65005100
Н	5.02231300	2.54881100	0.90769300
С	5.25515000	0.75994300	-0.24993300
Н	3.39066000	1.72885000	-0.42548200
С	3.27483200	-0.07161100	-1.59609800
0	2.16163100	-0.50807000	-1.18922500
Ν	3.77378200	-0.52055700	-2.76841800
С	3.05355000	-1.55074000	-3.51859700
Н	3.78143000	-2.20600100	-4.00471800
Н	2.42162200	-1.09734900	-4.29215400
Н	2.43169500	-2.13329700	-2.84235900
С	-0.30277400	3.92659800	1.19785200
С	1.17361900	3.51469700	1.56538000
0	-0.82017400	2.68914800	0.60702800
0	1.45982100	2.47565700	0.56878200
С	2.20891800	4.62530700	1.41064100

Н	3.20093900	4.24620100	1.67310900	С	0.80001700	-4.83398000	-2.07928400
Н	1.98460000	5.45912300	2.08367100	Н	0.51724800	-5.06112700	-3.10323000
Н	2.24814900	5.00491800	0.38823000	С	0.30431200	-3.68483000	-1.46257300
С	-0.38831200	5.00400800	0.11089400	Н	-0.35898800	-3.02644500	-2.01681300
Н	-0.08256200	5.98242400	0.49233600	С	0.84517300	-1.67532000	2.21555900
Н	-1.42245700	5.07948400	-0.23482300	С	2.09916800	-1.04100100	2.15873400
Н	0.23773900	4.75540400	-0.75031700	Н	2.46483800	-0.65536600	1.21349900
С	1.29896600	2.85798200	2.94438800	С	2.87424000	-0.91064200	3.31058200
Н	1.16427200	3.58745200	3.74808500	Н	3.84372500	-0.42415300	3.25280000
Н	2.29513900	2.41942400	3.04305600	С	2.40684300	-1.39859500	4.53302300
Н	0.56731000	2.05673200	3.07578400	Н	3.01073300	-1.29398900	5.42955300
С	-1.18626500	4.29777900	2.38557200	С	1.15856900	-2.01820800	4.59846000
Н	-2.18927200	4.55467600	2.03338000	Н	0.78604800	-2.39534400	5.54624200
Н	-0.78317300	5.17037500	2.90936200	С	0.37870900	-2.16011500	3.44766600
Н	-1.27716400	3.47446900	3.09595400	Н	-0.59810500	-2.62169800	3.52566300
Ρ	-0.08496800	-1.87734700	0.64324100	С	-2.77968500	-0.86286000	-2.06489400
Ρ	-2.12211400	0.53025300	-1.04493300	С	-2.06128200	-1.20431900	-3.22513700
0	-3.42370300	0.29318700	2.82354800	Н	-1.14775800	-0.66844300	-3.47028200
0	-2.82148400	-1.89282500	3.14460200	С	-2.51520800	-2.21452600	-4.07247700
С	-3.15502000	0.64669500	0.49088000	Н	-1.95371900	-2.45902500	-4.96934500
Н	-4.19693600	0.37994300	0.29293500	С	-3.69160400	-2.90523900	-3.77145300
Н	-3.12733200	1.70762200	0.74761700	Н	-4.04641800	-3.69177400	-4.43022100
С	-2.63796100	-0.11760800	1.70695300	С	-4.41331500	-2.57393100	-2.62476400
Н	-1.58279900	0.14054800	1.87273600	Н	-5.33250600	-3.10108900	-2.38780100
С	-2.81671700	-1.64303600	1.74124700	С	-3.96439100	-1.55666100	-1.77847000
Н	-3.80710700	-1.89067000	1.32508800	Н	-4.55478400	-1.31022400	-0.90282500
С	-1.77800000	-2.54676200	1.06147100	С	-2.64461300	2.00339900	-2.02749400
Н	-1.67437000	-3.46063800	1.65429300	С	-1.81060600	2.51948500	-3.02941100
Н	-2.16458900	-2.85880200	0.08654900	Н	-0.82293100	2.09655200	-3.18015800
С	-3.46281200	-0.77728500	3.78509200	С	-2.23250100	3.58559100	-3.82427400
С	-4.92374700	-1.09568300	4.08986700	Н	-1.57273300	3.97587600	-4.59347500
Н	-5.42645700	-0.21042300	4.48855100	С	-3.49221700	4.15301100	-3.62721600
Н	-4.99117200	-1.89998300	4.82704300	Н	-3.81820000	4.98628500	-4.24220700
Н	-5.44567200	-1.40671900	3.18118600	С	-4.33185000	3.64327400	-2.63615300
С	-2.65970400	-0.40850000	5.02551500	Н	-5.31438600	4.07690100	-2.47621400
Н	-3.11393000	0.45244000	5.52264000	С	-3.91527100	2.57211400	-1.84466000
Н	-1.63250100	-0.16024000	4.74914700	Н	-4.59159400	2.19180500	-1.08699800
Н	-2.64156800	-1.24635000	5.72829300	С	6.15635200	-0.42110800	-0.51250100
С	0.64881600	-3.38319100	-0.13455100	Н	5.64605800	-1.23961900	-1.02288200
С	1.50799500	-4.24750500	0.55850600	Н	7.02439400	-0.13148500	-1.11674700
Н	1.78649100	-4.03159100	1.58442300	Н	6.55417500	-0.80519200	0.43380200
С	2.00921500	-5.39254700	-0.06496500	С	7.05565600	2.53052900	0.16288400
Н	2.67280600	-6.05451500	0.48352100	Н	6.84750600	3.03262900	-0.78754300
С	1.65659200	-5.68925000	-1.38195000	Н	7.38789200	3.28936200	0.87712400
Н	2.04449100	-6.58252600	-1.86230700	Н	7.88938500	1.83964900	0.00670200

С	4.91139400	0.07645500	-3.46584500
Н	5.25352900	0.96372800	-2.93843000
Н	5.73693900	-0.63810100	-3.54921400
Н	4.59996500	0.36301300	-4.47618500

	Me ₂ N	- +	
I	4.59996500	0.36301300	-4.47618500

Me ₂ N	٦+	
4.59996500	0.36301300	-4.47618500

4.59996500	0.36301300	-4.4
Me ₂ N	+٦	
P _{1/1, Ph} , NO	Me	

(P _{11,1,1}	h'''''O	Me	
P	►H Bpin		

Rh	-0.67951500	0.00365200	0.30130100
С	-5.04262000	-0.67712100	-0.33125400
С	-3.85979600	-1.10180800	-0.81701700
Н	-2.01049800	0.82383400	0.16916900
С	-5.76917400	0.45955000	-1.02145900
Н	-6.79520000	0.13488700	-1.24424900
Н	-5.28874500	0.66164600	-1.98464100
в	-0.63463300	0.62064900	-1.59900800
Н	-3.40532500	-0.58665200	-1.65896900
С	-2.96743100	-2.13457100	-0.23795300
0	-1.76588000	-1.86110300	0.05190800
Ν	-3.40076900	-3.39865200	-0.04184100
С	-2.52208000	-4.37685100	0.60483400
Н	-1.97173400	-4.96067900	-0.14222000
Н	-3.13602100	-5.05945700	1.19819700
Н	-1.80890800	-3.86732400	1.24880700
С	-0.40902000	1.92073800	-3.48286400
С	-0.71991100	0.42652900	-3.88391600
0	-0.07865300	1.79150400	-2.05801300
0	-1.15911100	-0.15383900	-2.60672900
С	-1.84476300	0.24793900	-4.90003300
Н	-2.01049400	-0.81790000	-5.07975900
Н	-1.57916000	0.71077700	-5.85588500
Н	-2.78354500	0.68423700	-4.55417900
С	-1.62775900	2.84544000	-3.57142100
Н	-1.89489800	3.05488500	-4.61101700
Н	-1.39323800	3.79325500	-3.08029800
Н	-2.49877500	2.41013700	-3.07315300
С	0.52002400	-0.35517500	-4.32865400
Н	0.87977900	-0.00887900	-5.30178200
Н	0.26744200	-1.41443800	-4.41281100
Н	1.33449100	-0.26488400	-3.60524200
С	0.78539100	2.55184100	-4.19266400
Н	0.92392200	3.57733700	-3.83897100

С	4.91139400	0.07645500	-3.46584500	Н	1.70811400	2.00214800	-4.00042000
Н	5.25352900	0.96372800	-2.93843000	Р	1.37485400	-1.48694300	0.54463800
Н	5.73693900	-0.63810100	-3.54921400	P	0.27525700	1.94517700	1.03417000
Н	4.59996500	0.36301300	-4.47618500	0	3.83528800	2.01043300	-1.00394600
	Me ₂ N	- +		0	4.68341800	0.06683400	-0.14258200
	۲ کر			С	1.90710600	2.46060600	0.30676200
(P _{111,} , , , , , O	Me		Н	2.46253200	3.08282200	1.01572000
۲.	∽́'` ́``►н	Wie		Н	1.62219900	3.10445900	-0.52869300
	Ġpin			С	2.79758600	1.36223500	-0.27035100
$G_{\rm sol}$	= -2998.100919	930 Hatree		Н	2.19942300	0.73466000	-0.94438700
Rh	-0.67951500	0.00365200	0.30130100	С	3.59690100	0.46909700	0.68955700
С	-5.04262000	-0.67712100	-0.33125400	Н	3.98566400	1.09033800	1.51289500
С	-3.85979600	-1.10180800	-0.81701700	С	2.93280300	-0.77292200	1.30017800
Н	-2.01049800	0.82383400	0.16916900	Н	3.68859400	-1.55997200	1.38524700
С	-5.76917400	0.45955000	-1.02145900	Н	2.62143700	-0.54214800	2.32329700
Н	-6.79520000	0.13488700	-1.24424900	С	5.00008400	1.16667000	-1.01179400
Н	-5.28874500	0.66164600	-1.98464100	С	6.17792800	1.96749400	-0.46397200
в	-0.63463300	0.62064900	-1.59900800	Н	6.34580100	2.85635600	-1.07800900
Н	-3.40532500	-0.58665200	-1.65896900	Н	7.08656300	1.35979800	-0.46893400
С	-2.96743100	-2.13457100	-0.23795300	Н	5.97655600	2.29154000	0.56041500
0	-1.76588000	-1.86110300	0.05190800	С	5.24956000	0.61667100	-2.41022400
Ν	-3.40076900	-3.39865200	-0.04184100	Н	5.47396500	1.43479200	-3.09940200
С	-2.52208000	-4.37685100	0.60483400	Н	4.36636700	0.08203000	-2.76795400
Н	-1.97173400	-4.96067900	-0.14222000	Н	6.09791600	-0.07356100	-2.40126400
Н	-3.13602100	-5.05945700	1.19819700	С	1.03708600	-2.80511000	1.79606600
Н	-1.80890800	-3.86732400	1.24880700	С	1.51440800	-4.11702800	1.66001500
С	-0.40902000	1.92073800	-3.48286400	Н	2.08698900	-4.39918700	0.78257000
C	-0.71991100	0.42652900	-3.88391600	С	1.25532200	-5.06827400	2.64899500
0	-0.07865300	1.79150400	-2.05801300	Н	1.63194500	-6.08021300	2.53216500
0	-1.15911100	-0.15383900	-2.60672900	С	0.52056400	-4.72165300	3.78430900
С	-1.84476300	0.24793900	-4.90003300	Н	0.32225500	-5.46320100	4.55241900
Н	-2.01049400	-0.81790000	-5.07975900	С	0.04402800	-3.41694100	3.93006300
Н	-1.57916000	0.71077700	-5.85588500	Н	-0.52486600	-3.13891200	4.81255100
Н	-2.78354500	0.68423700	-4.55417900	С	0.29609600	-2.46604100	2.94020800
С	-1.62775900	2.84544000	-3.57142100	Н	-0.08008300	-1.45413700	3.06765900
Н	-1.89489800	3.05488500	-4.61101700	С	1.87076300	-2.42427800	-0.95656500
Н	-1.39323800	3.79325500	-3.08029800	С	0.85679600	-3.09012500	-1.66903000
Н	-2.49877500	2.41013700	-3.07315300	Н	-0.17413200	-2.99539900	-1.34549700
С	0.52002400	-0.35517500	-4.32865400	С	1.17160300	-3.86643100	-2.78312000
Н	0.87977900	-0.00887900	-5.30178200	Н	0.38158800	-4.38474300	-3.31923000
Н	0.26744200	-1.41443800	-4.41281100	С	2.49679400	-3.97395500	-3.21374600
Н	1.33449100	-0.26488400	-3.60524200	Н	2.74072000	-4.57730400	-4.08311600
С	0.78539100	2.55184100	-4.19266400	С	3.50426800	-3.29976600	-2.52416900
Н	0.92392200	3.57733700	-3.83897100	Н	4.53547500	-3.37334600	-2.85677600
Н	0.61835200	2.59065700	-5.27385600	С	3.19871400	-2.53021500	-1.39749000

Н	3.99398500	-2.00158500	-0.88510300	Н	-1.33893500	-0.96603400	-1.91725100
С	0.50192100	1.69933100	2.84692000	С	0.26669100	-3.10499200	-2.73423000
С	-0.63865800	1.31937600	3.57990900	Н	-0.81079900	-3.25895400	-2.85524700
Н	-1.59298500	1.20631300	3.07128900	Н	0.53344400	-3.41936800	-1.71864300
С	-0.56045600	1.10772600	4.95591000	В	-0.65870500	1.22694300	-1.51380700
Н	-1.45094100	0.82433800	5.50909700	Н	2.18982300	-1.75452100	-1.53936500
С	0.65745200	1.26945200	5.62167800	С	2.31615000	0.20339700	-2.56897700
Н	0.71883100	1.10673400	6.69327900	0	1.67604800	1.26415800	-2.64032600
С	1.79253000	1.65073500	4.90618500	Ν	3.65701400	0.16213400	-2.80630700
Н	2.73965100	1.78770700	5.41926400	С	4.37072000	1.40441300	-3.09266000
С	1.71662500	1.86653900	3.52730300	Н	4.64025000	1.46038900	-4.15411500
Н	2.61042500	2.17516300	2.99597400	Н	5.28831600	1.44392900	-2.49680100
С	-0.66565200	3.53047200	0.97386000	Н	3.73143200	2.24754700	-2.84258600
С	-1.79052600	3.69831900	0.15800200	С	-1.41164500	2.98787300	-2.79076700
Н	-2.14505500	2.86877800	-0.44065000	С	-1.02506200	3.49477900	-1.33302700
С	-2.45251900	4.92705100	0.11279500	0	-1.36084900	1.52650700	-2.64950800
Н	-3.32526800	5.04408400	-0.52279700	0	-0.39205400	2.31452000	-0.72720800
С	-1.99810100	5.99870400	0.88169200	С	-0.00943700	4.63514000	-1.29774500
Н	-2.51539900	6.95275500	0.84728700	Н	0.23006300	4.87770400	-0.25862800
С	-0.87832200	5.83937200	1.70093300	Н	-0.41901000	5.53503600	-1.76713000
Н	-0.52274700	6.66692300	2.30722700	Н	0.91514500	4.36549300	-1.81031500
С	-0.21645900	4.61336200	1.74933700	С	-0.40532800	3.37527800	-3.87887200
Н	0.64165900	4.50099700	2.40551700	Н	-0.41249700	4.45527700	-4.05293600
С	-5.70928700	-1.23844600	0.89872100	Н	-0.69224500	2.88452800	-4.81346700
Н	-5.09731100	-1.97933500	1.41562100	Н	0.60491100	3.05502200	-3.62544700
Н	-5.93749000	-0.43710700	1.60937800	С	-2.22855400	3.84275800	-0.45093000
Н	-6.66970700	-1.70156000	0.63856100	Н	-2.71305100	4.76497600	-0.78388300
С	-5.83144700	1.76122900	-0.20047400	Н	-1.89077200	3.98501700	0.57941100
Н	-4.82679200	2.11983500	0.04574300	Н	-2.97778900	3.04660600	-0.45870900
Н	-6.34192100	2.54238200	-0.77144500	С	-2.82354600	3.35911100	-3.24484300
Н	-6.38133800	1.63013700	0.73596000	Н	-3.00724200	2.93603900	-4.23635000
С	-4.63073700	-3.94826400	-0.61033000	Н	-2.93335900	4.44546600	-3.32062500
Н	-5.11225600	-3.21299600	-1.25060900	Н	-3.59028300	2.97885100	-2.56804200
Н	-4.38499900	-4.83253800	-1.20823200	P	1.46278700	-0.45224300	1.13744600
Н	-5.32407300	-4.24945100	0.18199800	Р	-2.16176200	-0.59877600	0.50826500
				0	-1.30059900	2.41857600	3.16665400
	Ma			0	0.57184300	1.41655800	4.03664900

С

Н

Н

С

Н

C H

С

-2.28993000

-2.96416800

-2.79420000

-0.98357200

-0.33406300

-0.19770900

-0.90475900 -0.03590300

0.72197600 -0.68033200

0.72802300

0.40837100

1.55270200

1.27575500

1.57590800

0.42242300

1.80872700

2.60970700

1.29827600

2.37197900

1.54137200

3.37251600

4.08548600 2.84269800

 $G_{\rm sol}$ = -2998.09409854 Hatree

Rh	-0.25510700	-0.65750200	-0.84697600
С	0.59115300	-1.62912600	-2.92424700
С	1.63855300	-1.08383200	-2.19084800

S72			
Н	1.52800400	-0.82922200	3.56660900
--------	-------------	-------------	-------------
Н	0.16467100	-1.61905900	2.79738100
С	-0.22144000	2.61603300	4.10196200
С	-0.82597800	2.78634300	5.49117800
Н	-1.50382100	3.64414200	5.50556100
Н	-0.03722600	2.94967900	6.23010700
Н	-1.39229500	1.89422500	5.77087900
С	0.65412600	3.78742800	3.67548400
Н	0.08482000	4.71959500	3.72308500
Н	1.01331600	3.63749400	2.65466700
Н	1.51966700	3.87131000	4.33827100
C	2.49804900	-1.98770800	1.05899200
С	3.88640800	-1.96201600	0.85771100
Н	4.40924400	-1.01363600	0.79956000
С	4.61073400	-3.15281500	0.74972400
Н	5.68663100	-3.11362200	0.60585300
С	3.96190700	-4.38448500	0.83809600
Н	4.52796900	-5.30770400	0.76113700
c	2 57873500	-4 42222400	1 03060700
н	2 06423900	-5 37578700	1 10586300
 C	1 85191300	-3 23577300	1 13300800
н	0 77586800	-3 29108900	1 27570800
C	2 66513100	0 92218300	1 36201400
c	2 68637200	1 99128900	0 45520400
u u	1 99190300	2 01324600	-0 37537600
	2 58002400	2.01324000	0.62206100
с п	2 50290000	2 97055200	-0.07122200
п	3.39300900	3.07035300	1 70020000
	F 17601100	3.05/50400	1.04440400
п	J.1/001100	1 07669900	2 61007500
	4.45/88600	1.97668800	2.61907500
н	5.14136600	1.96851800	3.462/8100
C	3.55595800	0.928/1900	2.45087700
н	3.55503800	0.11543700	3.16956300
С	-2.22193900	-2.23412100	1.35984400
С	-2.08073400	-3.38235700	0.55892700
H	-1.93696000	-3.27767600	-0.51266100
С	-2.14836100	-4.65628300	1.12286200
Н	-2.04718400	-5.53203200	0.48878300
С	-2.35589300	-4.80473300	2.49636100
Η	-2.41036100	-5.79575100	2.93613200
С	-2.50283200	-3.67359200	3.29963000
Η	-2.67304300	-3.78071000	4.36660500
С	-2.43887400	-2.39624400	2.73679800
Η	-2.56565200	-1.53512100	3.38357100
С	-3.83495500	-0.49908300	-0.26321000

С	-4.02387700	-0.12527700	-1.60043000
Н	-3.17388800	0.11232300	-2.22887000
С	-5.31617000	-0.03695500	-2.12635800
Н	-5.45132200	0.25241100	-3.16421700
С	-6.42423300	-0.31880900	-1.32849200
Н	-7.42583500	-0.25191700	-1.74231700
С	-6.24235200	-0.69222700	0.00554400
Н	-7.09986800	-0.91909200	0.63165300
С	-4.95726600	-0.78379300	0.53559400
Н	-4.83295700	-1.09470600	1.56858000
С	0.06149800	-0.99331500	-4.18951900
Н	0.08340900	0.09250800	-4.14257400
Н	0.68571500	-1.32055700	-5.03133600
Н	-0.96130100	-1.31876500	-4.39324500
С	1.01417500	-4.00100300	-3.74317200
Н	2.09912400	-3.89050300	-3.64822300
Н	0.76802400	-5.05120200	-3.56220900
Н	0.73629100	-3.76854800	-4.77472100
С	4.45557900	-1.05118700	-2.94068900
Н	3.83310500	-1.94207000	-2.89621100
Н	4.97055700	-1.04564000	-3.90828700

 $G_{eol} = -2998.08101372 \text{ Hatree}$ Rh 0.68665100 0.45260900 -0.16

G _{sol}	= -2998.081013	72 Hatree	
Rh	0.68665100	0.45260900	-0.16942700
С	1.35234600	2.35089700	-1.31158300
С	2.45171000	1.43165100	-1.31360200
Н	2.19481500	0.08341200	-0.57449200
С	0.60921300	2.60413500	-2.61758800
Н	-0.42252800	2.88992100	-2.38753200
Н	0.57012600	1.68312800	-3.20293800
В	0.46879100	-0.91849000	-1.64391000
Н	2.63161500	0.92185900	-2.25568000
С	3.65501600	1.70846000	-0.42059800
0	3.54039100	1.62139300	0.80923500
N	4.82608300	2.05450500	-1.01836500
С	5.99810600	2.31602900	-0.18260200
Н	6.27670800	3.37465100	-0.23659500
Н	6.84301400	1.71546000	-0.53623200
Н	5.76439200	2.05629500	0.84723600

С	0.40178900	-2.95526800	-2.71461900	Н	-2.80424300	3.73301000	-0.75644700
С	0.55731700	-1.79969800	-3.77847800	С	-2.28185800	5.30733400	0.60810100
0	0.03582800	-2.21139800	-1.50028900	Н	-2.76365500	6.07462200	0.00937000
0	0.86525500	-0.63550200	-2.93120900	С	-1.65436000	5.64537200	1.80745600
С	1.70770900	-1.97766700	-4.76616300	Н	-1.64418000	6.67666600	2.14666300
Н	1.75196200	-1.11629000	-5.43841600	С	-1.03990600	4.64960400	2.56994400
Н	1.55501300	-2.87177700	-5.37863800	Н	-0.54868900	4.90386900	3.50448800
Н	2.67068800	-2.06579100	-4.26048800	С	-1.05044100	3.32456900	2.13503200
С	1.71372600	-3.68300200	-2.40132600	Н	-0.54812100	2.57275200	2.73697900
Н	2.02975800	-4.31026100	-3.23950200	С	-2.95242300	1.12981100	-0.92365600
Н	1.56970300	-4.32611400	-1.52987800	С	-2.59512000	0.87244500	-2.25404800
Н	2.52050100	-2.98325100	-2.16757400	Н	-1.55615300	0.69253200	-2.50423300
С	-0.73591400	-1.48095300	-4.53345000	С	-3.56529200	0.85221900	-3.25970000
Н	-0.98474900	-2.27682900	-5.24092800	Н	-3.27338400	0.65500200	-4.28675900
Н	-0.60095300	-0.55548500	-5.10055700	С	-4.90284900	1.08934800	-2.94397100
Н	-1.58051500	-1.34941700	-3.85376200	Н	-5.65785900	1.07597100	-3.72423500
С	-0.70499200	-3.96568500	-3.00413000	С	-5.26941900	1.34508800	-1.61978200
Н	-0.75040500	-4.70121600	-2.19657400	Н	-6.30956400	1.52786900	-1.36782600
Н	-0.50334800	-4.50393000	-3.93575700	С	-4.30373000	1.36393700	-0.61520600
Н	-1.68398700	-3.49018300	-3.07984800	Н	-4.60950400	1.55914000	0.40617500
Ρ	-1.65154100	1.21005300	0.37343800	С	0.75140700	-0.61240900	3.08307800
Ρ	0.70022400	-1.36929100	1.39784500	С	1.54037900	0.53997300	3.25523400
0	-2.97381800	-3.07890900	0.80515400	Н	2.10281000	0.95299000	2.42168800
0	-4.14289300	-1.18617700	1.36375700	С	1.64124600	1.14461100	4.51041200
С	-0.71917200	-2.56733400	1.38660600	Н	2.26214600	2.02768200	4.62957300
Н	-0.83018600	-3.06156200	2.35562600	С	0.95687700	0.61453500	5.60554200
Н	-0.43875500	-3.32668400	0.65602400	Н	1.03547700	1.08651400	6.58018800
С	-2.05331000	-1.99690500	0.92309400	С	0.17877200	-0.53309700	5.44464600
Н	-1.91535400	-1.51676800	-0.05369700	Н	-0.34783300	-0.95882700	6.29351100
С	-2.81326500	-1.05167600	1.85611400	С	0.07888500	-1.14613400	4.19426700
Н	-2.75561700	-1.44152000	2.88623800	Н	-0.52106900	-2.04502100	4.10406900
С	-2.42061000	0.42578200	1.89153600	С	2.18596000	-2.46789500	1.40015000
Н	-3.30389000	1.00669900	2.17160500	С	3.45475400	-1.88431300	1.25364500
Н	-1.68798500	0.57553800	2.68808000	Н	3.55030100	-0.81081300	1.11931900
С	-4.30559600	-2.54154000	0.90743400	С	4.60416000	-2.67268100	1.30403100
С	-5.07336100	-3.36603000	1.93478600	Н	5.57912500	-2.20650500	1.19590300
Н	-5.11042900	-4.41444700	1.62662300	С	4.50545400	-4.05249200	1.49610500
Н	-6.09601800	-2.99251000	2.03270100	Н	5.40132100	-4.66490900	1.53123800
Н	-4.58243400	-3.30961400	2.90969800	С	3.24983000	-4.63853100	1.65145700
С	-4.97526600	-2.50730700	-0.46087300	Н	3.16209900	-5.70907400	1.81096700
Н	-5.11682200	-3.52469300	-0.83505000	С	2.09585800	-3.85232200	1.61029100
Н	-4.35816600	-1.94859500	-1.16847200	Н	1.13516500	-4.33496400	1.75003900
Н	-5.95188900	-2.02037400	-0.39287500	С	1.38031700	3.53235600	-0.35442500
С	-1.69066600	2.97235600	0.93397200	Н	1.65994300	3.25215100	0.66151200
С	-2.30196100	3.98006900	0.17235800	Н	2.12187600	4.26705300	-0.69765900

Н	0.41414300	4.03606500	-0.32879200
С	1.24011300	3.72353500	-3.47108500
Н	2.27352400	3.48730200	-3.74739700
Н	0.67270300	3.85208100	-4.39793500
Н	1.24340700	4.68544200	-2.95068200
С	5.03427800	2.26184100	-2.44718400
Н	4.11350700	2.13204600	-3.01035200
Н	5.40022500	3.27948400	-2.62583200
Н	5.78375700	1.55893100	-2.82933600

 $G_{\rm sol}$ = -2998.08053795 Hatree

Rh	0.70776700	0.45611800	0.54503500
С	2.85153900	1.16437300	0.63869100
С	2.02706800	2.25165400	1.08787900
Н	0.44608600	1.95622200	1.08305400
С	3.51492600	0.31659200	1.72566400
Н	3.75054400	-0.67020100	1.31378000
Н	2.81788400	0.15531100	2.56028100
в	0.12637600	1.16400900	-1.27696000
Н	1.98452600	2.39229400	2.16570300
С	1.90983900	3.51776000	0.25381500
0	1.44035900	3.46638600	-0.88578300
Ν	2.35640600	4.67782100	0.81159400
С	2.19157300	5.92891500	0.07139800
Н	3.16944400	6.36630800	-0.15813900
Н	1.62045500	6.64528800	0.67247800
Н	1.66098600	5.72416100	-0.85516000
С	-1.12653000	2.17968100	-2.91766900
С	0.18013000	1.50979200	-3.55603300
0	-0.99211200	1.90069700	-1.48506100
0	0.78904100	0.79713600	-2.41696200
С	-0.10384000	0.47007300	-4.64259700
Н	0.83823500	0.02266100	-4.97331700
Н	-0.56745300	0.93994300	-5.51522400
Н	-0.76159400	-0.32941900	-4.29638800
С	-2.44801500	1.54983400	-3.36834900
Н	-2.64047700	1.75612100	-4.42554300
Н	-3.26335400	1.98447500	-2.78422700
Н	-2.46487400	0.46798000	-3.22169100
С	1.22545300	2.50775900	-4.06216400

Н	0.84360400	3.07402000	-4.91677400
Н	2.11096400	1.95800200	-4.39461100
Н	1.52721100	3.20304200	-3.27917700
С	-1.20546600	3.69985600	-3.07028000
Н	-2.09786500	4.06109600	-2.55197800
Н	-1.28744500	3.98687000	-4.12313200
Н	-0.33594200	4.18827100	-2.63081800
P	-1.57602900	0.05455500	1.27505800
Ρ	1.13565700	-1.80016800	-0.34764500
0	-2.32081200	-2.25587500	-2.53718000
0	-3.65046500	-2.39898800	-0.68523500
С	-0.10710000	-2.32155200	-1.63571400
Н	-0.09234300	-3.40951900	-1.74478900
Н	0.24406800	-1.90085000	-2.57977500
С	-1.54024000	-1.84031700	-1.41554000
Н	-1.55844500	-0.74475600	-1.36006700
С	-2.30413900	-2.42335100	-0.21502000
Н	-1.99139300	-3.46676000	-0.05774400
С	-2.22166400	-1.70086200	1.14021200
Н	-3.20907000	-1.74980100	1.60924200
Н	-1.54329800	-2.25519900	1.79326700
С	-3.61932100	-2.69563100	-2.08547000
С	-3.74459100	-4.19894600	-2.33127700
Н	-3.62830000	-4.41423500	-3.39665900
Н	-4.72474400	-4.55686600	-2.00513100
Н	-2.97253200	-4.74951100	-1.78723800
С	-4.71153400	-1.89190700	-2.77436200
Н	-5.69462800	-2.19763100	-2.40589200
Н	-4.67674800	-2.06284800	-3.85322500
Н	-4.57361900	-0.82633300	-2.57950100
С	-1.58735800	0.21380200	3.12014800
С	-0.39607900	0.39451200	3.83578300
Н	0.54664200	0.47668600	3.30168100
С	-0.40285200	0.48781100	5.22933300
Н	0.52968100	0.62892900	5.76804200
С	-1.60909600	0.40534800	5.92495700
Н	-1.61966700	0.48055800	7.00801300
С	-2.80511100	0.23438500	5.22312700
Н	-3.74765500	0.17958800	5.75936500
С	-2.79610000	0.14097400	3.83207700
Н	-3.73602200	0.03045900	3.29962300
С	-2.95136300	1.17374900	0.79307700
С	-4.15149000	0.70246000	0.24501000
Н	-4.28804500	-0.35272600	0.03621900
С	-5.18271300	1.59887400	-0.05558800

Н	-6.10963100	1.22354400	-0.47929500			o ¬+	
С	-5.02727600	2.96160200	0.19264400	ſ	. н		ן‡
Н	-5.83214000	3.65358000	-0.03663400	(Rh	Nime ₂	2
С	-3.83060700	3.43508900	0.74021500		P	≤Me	
Н	-3.70230400	4.49556400	0.93544000	L	Bbin F	:t]
С	-2.79791200	2.54881900	1.03166900	$G_{\rm sol}$	= -2998.07276	588 Hatree	
Н	-1.86722200	2.92936300	1.44231800	Rh	-0.39967800	0.13354400	0.75564300
С	1.02625000	-3.11211200	0.95005000	С	-0.46773500	1.51144000	2.62520700
С	1.09309400	-2.75863900	2.30595800	С	-1.30991800	0.36324500	2.80420600
Н	1.18616800	-1.71551300	2.58957000	Н	-1.74529400	-0.37670800	1.44339200
С	1.03311100	-3.73170400	3.30656200	С	-1.15279600	2.85703000	2.40536400
Н	1.07989400	-3.43558100	4.35011500	Н	-2.08639400	2.70291400	1.86157800
С	0.90964500	-5.07762300	2.96213400	Н	-0.51104000	3.48149100	1.77320100
Н	0.86059600	-5.83664200	3.73681900	В	-1.70794500	1.26123400	-0.28854600
С	0.85468600	-5.44664500	1.61548200	Н	-2.37712900	0.53906500	2.91857200
Н	0.76814500	-6.49352700	1.34079100	С	-0.69321100	-0.85459800	3.45899300
С	0.91577400	-4.47414500	0.61781200	0	0.22339400	-1.42591900	2.83012900
Н	0.89640000	-4.78690300	-0.42149100	Ν	-1.12223500	-1.26550400	4.67043800
С	2.73051300	-2.20409100	-1.18990100	С	-0.54109400	-2.46251100	5.27855900
С	3.71781800	-2.97055000	-0.54909400	Н	-1.32407000	-3.20715800	5.45937100
Н	3.54187900	-3.37244600	0.44267800	Н	-0.07540000	-2.20685300	6.23614300
С	4.92922300	-3.24357400	-1.18848300	Н	0.21036900	-2.87387900	4.60838000
Н	5.67887000	-3.84326300	-0.68091500	С	-3.75842400	2.11555800	-0.91185600
С	5.17053200	-2.75923300	-2.47405200	С	-2.60120400	2.85891300	-1.69013900
Н	6.10911300	-2.97958000	-2.97336000	0	-3.01998500	1.37183800	0.11399500
С	4.19883900	-1.98696100	-3.11415100	0	-1.43699700	2.00283900	-1.41195400
Н	4.38189300	-1.59962500	-4.11205900	С	-2.78758200	2.94049300	-3.20357800
С	2.99137600	-1.70158600	-2.47671500	Н	-1.91358300	3.41986200	-3.65303900
Н	2.26672600	-1.06288700	-2.96845400	Н	-3.66518600	3.54673200	-3.44935600
С	3.63004600	1.26401300	-0.65888800	Н	-2.91279500	1.95688400	-3.65840600
Н	3.03731200	1.69059300	-1.46477700	С	-4.50594000	1.07530200	-1.75449700
Н	4.51502800	1.89868300	-0.51168400	Н	-5.14058700	1.55134200	-2.50755300
Н	3.98561200	0.28116300	-0.97111600	Н	-5.14499000	0.48094500	-1.09618500
С	4.81196200	0.93017800	2.28995600	Н	-3.81789200	0.39544800	-2.26381100
Н	4.62988800	1.90430400	2.75651400	С	-2.27129300	4.24950000	-1.13757400
Н	5.24079600	0.27366600	3.05303800	Н	-3.07339500	4.96064100	-1.35496300
Н	5.56416900	1.06573800	1.50821800	Н	-1.35311400	4.61172100	-1.60579000
С	2.96386400	4.81072900	2.13291100	Н	-2.11101400	4.22979000	-0.05750800
Н	3.44702200	3.88737200	2.44861100	С	-4.76019800	3.03126900	-0.21203400
Н	3.73767000	5.58200500	2.08658200	Н	-5.49122800	2.42662700	0.33173700
Н	2.22937400	5.11275100	2.89090300	Н	-5.30473700	3.63875700	-0.94184000
				Н	-4.27572800	3.70075100	0.50049700
				Р	1.66607700	0.97887900	-0.35590000
				Р	-0.81537000	-1.79807300	-0.66543300
				0	2.99531400	-3.31126700	-0.56019400

0	3.82666700	-1.57042200	-1.78645300	С	-1.44271000	-0.72544600	-4.63424900
С	0.64573200	-2.95428800	-0.53665000	Н	-1.48595800	0.19045500	-5.21642100
Н	0.57909000	-3.69767600	-1.33557500	С	-1.60558700	-1.95981500	-5.26002200
Н	0.56446300	-3.48770200	0.41332500	Н	-1.77562300	-2.01216200	-6.33109800
С	2.01460700	-2.27966900	-0.57438200	C	-1.55321500	-3.13214700	-4.50075900
Н	2.12466000	-1.65686700	0.31998200	Н	-1.68670200	-4.09829400	-4.97788800
С	2.40794400	-1.46057500	-1.82086500	С	-1.32990900	-3.06697700	-3.12715000
Н	2.01214400	-1.96581400	-2.71725500	Н	-1.30848800	-3.98911100	-2.55420900
С	2.04187600	0.03104600	-1.92311700	С	-2.20047100	-2.80974700	0.02509700
Н	2.87056100	0.52231900	-2.44221800	С	-3.45019400	-2.86067600	-0.61010200
Н	1.15383900	0.13788300	-2.54869700	Н	-3.60405000	-2.35261500	-1.55582000
C	4.14838100	-2.88165100	-1.31524600	С	-4.50562700	-3.57538200	-0.03968600
C	4.34902500	-3.85084900	-2.47918100	Н	-5.46522800	-3.60914400	-0.54687900
Н	4.49434300	-4.86646500	-2.10138100	С	-4.32732900	-4.25004700	1.16806100
Н	5.22718700	-3.56479400	-3.06424500	Н	-5.14589400	-4.81420400	1.60455700
Н	3.47524600	-3.85264200	-3.13627600	С	-3.08868400	-4.19754500	1.81112500
C	5.36513700	-2.78076600	-0.40764400	Н	-2.93990500	-4.72431600	2.74939300
Н	5.61576000	-3.76657400	-0.00726500	С	-2.03433800	-3.47645200	1.25076700
Н	5.15828900	-2.09947900	0.41972100	Н	-1.08775400	-3.42360800	1.77874400
Н	6.22401600	-2.40326900	-0.96943300	С	0.85505300	1.61198700	3.36412400
С	1.67986300	2.72988700	-0.94387600	Н	0.68160900	2.03197600	4.36372300
C	1.84122700	3.75858000	0.00003500	Н	1.35285500	0.65456600	3.49150500
Н	1.99516700	3.51675300	1.04677100	Н	1.54468700	2.28644800	2.85350200
С	1.84643200	5.09623600	-0.39315700	С	-1.46306800	3.62261000	3.70791000
Н	1.98393000	5.87517400	0.35095900	Н	-2.01474600	4.53924000	3.47825900
C	1.69281400	5.43145300	-1.74041800	Н	-2.08540600	3.02646900	4.38543100
Н	1.70769800	6.47208700	-2.04984900	Н	-0.55826600	3.91250800	4.24844600
С	1.53186600	4.41913000	-2.68671400	C	-2.16005200	-0.60133300	5.45448500
Н	1.42244100	4.66841400	-3.73816600	Н	-1.80717500	-0.47014400	6.48224200
С	1.52052500	3.07889900	-2.29244200	Н	-2.39076400	0.38311700	5.05194800
Н	1.38894600	2.31609100	-3.05050900	Н	-3.07627100	-1.20275300	5.47898500
C	3.25295900	0.88156100	0.59518500				
С	3.35910200	0.07510700	1.73797900	F		Et	- ¬ +
Н	2.50019000	-0.48508400	2.09333400		(P1)	T Me	· +
C	4.56944000	-0.02186700	2.42886400			ў — н	
Н	4.63415200	-0.64812100	3.31379700		P' Bnin	[⊓] //─NMe ₂	
С	5.68853900	0.68278700	1.98418600	L	Dpin	0	J
Н	6.62885900	0.60931500	2.52224700	Gso	-2998.07717	351 Hatree	
С	5.59553800	1.48151300	0.84207400	Rh	0.66776400	0.67558200	0.14194000
Н	6.46376300	2.02811300	0.48646000	С	1.27278200	2.73509100	-0.80982900
С	4.38810500	1.58138000	0.15261600	С	2.45776900	2.06139900	-0.39986800
Н	4.33112300	2.21175800	-0.72889000	Н	2.25106400	0.58433400	0.25280700
С	-1.15481700	-1.82547600	-2.48570700	С	0.73426900	3.82566100	0.11014800
С	-1.22253900	-0.65535600	-3.25417300	Н	0.87719200	3.53906500	1.16007800
Н	-1.11382900	0.31350400	-2.78180400	Н	-0.34369300	3.92133100	-0.03628000

S77

В	0.84451900	-0.61201000	-1.42882600	Н	-3.94109100	-5.49353200	0.61681500	
Н	2.88895600	2.40327900	0.54020500	Н	-5.31495800	-4.39905600	0.88824800	
С	3.45790300	1.52927400	-1.41997500	Н	-3.89171800	-4.32930300	1.95035100	
0	3.21027400	0.50613200	-2.06495000	С	-4.07291900	-3.56964100	-1.44768000	
Ν	4.61364600	2.23015300	-1.58393900	Н	-3.84536200	-4.56287400	-1.84280800	
С	5.61169200	1.74241000	-2.53536600	Н	-3.58760200	-2.81492200	-2.07003500	
Н	6.58147100	1.64403100	-2.03549700	Н	-5.15446000	-3.41525800	-1.49412500	
Н	5.71932600	2.44678000	-3.36810200	С	-2.33909600	2.52550500	0.91897700	
Н	5.29528200	0.77553400	-2.91879500	С	-3.12220100	3.47586000	0.24768900	
С	0.51161700	-1.45955900	-3.54603400	Н	-3.48351600	3.27553000	-0.75482100	
С	1.34772100	-2.49455900	-2.66534100	С	-3.45226500	4.68440600	0.86694400	
0	0.38583600	-0.28496100	-2.66915900	Н	-4.06307400	5.40797600	0.33526900	
0	1.29749900	-1.89770100	-1.32317000	С	-3.00966000	4.95846500	2.16110500	
С	0.73879000	-3.89437100	-2.56564900	Н	-3.27342500	5.89574800	2.64145700	
Н	1.36722500	-4.51447600	-1.92000800	С	-2.22681500	4.01906900	2.83627900	
Н	0.70359500	-4.37289600	-3.54918200	Н	-1.87896400	4.22235200	3.84491700	
Н	-0.26853300	-3.88384300	-2.14536800	С	-1.88790600	2.81565100	2.21876500	
С	-0.91097600	-1.92322600	-3.86802400	Н	-1.26683300	2.10607900	2.75890100	
Н	-0.90199600	-2.77545300	-4.55349300	С	-2.90114300	0.84206800	-1.37091200	
Н	-1.45881100	-1.10695100	-4.34405600	С	-2.35361300	1.26448800	-2.59193200	
Н	-1.45679100	-2.21214600	-2.96731200	Н	-1.29950600	1.49497400	-2.65861700	
С	2.82702200	-2.60454800	-3.04722600	С	-3.15111500	1.35124100	-3.73499700	
Н	2.94443100	-3.06477200	-4.03265100	Н	-2.71353000	1.68603200	-4.67101200	
Н	3.33136700	-3.24304600	-2.31630100	С	-4.50032800	1.00133600	-3.67686500	
Н	3.31587500	-1.63064900	-3.04350200	Н	-5.12036900	1.06591500	-4.56603800	
С	1.21115000	-0.99494200	-4.82321400	С	-5.04916700	0.56062700	-2.47067400	
Н	0.58174700	-0.26104500	-5.33455700	Н	-6.09609200	0.27718500	-2.41915800	
Н	1.37149400	-1.83306700	-5.50836600	С	-4.26004200	0.48464500	-1.32308100	
Н	2.17223800	-0.52799600	-4.60481300	Н	-4.70843100	0.12857400	-0.40454700	
Ρ	-1.85940300	0.91036600	0.14532400	С	0.34752100	-0.59103200	3.28401400	
Ρ	0.78270700	-1.20808100	1.59932600	С	0.99546500	0.57972000	3.72052600	
0	-2.15162400	-3.61970500	0.05202300	Н	1.71909100	1.06874100	3.07274000	
0	-3.83872200	-2.11928200	0.44610200	С	0.74379900	1.10736700	4.98681700	
С	-0.28772200	-2.69115200	1.24443000	Н	1.26155400	2.00566500	5.30977700	
Н	-0.49966900	-3.25262400	2.15954200	С	-0.16580900	0.47672900	5.83945300	
Н	0.34119700	-3.32372900	0.61488400	Н	-0.36304500	0.88529500	6.82565000	
С	-1.56665700	-2.38887900	0.47028900	С	-0.81246800	-0.68618600	5.42086300	
Н	-1.31243500	-1.78547900	-0.41127700	Н	-1.51409300	-1.18725900	6.08088100	
С	-2.71842500	-1.71965200	1.22617700	С	-0.55657300	-1.21913000	4.15436000	
Н	-2.79347800	-2.16825300	2.23124700	Н	-1.06483900	-2.13129300	3.86121300	
C	-2.70563500	-0.20016900	1.40052100	С	2.43158200	-1.98547500	1.89214500	
Н	-3.73723700	0.14028900	1.52647400	С	3.47738200	-1.85415700	0.96790700	
Н	-2.19875100	0.03509500	2.33928500	Н	3.33001400	-1.28606600	0.05688000	
С	-3.58607600	-3.45597000	-0.01041500	C	4.70195900	-2.48370100	1.20074500	
С	-4.22551200	-4.48269200	0.92083500	Н	5.50458500	-2.37767200	0.47687600	

С	4.89433900	-3.24845600	2.35179600
Н	5.84846800	-3.73523000	2.53015800
С	3.85582100	-3.38623400	3.27497700
Н	3.99862900	-3.97795600	4.17410100
С	2.63175500	-2.75800300	3.04878000
Н	1.83909800	-2.86282000	3.78329900
С	0.96517100	2.91289500	-2.28485200
Н	1.61817900	3.68625500	-2.71291600
Н	1.10910100	1.99374800	-2.85183200
Н	-0.06298100	3.25610300	-2.42338400
С	1.37571700	5.20918000	-0.11842700
Н	1.23236400	5.55571800	-1.14587300
Н	0.91563200	5.94652300	0.54603600
Н	2.45072500	5.20499400	0.08960900
С	4.96916600	3.47642700	-0.91555700
Н	5.21888200	4.23858200	-1.66236500
Н	4.14859900	3.85675800	-0.31281400
Н	5.84514200	3.33211400	-0.27164100

$G_{\rm sol}$	= -2998.106605	510 Hatree	
Rh	0.52844100	0.58623100	0.56140800
С	0.57654300	2.56935900	1.40299800
С	1.88384000	3.19015100	0.84474900
Н	1.72386300	3.55100800	-0.17769200
С	-0.58360700	3.55146500	1.17893200
Н	-1.51915000	3.07940300	1.49190000
Н	-0.67732600	3.75123600	0.10446400
В	0.37646300	1.15757800	-1.35502600
Н	2.18431000	4.05065400	1.45320400
С	2.97472900	2.15858800	0.77149200
0	2.62538100	0.94550400	0.65540400
Ν	4.27636900	2.47740500	0.81672200
С	5.30458700	1.43342700	0.79878900
Н	5.91646700	1.50519400	1.70434900
Н	5.95265000	1.56654200	-0.07315600
Н	4.83161000	0.45659100	0.74830100
С	-0.16925300	1.18105300	-3.59760000
С	0.91866100	2.28208700	-3.29643100
0	-0.61152400	0.81442400	-2.24729700
0	1.36876600	1.91496500	-1.94810000

С	2.12829500	2.26996800	-4.22762300
Н	2.83946500	3.04148100	-3.91926900
Н	1.82520800	2.48708600	-5.25679300
Н	2.64337800	1.30805100	-4.21607100
С	0.39627100	-0.09018000	-4.24193600
Н	0.67406900	0.08307800	-5.28548300
Н	-0.36643600	-0.87333600	-4.21738700
Н	1.27930900	-0.45551100	-3.71066700
С	0.34596600	3.70110800	-3.20247000
Н	0.03060600	4.07133200	-4.18179900
Н	1.11748200	4.37535100	-2.82010700
Н	-0.51175800	3.74814600	-2.52564200
С	-1.38322600	1.66512700	-4.38674100
Н	-2.08715600	0.83958900	-4.52132800
Н	-1.08337500	2.01368900	-5.38031900
Н	-1.90809300	2.47428800	-3.87726100
Ρ	-1.77869200	0.07123500	0.89865700
Ρ	1.22825200	-1.80757400	-0.06211700
0	-1.82403000	-2.98056800	-2.53834900
0	-3.42845700	-2.52964500	-0.95691800
С	0.23370900	-2.77743200	-1.31345300
Н	0.28932100	-3.85557500	-1.13268900
Н	0.73610300	-2.59960300	-2.26874600
С	-1.20697700	-2.30412200	-1.44217600
Н	-1.21507300	-1.22448000	-1.62374300
С	-2.16916500	-2.63418800	-0.30421100
Н	-2.00442900	-3.67855900	0.01418900
С	-2.14013700	-1.77180800	0.95576600
Н	-3.09153300	-1.90035500	1.47931300
Н	-1.37823400	-2.17278600	1.62804500
С	-3.24697600	-2.92955100	-2.33136300
С	-3.80879800	-4.32772000	-2.55904100
Н	-3.58789700	-4.66210500	-3.57638400
Н	-4.89253400	-4.32950500	-2.41610900
Н	-3.35849900	-5.03441100	-1.85733900
С	-3.88480700	-1.86754800	-3.21962500
Н	-3.77764200	-2.14340000	-4.27228500
Н	-3.40542600	-0.90039700	-3.04928500
Н	-4.94928700	-1.77050500	-2.98960200
С	-2.15689000	0.41470000	2.67993800
С	-3.09986200	1.37652200	3.07164500
Н	-3.65272100	1.93495000	2.32432100
С	-3.34770300	1.61474200	4.42563300
Н	-4.08291200	2.36099200	4.71147400
C.	-2.66363900	0.89407700	5.40479300

Н	-2.86306100	1.07662500	6.45629400
С	-1.72352400	-0.06665300	5.02525400
Н	-1.18752200	-0.63407700	5.78024800
С	-1.46700400	-0.30140500	3.67483500
Н	-0.71820700	-1.04162900	3.40632200
С	-3.20844700	0.81332600	0.00258300
С	-3.06295500	1.98453200	-0.75229300
Н	-2.08444500	2.42494900	-0.87263700
С	-4.16791000	2.58322700	-1.36022000
Н	-4.03670200	3.49330200	-1.93821100
С	-5.43471900	2.01627900	-1.22477500
Н	-6.29478300	2.48089900	-1.69761100
С	-5.59204500	0.84714400	-0.47749600
Н	-6.57379000	0.39664400	-0.36776900
С	-4.49036200	0.24931200	0.13190500
Н	-4.64139600	-0.66024000	0.69951100
С	1.28496700	-2.80468100	1.49031100
С	1.94788400	-2.21821200	2.58567100
Н	2.40768200	-1.23909000	2.47428200
С	2.04215400	-2.88959100	3.80412900
Н	2.56592100	-2.42715700	4.63561600
С	1.46535400	-4.15386200	3.95431800
Н	1.53491000	-4.67606400	4.90357800
С	0.80350700	-4.74367800	2.87765300
Н	0.35742600	-5.72787000	2.98487000
С	0.71603200	-4.07659000	1.65201300
Н	0.20405600	-4.56317600	0.82875300
С	2.93110300	-2.02433700	-0.74444700
С	3.45237700	-1.05236500	-1.61301800
Н	2.89637200	-0.14075000	-1.80151400
С	4.69804100	-1.24083700	-2.21502600
Н	5.09022100	-0.48394600	-2.88853300
С	5.44150700	-2.39186700	-1.94760000
Н	6.41123200	-2.53596900	-2.41463800
С	4.93537500	-3.35617700	-1.07429200
Н	5.50967800	-4.25238900	-0.85926500
С	3.68727800	-3.17592300	-0.47606600
Н	3.30641300	-3.93443200	0.20010600
С	0.76823900	2.25582000	2.89894000
Н	1.44514300	1.40870900	3.07237700
Н	1.21394300	3.11265900	3.42547700
Н	-0.17691400	2.02911900	3.39199400
С	-0.47969800	4.90610400	1.90992700
Н	0.40217400	5.48064400	1.60768700
Н	-1.35644100	5.52046500	1.68171300

L	Dpin	-	
$G_{\rm sol}$	= -2998.08954	067 Hatree	
Rh	-0.18399400	-0.32451800	-0.56888700
С	-2.03465900	-0.86150300	-2.03108800
в	-2.21263200	-0.74969800	-0.09002700
Н	-2.79202100	-2.88732600	-1.75406300
С	-3.50114000	-0.38392700	-2.28769800
Н	-3.59646700	0.65484200	-1.96216700
Н	-4.16945300	-0.96734800	-1.65027000
С	-1.96005000	-2.39223700	-2.26315300
Н	-2.07316700	-2.59377800	-3.33506400
С	-0.68341700	-3.04038100	-1.77452100
0	0.13555900	-2.40115900	-1.05937100
Ν	-0.41130100	-4.31516200	-2.11003600
C	0.84643700	-4.94120300	-1.69681000
Н	1.23557700	-5.53672200	-2.52755000
Н	0.68532000	-5.60398600	-0.83874100
Н	1.57038200	-4.17425800	-1.43152900
C	-3.39449700	-1.87517400	1.56437900
С	-3.94011200	-0.39209700	1.43727800
0	-2.54090900	-2.01084500	0.39252000
0	-2.97330000	0.22924100	0.53319800
С	-5.33152900	-0.27905300	0.79775100
Н	-5.52546900	0.76887600	0.55383500
Н	-6.10709700	-0.61651700	1.49160600
Н	-5.42677100	-0.85866100	-0.12057700
С	-4.46631600	-2.96434500	1.49661300
Н	-5.16278000	-2.88134200	2.33693200
Н	-3.99124300	-3.94783900	1.55336000
Н	-5.03970100	-2.91880400	0.56901100
С	-3.95556300	0.39507600	2.74950600
Н	-4.63665800	-0.07093500	3.46854800
Н	-4.31560700	1.41126100	2.56485400
Н	-2.96796900	0.46555500	3.20344700
С	-2.51319800	-2.10818000	2.79657000

[Et ,, Me	, ⁺]‡
	Rh() \/, O	NMe ₂	
L	Bpin	-	J

Н	-0.44281400	4.78152000	2.99614700
С	4.78110100	3.84668900	0.91723800
Н	4.02816600	4.56979800	0.61220100
Н	5.10584400	4.07148900	1.93983900
Н	5.64242300	3.95286700	0.25180900

Н	-2.06774400	-3.10348600	2.73333300	Н	6.10018700	-2.93758000	0.50745400
Н	-3.09454100	-2.05221900	3.72135900	С	4.21071800	-1.91564900	0.59437700
Н	-1.69489300	-1.38727700	2.85255600	Н	4.23505400	-1.83312300	1.67688400
P	1.76729200	-0.50822600	0.75308800	С	-0.40916800	2.65911700	1.43327400
P	-0.36693800	1.98430400	-0.28693300	С	-0.56815200	1.79765000	2.52638500
0	3.40928300	2.86788800	-1.67044200	Н	-0.67391700	0.73302900	2.34901200
0	4.44425300	1.87116700	0.11689000	С	-0.58859600	2.29831900	3.83094500
С	1.09657000	2.85359100	-1.06689900	Н	-0.70864400	1.61614100	4.66752900
Н	1.16670200	3.87417800	-0.67954200	С	-0.45775800	3.66890100	4.05628400
Н	0.89144600	2.93633600	-2.13649900	Н	-0.47305200	4.05947600	5.06928200
С	2.43484000	2.14289900	-0.92961600	С	-0.31402400	4.53933600	2.97255600
Н	2.34232800	1.12512000	-1.33478600	Н	-0.22137200	5.60808300	3.14010900
С	3.07895000	2.07734200	0.45894500	С	-0.29307700	4.03981200	1.67081900
Н	2.95669500	3.05690000	0.95037200	Н	-0.20291500	4.73545100	0.84185200
С	2.62374300	0.99388900	1.44448300	С	-1.77270900	2.90058400	-1.07926500
Н	3.50395500	0.66145700	2.00273900	С	-2.92921500	3.17185100	-0.32883100
Н	1.92806600	1.43874100	2.15703600	Н	-2.99164100	2.84216300	0.70002000
С	4.70408700	2.62743500	-1.07559100	С	-4.00045600	3.86161100	-0.89536200
С	5.32994600	3.97788200	-0.73934700	Н	-4.88130800	4.06887300	-0.29484200
Н	5.43187000	4.58171300	-1.64509600	С	-3.94129200	4.29065100	-2.22263000
Н	6.31988500	3.83668100	-0.29775200	Н	-4.77464000	4.83148300	-2.66066900
Н	4.70309100	4.52563100	-0.03096000	С	-2.80017900	4.02713900	-2.97966000
С	5.56685500	1.77961700	-1.99959700	Н	-2.73693800	4.36345500	-4.01011400
Н	5.76865600	2.32190200	-2.92699800	С	-1.72518400	3.33852800	-2.41372600
Н	5.05759300	0.84260800	-2.23538400	Н	-0.85113100	3.16281600	-3.03120000
Н	6.51960900	1.54646800	-1.51625000	С	-1.14205800	-0.18105600	-3.11180400
С	1.50037500	-1.54660300	2.25306100	Н	-0.07271600	-0.40623400	-3.02817100
С	1.10233600	-2.88242200	2.06736400	Н	-1.45066000	-0.54449100	-4.10060700
Н	0.92842900	-3.25236900	1.06326100	Н	-1.26607300	0.90160500	-3.11933900
С	0.92227200	-3.72469200	3.16239800	С	-4.02346700	-0.49866200	-3.73240300
Н	0.62529000	-4.75736100	3.00357800	Н	-3.93132000	-1.51045300	-4.14198700
С	1.12104400	-3.24640100	4.46031500	Н	-5.08827300	-0.24555500	-3.74299100
Н	0.98181700	-3.90477200	5.31240600	Н	-3.52329900	0.19005200	-4.41756300
С	1.50061000	-1.91914300	4.65545000	С	-1.32080500	-5.18365300	-2.85570800
Н	1.65996000	-1.53884700	5.66006300	Н	-2.31686400	-4.75354900	-2.92451700
С	1.69228200	-1.07215400	3.56023500	Н	-0.93945200	-5.36741900	-3.86682500
Н	2.00116800	-0.04960600	3.74373900	Н	-1.40171900	-6.14479300	-2.33851300
С	3.12400600	-1.40022300	-0.13015600				
С	3.11138100	-1.53807900	-1.52502300				
Н	2.27000200	-1.15984200	-2.09599900		\rightarrow	`ç ┐⁺	
С	4.16863400	-2.16914000	-2.18494100	(P/////\O	-B Et ∖⊇Me	
Н	4.14748100	-2.26673000	-3.26650700	(Rh ⁱ		
С	5.24729000	-2.67256500	-1.45609500			γ	
Н	6.06962900	-3.16287700	-1.96838700		1	NMe ₂	
С	5.26506700	-2.54574900	-0.06524500	G _{sol}	= -2998.12908	358 Hatree	

Rh	-0.35926600	0.06533000	0.12014900	С	3.57517700	0.89334800	-0.91740300
С	-2.96604100	-1.60539200	-1.80802700	Н	4.01838100	1.89841000	-0.81786600
В	-3.31535500	-0.74884500	-0.51536100	С	3.24876900	0.38318400	0.49082000
Н	-3.44480300	-3.58258800	-1.05735800	Н	4.11017300	-0.20491600	0.81908700
С	-4.29558000	-1.72674000	-2.62656800	Н	3.15031300	1.23103500	1.17258000
Н	-4.61117600	-0.71338800	-2.90929300	С	4.45899000	0.29489400	-2.95780700
Н	-5.08008500	-2.11031400	-1.96460600	С	5.60643200	1.21389900	-3.36425400
С	-2.54454300	-3.02447100	-1.34324700	Н	5.50687700	1.49853800	-4.41520700
Н	-2.09820500	-3.57281400	-2.18142500	Н	6.56517400	0.70711600	-3.22648400
С	-1.59530900	-3.08219500	-0.14736300	Н	5.59866900	2.12430900	-2.75941300
0	-1.20710400	-2.03927300	0.43800400	С	4.45767000	-1.03212300	-3.70454600
Ν	-1.23691700	-4.29872900	0.31485700	Н	4.40226200	-0.85752300	-4.78219900
С	-0.37001400	-4.44018900	1.48462100	Н	3.60209800	-1.63644200	-3.39441100
Н	0.58246400	-4.89418200	1.19358000	Н	5.37317600	-1.58900500	-3.48634600
Н	-0.85943000	-5.08660900	2.22090200	С	1.75408000	-0.88051300	2.58897800
Н	-0.18308800	-3.46596600	1.92427700	С	0.54959000	-1.16724500	3.25554400
С	-4.41903300	-0.20466900	1.42749400	Н	-0.37041700	-1.23297500	2.68482200
С	-3.58876000	1.03792600	0.93248400	С	0.52413800	-1.35885500	4.63737300
0	-4.38619300	-1.07908800	0.26241600	Н	-0.41677900	-1.58055100	5.13265000
0	-2.68120500	0.41735600	-0.07785900	С	1.70109600	-1.25901000	5.38176400
С	-4.43438700	2.05981500	0.16909200	Н	1.68195300	-1.40374900	6.45767600
Н	-3.78181100	2.79679200	-0.30011800	С	2.90185800	-0.96617600	4.73508600
Н	-5.11425300	2.58449600	0.84591900	Н	3.82200300	-0.88076800	5.30540100
Н	-5.03123300	1.58085000	-0.61194000	С	2.93019900	-0.77775800	3.35132100
С	-5.87956700	0.09485500	1.75996700	Н	3.87950200	-0.54498500	2.88261600
Н	-5.95159800	0.80948900	2.58597300	С	2.19374600	-2.29355700	0.05850300
Н	-6.37827200	-0.82743600	2.06949200	С	1.66617400	-2.71867400	-1.16924000
Н	-6.41915900	0.49686700	0.90135900	Н	0.94478500	-2.09426900	-1.68672000
С	-2.76528000	1.71924100	2.01543500	С	2.05825500	-3.93677800	-1.72896000
Н	-3.42454000	2.06671100	2.81786900	Н	1.64750200	-4.24796100	-2.68532000
Н	-2.25059100	2.59062100	1.60634000	С	2.97976500	-4.74849300	-1.06449900
Н	-2.02109300	1.04406700	2.44144600	Н	3.28844300	-5.69420000	-1.49997500
С	-3.76324600	-0.97242200	2.58159400	С	3.50745600	-4.33589800	0.16141300
Н	-4.31420700	-1.90344100	2.74120100	Н	4.22518200	-4.96124400	0.68402800
Н	-3.79133800	-0.39858300	3.51204700	С	3.11716800	-3.11826200	0.71999700
Н	-2.72724000	-1.22723500	2.34820900	Н	3.52912200	-2.82111200	1.67900600
Ρ	1.71090300	-0.64515500	0.75038200	С	1.20709500	3.15109100	0.84394100
Ρ	0.35895900	2.13818200	-0.44725500	С	1.04846300	2.79934800	2.19348800
0	3.21892100	1.00211000	-3.17699200	Н	0.46258700	1.92172400	2.44793200
0	4.50088800	0.01549500	-1.54800100	С	1.64721900	3.55791900	3.20196900
С	1.52065500	2.14184200	-1.91657000	Н	1.51777100	3.26994700	4.24090100
Н	2.08175200	3.07995000	-1.95452700	С	2.41224800	4.67773300	2.87384300
Н	0.89025200	2.11705600	-2.80920900	Н	2.88179900	5.26614300	3.65633400
С	2.46689000	0.95409600	-1.96994400	С	2.56993500	5.04312500	1.53444300
Н	1.87595100	0.02838200	-1.93014100	Н	3.15847300	5.91751600	1.27353300

С	1.96879600	4.28943700	0.52641200
Н	2.08526100	4.60688200	-0.50489900
С	-0.95706600	3.27641300	-1.07775700
С	-1.32203800	4.44431900	-0.39104100
Н	-0.83789600	4.70238300	0.54426100
С	-2.29632600	5.29881300	-0.91374400
Н	-2.56045100	6.20323900	-0.37388300
С	-2.91758600	4.99967600	-2.12636000
Н	-3.66718100	5.66983700	-2.53596000
С	-2.56858600	3.83364100	-2.81268400
Н	-3.04764800	3.59249500	-3.75693600
С	-1.60181200	2.97615100	-2.28959100
Н	-1.34955400	2.07125200	-2.83306700
С	-1.87398200	-0.96722300	-2.68877600
Н	-0.97177600	-0.71895000	-2.11273600
Н	-1.57831300	-1.63222700	-3.50835100
Н	-2.23847000	-0.03789500	-3.13843200
С	-4.24493400	-2.58828700	-3.89626700
Н	-4.00457400	-3.63463900	-3.67936400
Н	-5.22163200	-2.58093500	-4.38967000
Н	-3.51276400	-2.21969500	-4.62082600
С	-1.61790200	-5.57197000	-0.29399800
Н	-2.32971700	-5.44067700	-1.10350100
Н	-0.72768700	-6.07666800	-0.68650000
Н	-2.07240300	-6.21809000	0.464277

Copies of NMR Spectra

Supplementary Figure 7. ^{13}C NMR (101 MHz, CDCl₃) of 1a.

Supplementary Figure 11. ^{13}C NMR (101 MHz, CDCl₃) of 1c.

Supplementary Figure 15. ¹³C NMR (101 MHz, CDCl₃) of 1e.

Supplementary Figure 17. ^{13}C NMR (101 MHz, CDCl₃) of 1f.

Supplementary Figure 19. ¹³C NMR (101 MHz, CDCl₃) of **1g**.

Supplementary Figure 21. ¹³C NMR (101 MHz, CDCl₃) of **1h**.

Supplementary Figure 23. $^{13}\mathrm{C}$ NMR (101 MHz, CDCl₃) of 1i.

Supplementary Figure 25. $^{13}\mathrm{C}$ NMR (101 MHz, CDCl₃) of 1j.

Supplementary Figure 27. ¹³C NMR (101 MHz, CDCl₃) of 1k.

Supplementary Figure 29. $^{13}\mathrm{C}$ NMR (101 MHz, CDCl₃) of 11.

Supplementary Figure 31. ¹³C NMR (101 MHz, CDCl₃) of 1m.

Supplementary Figure 33. ¹³C NMR (101 MHz, CDCl₃) of **1n**.

Supplementary Figure 35. ^{13}C NMR (101 MHz, CDCl₃) of 1o.

Supplementary Figure 37. ¹³C NMR (101 MHz, CDCl₃) of **1p**.

Supplementary Figure 40. ¹³C NMR (101 MHz, CDCl₃) of 1q.

Supplementary Figure 42. ^{13}C NMR (101 MHz, CDCl₃) of 1r.

Supplementary Figure 44. ^{13}C NMR (101 MHz, CDCl₃) of 1s.

Supplementary Figure 46. 13 C NMR (101 MHz, CDCl₃) of 1t.

Supplementary Figure 48. 13 C NMR (101 MHz, CDCl₃) of **1u**.

Supplementary Figure 50. ¹³C NMR (101 MHz, CDCl₃) of **1v**.

S107

Supplementary Figure 54. ¹³C NMR (101 MHz, CDCl₃) of 1x.

Supplementary Figure 56. 13 C NMR (101 MHz, CDCl₃) of 1y.

Supplementary Figure 58. ¹³C NMR (101 MHz, CDCl₃) of 1z.

Supplementary Figure 60. ¹³C NMR (101 MHz, CDCl₃) of **1aa**.

Supplementary Figure 62. ¹³C NMR (101 MHz, CDCl₃) of **1ab**.

Supplementary Figure 66. ¹³C NMR (101 MHz, CDCl₃) of 1ad.

S115

Supplementary Figure 70. ¹³C NMR (101 MHz, CDCl₃) of **1af**.

S117

Supplementary Figure 74. ¹³C NMR (101 MHz, CDCl₃) of **1ah**.

Supplementary Figure 76. ¹³C NMR (101 MHz, CDCl₃) of 1ai.

Supplementary Figure 77. ¹⁹F NMR (376 MHz, CDCl₃) of 1ai.

Supplementary Figure 79. ¹³C NMR (101 MHz, CDCl₃) of 1aj.

S122

Supplementary Figure 85. ^{13}C NMR (101 MHz, CDCl₃) of 3c.

Supplementary Figure 87. ¹³C NMR (101 MHz, CDCl₃) of **3d-ol**.

Supplementary Figure 89. ¹³C NMR (101 MHz, CDCl₃) of **3e**.

Supplementary Figure 91. ^{13}C NMR (101 MHz, CDCl₃) of 3f.

Supplementary Figure 93. ^{13}C NMR (101 MHz, CDCl₃) of 3g.

S129

Supplementary Figure 103. ¹³C NMR (101 MHz, CDCl₃) of **31**.

Supplementary Figure 105. ¹³C NMR (101 MHz, CDCl₃) of **3m**.

Supplementary Figure 107. ^{13}C NMR (101 MHz, CDCl₃) of 3n.

Supplementary Figure 109. ^{13}C NMR (101 MHz, CDCl₃) of 3o.

Supplementary Figure 111. ¹³C NMR (101 MHz, CDCl₃) of **3p**.

S138

S139

Supplementary Figure 116. ^{13}C NMR (101 MHz, CDCl₃) of 3r.

S141

Supplementary Figure 120. ^{13}C NMR (101 MHz, CDCl₃) of 3t:

S143

Supplementary Figure 124. ^{13}C NMR (101 MHz, CDCl₃) of 3v.

Supplementary Figure 126. ¹³C NMR (101 MHz, CDCl₃) of **3w**.

Supplementary Figure 128. ¹³C NMR (101 MHz, CDCl₃) of **3**x.

Supplementary Figure 130. ¹³C NMR (101 MHz, CDCl₃) of **3y**.

Supplementary Figure 132. ¹³C NMR (101 MHz, CDCl₃) of **3z**.

Supplementary Figure 134. ^{13}C NMR (101 MHz, CDCl₃) of **3aa**.

Supplementary Figure 136. ¹³C NMR (101 MHz, CDCl₃) of **3ab-ol**.

S151

Supplementary Figure 140. ¹³C NMR (101 MHz, CDCl₃) of **3ad**.

Supplementary Figure 142. ¹³C NMR (101 MHz, CDCl₃) of **3ae-ol**.

Supplementary Figure 144. ¹³C NMR (101 MHz, CDCl₃) of **3ah-ol**.

Supplementary Figure 146. ¹³C NMR (101 MHz, CDCl₃) of **3ak-ol**.

Supplementary Figure 148. ¹³C NMR (101 MHz, CDCl₃) of **3ai-ol**.

Supplementary Figure 149. $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of **3ai-ol**.

Supplementary Figure 151. ¹³C NMR (101 MHz, CDCl₃) of **3al-ol**.

Supplementary Figure 152. $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of **3al-ol**.

Supplementary Figure 154. ¹³C NMR (101 MHz, CDCl₃) of **3aj-ol**.

Supplementary Figure 158. ¹³C NMR (101 MHz, CDCl₃) of 4.

Supplementary Figure 160. ^{13}C NMR (101 MHz, (CD₃)₂CO) of **5**.

Supplementary Figure 163. ¹³C NMR (101 MHz, CDCl₃) of **6**.

Supplementary Figure 165. ¹³C NMR (101 MHz, CDCl₃) of 7.

Supplementary Figure 167. ¹³C NMR (101 MHz, CDCl₃) of 8.

S168

Supplementary Figure 171. ^{13}C NMR (101 MHz, CDCl₃) of 10.

Supplementary Figure 173. ^{13}C NMR (101 MHz, CDCl₃) of 11.

Supplementary Figure 175. ¹³C NMR (101 MHz, CDCl₃) of **11b**.

Supplementary Figure 177. ¹³C NMR (101 MHz, CDCl₃) of **Z-1i**.

Supplementary References

(1) Tsuchikama, K., Kasagawa, M., Endo, K. & Shibata, T. Cationic Ir(I)-Catalyzed sp3 C–H Bond Alkenylation of Amides with Alkynes. *Org. Lett.* **11**, 1821-1823 (2009).

(2) Lee, J.-E. & Yun, J. Catalytic Asymmetric Boration of Acyclic α , β -Unsaturated Esters and Nitriles. *Angew. Chem., Int. Ed.* **47**, 145-147 (2008).

(3) Liu, Z., Ni, H. Q., Zeng, T. & Engle, K. M. Catalytic Carbo- and Aminoboration of Alkenyl Carbonyl Compounds via Five- and Six-Membered Palladacycles. *J. Am. Chem. Soc.* **140**, 3223-3227 (2018).

(4) Hoang, G. L. & Takacs, J. M. Enantioselective gamma-borylation of unsaturated amides and stereoretentive Suzuki-Miyaura cross-coupling. *Chem. Sci.* **8**, 4511-4516 (2017).

(5) Bonet, A., Odachowski, M., Leonori, D., Essafi, S. & Aggarwal, V. K. Enantiospecific sp2–sp3 coupling of secondary and tertiary boronic esters. *Nat. Chem.*6, 584-589 (2014).

(6) Sonawane, R. P. et al. Enantioselective Construction of Quaternary Stereogenic Centers from Tertiary Boronic Esters: Methodology and Applications. *Angew. Chem., Int. Ed.* **50**, 3760-3763 (2011).