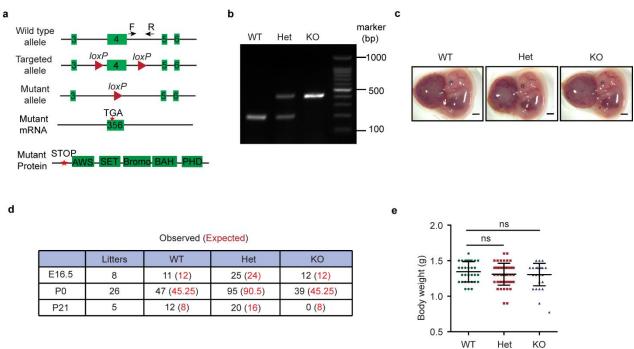
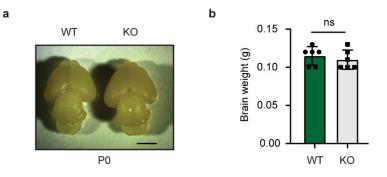
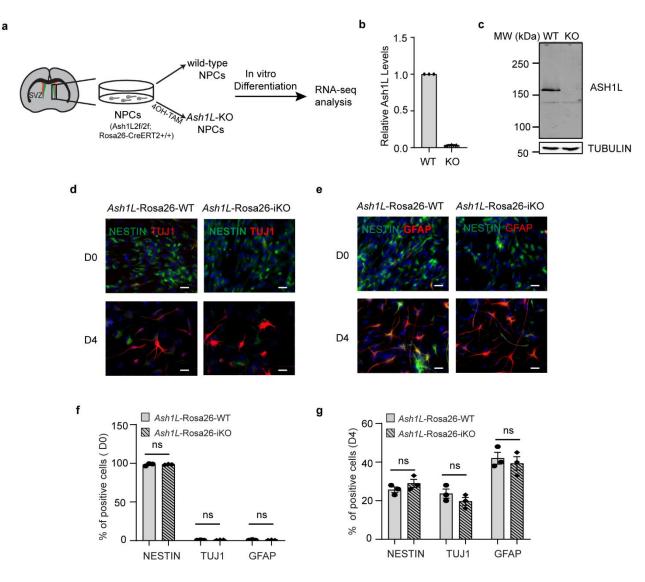

Supplementary Information


Loss of histone methyltransferase ASH1L in the developing mouse brain causes autistic-like behaviors

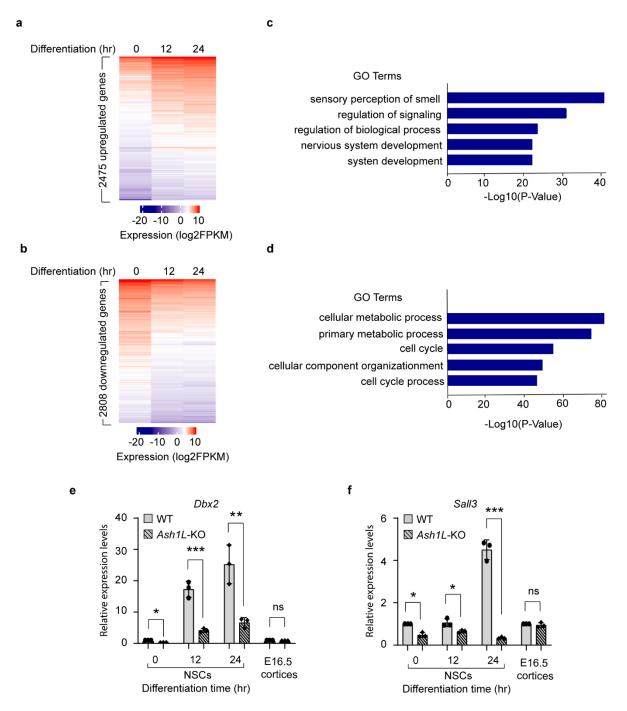
Yuen Gao, Natalia Duque-Wilckens, Mohammad B Aljazi, Yan Wu, Adam J Moeser, George I Mias, Alfred J Robison, Jin He Correspondence to: <u>hejin1@msu.edu</u>

This PDF file includes:


Supplementary Figure 1 to 6 Supplementary Table 1 to 3

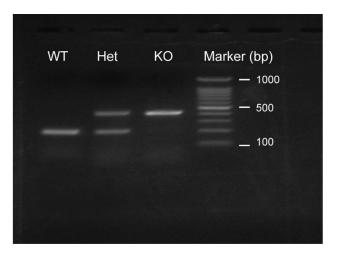

(a) Diagram showing the strategy for the generation of *Ash1L* conditional knockout mice. Cremediated deletion of exon 4 results in an altered spliced mRNA with a premature stop codon, which generates a truncated protein without all functional AWS, SET, Bromo, BAH and PHD domains. The arrows labeled as F and R represent the genotyping primers. (b) Genotyping results showing the PCR results of wild-type, heterozygous, and homozygous *Ash1L* knockout mice. (c) Photos showing the gross morphology of wild-type, heterozygous, and homozygous *Ash1L* knockout embryos and placentas at E13.5, bar = 500 µm. (d) The genotyping results of global *Ash1L*-KO mice analyzed at embryonic and postnatal stages. (e) Body weight of global *Ash1L*-KO mice at P0. For *Ash1L* WT, n = 32 mice; for *Ash1L* Het, n = 53 mice; for *Ash1L* KO, n = 23 mice. *P*-values calculated using a two-tailed *t* test. Error bars in graphs represent mean \pm SEM. Note: ns, not significant.

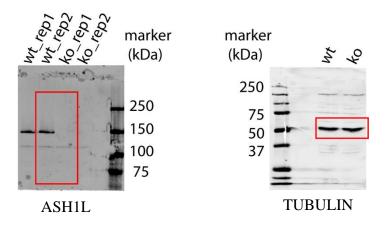
Supplementary Figure 2. Loss of ASH1L delays embryonic and postnatal brain development.


(a) Photo showing the gross brain morphology of wild-type and global *Ash1L*-KO mice at P0, bar = 2 mm. (b) The brain weight of P0 wild-type and global *Ash1L*-KO mice. n = 6 mice/genotype. *P*-values calculated using a two-tailed *t* test. Error bars in graphs represent mean \pm SEM. Note: ns, not significant.

Supplementary Figure 3. Isolation and differentiation of neural progenitor cells in vitro.

(a) Flowchart showing the experimental design for gene expression analysis. (b) qRT-PCR analysis showing the expression levels of *Ash1L* in wild-type and knockout NPCs. The results were normalized against levels of *Gapdh* and the expression level in wild-type NPCs was arbitrarily set to 1. The error bars represent mean \pm SEM, n = 3 biologically independent samples/genotype. (c) Western blot analysis showing the protein levels of ASH1L in wild-type and knockout NPCs. (d-e) Photos showing the NESTIN⁺/TUJ1⁺ (d) and NESTIN⁺/GFAP⁺ cells (e) at D0 and D4 after induced differentiation, bar = 20 µm. (f-g) Quantification of NESTIN⁺, TUJ1⁺, and GFAP⁺ cells at D0 (f) and D4 (g) after induced differentiation. For each group, n = 3 biologically independent samples/genotype. *P*-values calculated using a two-tailed *t* test. Error bars in graphs represent mean \pm SEM. Note: **p* < 0.05; ***p* < 0.01; ns, not significant.


Supplementary Figure 4. Loss of ASH1L impairs expression of genes critical for brain development.


(a) Heatmap showing 2,475 upregulated genes in wild-type NPCs during induced differentiation (cutoff: change folds > 1.5, p < 0.01). (b) Heatmap showing 2,808 downregulated genes in wild-type NPCs during induced differentiation (cutoff: change folds > 1.5, p < 0.01). (c) Gene ontology enrichment analysis showing the enriched GO terms of 2,475 upregulated genes in the wild-type NPCs during induced differentiation (FDR < 0.05). (d) Gene ontology enrichment analysis showing the enriched GO terms of 2,808 downregulated genes in the wild-type NPCs during induced differentiation (FDR < 0.05). (d) Gene ontology enrichment analysis showing the enriched GO terms of 2,808 downregulated genes in the wild-type NPCs during induced differentiation (FDR < 0.05). (e-f) qRT-PCR analysis showing the mRNA levels of *Dbx2* and *Sall3* in wild-type and *Ash1L*-KO NPCs at different time points of induced differentiation and in E16.5 cortices. The results of analysis in NPCs were normalized against levels of *Gapdh* and the

expression level of wild-type NPCs at differentiation time 0 was arbitrarily set to 1. The results of analysis in E16.5 cortices were normalized against levels of *Gapdh* and the expression level of wild-type cortices was arbitrarily set to 1. The error bars represent mean \pm SEM, n = 3 biologically independent samples/genotype. *P*-values calculated using a two-tailed *t* test. Note: **P* < 0.05; ***P* < 0.01; ****P* < 0.001; ns, not significant.

Supplementary Figure 5. Uncropped gel picture for Fig. S1b.

Supplementary Figure 6. Uncropped gel pictures for Fig. S1c.

Supplementary Table 1. Result of gene ontology enrichment analysis of 44 genes upregulated
in the Ash1L-KO NPCs during induced differentiation.

GO biological process complete	P-value	FDR
regulation of developmental growth (GO:0048640)	1.12E-04	4.53E-02
regulation of cell migration (GO:0030336)	1.71E-05	3.36E-02
regulation of locomotion (GO:0040013)	3.20E-06	5.04E-02
regulation of cell motility (GO:2000146)	2.19E-05	3.44E-02
regulation of cellular component movement (GO:0051271)	2.58E-05	3.12E-02
regulation of growth (GO:0045926)	1.49E-04	4.97E-02
regulation of cell growth (GO:0001558)	1.63E-05	3.67E-02
chemotaxis (GO:0006935)	3.69E-05	3.63E-02
plasma membrane bounded cell projection morphogenesis (GO:0120039)	3.93E-05	3.10E-02
taxis (GO:0042330)	3.93E-05	2.95E-02
cell projection morphogenesis (GO:0048858)	4.24E-05	3.04E-02
morphogenesis of an epithelium (GO:0002009)	5.56E-05	3.24E-02
cell part morphogenesis (GO:0032990)	5.76E-05	3.13E-02
tissue morphogenesis (GO:0048729)	2.21E-05	2.90E-02

GO biological process complete	P-value	FDR
telencephalon development (GO:0021537)	1.18E-06	1.86E-02
cellular process (GO:0009987)	4.38E-06	3.45E-02
exploration behavior (GO:0035640)	4.83E-06	2.54E-02
brain development (GO:0007420)	5.46E-06	2.15E-02
regulation of cell communication (GO:0010646)	7.46E-06	2.35E-02
regulation of signaling (GO:0023051)	7.97E-06	2.10E-02
head development (GO:0060322)	1.17E-05	2.64E-02
locomotory behavior (GO:0007626)	1.30E-05	2.56E-02
animal organ development (GO:0048513)	1.66E-05	2.92E-02
central nervous system development (GO:0007417)	1.68E-05	2.66E-02
synapse maturation (GO:0060074)	2.76E-05	3.95E-02
forebrain development (GO:0030900)	2.95E-05	3.88E-02
regulation of glucose transmembrane transport (GO:0010828)	3.08E-05	3.74E-02
purine ribonucleotide biosynthetic process (GO:0009152)	3.92E-05	4.42E-02

Supplementary Table 2.Result of gene ontology enrichment analysis of 70 genes down-regulated in the *Ash1L*-KO NPCs during induced differentiation.

Supplementary Table 3	Primers used	in this study.
------------------------------	--------------	----------------

Name	Sequence (5'-3')	Purpose
GAPDH-F	GCAGTGGCAAAGTGGAGATT	qRT-PCR
GAPDH-R	GAATTTGCCGTGAGTGGAGT	qRT-PCR
Ash1L-F	CCCAGTCAGCTTCCGATAAA	qRT-PCR
Ash1L-R	CTGGAAGGAACTCCATTCACT	qRT-PCR
Dbx2-F	AGGAGTCACAGGTGAAGATTTG	qRT-PCR
Dbx2-R	AACTGTGCTGAAGCTGATCTC	qRT-PCR
Pcdh10-F	AGGTGTATGTCCAAGCCAAG	qRT-PCR
Pcdh10-R	ACTGTGCTGAAGCTGATCTC	qRT-PCR
Emx2-F	CAGAAAGCCAAAGCGGATTC	qRT-PCR
Emx2-R	CCCACCACGTAATGGTTCTT	qRT-PCR
Sall3-F	TCCACTTTCAGAGGCACAAG	qRT-PCR
Sall3-R	GGGCACATTGTCGAGGTATT	qRT-PCR
Foxg1-F	AAGAACGGCAAGTACGAGAAG	qRT-PCR
Foxg1-R	ATAGATGCCATTGAGCGTCAG	qRT-PCR
Nes-cre-F	GCGGTCTGGCAGTAAAAACTATC	Genotyping
Nes-cre-R	GTGAAACAGCATTGCTGTCACTT	Genotyping
Ash1L-WT (floxed)-F	ACTAGCTTTGCTCTCATAAATGTC	Genotyping
Ash1L-WT (floxed)-R	GGGTACATGGAGTTATTAGATCCT	Genotyping
Ash1L-mut-F	CCCACACAAATGTAAGTTTGGA	Genotyping
Ash1L-mut-R	ACATGGAGTTATTAGATCCTG	Genotyping