Supplementary Information for: High-responsivity graphene photodetectors integrated on silicon microring resonators

S. Schuler^{1,2*}, J. E. Muench^{2*}, A. Ruocco², O. Balci²,

D. van Thourhout³, V. Sorianello⁴, M. Romagnoli⁴, K. Watanabe⁵,

T. Taniguchi⁵, I. Goykhman^{2,6}, A. C. Ferrari²[†], Thomas Mueller¹[†]

 1 Vienna University of Technology, Institute of Photonics, Gusshausstrasse 27-29, 1040 Vienna, Austria

 2 Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK

³ Ghent University-IMEC, Photonics Research Group, Technologiepark-Zwijnaarde 126, 9052 Gent, Belgium

⁴ Consorzio Nazionale per le Telecomunicazioni and Inphotec, via Moruzzi 1, 56124 Pisa, Italy

 5 National Institute for Materials Science, 1-1
 Namiki, Tsukuba, 305-0044 Japan

⁶ Technion - Israel Institute of Technology, Haifa, 3200003, Israel

* These authors contributed equally

 \dagger email:acf26@eng.cam.ac.uk

 \dagger email:thomas.mueller@tuwien.ac.at

Supplementary Figure 1: Q, extracted from transmission spectra in Fig.1b, as function of W.

Supplementary Figure 2: (a) Transmitted (solid) and absorbed (dashed) power for three different $P_{\rm in}$. (b) Corresponding photovoltage.

Supplementary Table

$W~(\mu m)$	0	2.5	6	9	14	20
$Q(\times 10^4)$	2.8	2.2	1.6	1.4	1.0	0.8

Supplementary Table 1: Q for SLG-loaded MRR (cover length W).

Supplementary Note 1: Q from transmission spectra as a function of W

Supplementary Table 1 and Supplementary Fig.1 show Q extracted via[1]:

$$Q = \frac{\lambda_{\rm res}}{\lambda_{\rm FWHM}} \tag{1}$$

from Lorentzian fits of the transmission curves plotted in Fig.1b of the main text. The results confirm that the unloaded (W=0 μ m) MRR exhibits the highest Q, which decreases as W increases. E.g., for the maximum SLG loading in Fig.1b and Supplementary Fig.1 (W=20 μ m), Q is reduced~ 71% with respect to the maximum value. This degradation of Q gives a trade-off with the increase in absorption: as long as the MRR is under-coupled, absorption increases with W while Q decreases. Once critical coupling is achieved, and W is increased further, both Q and absorption decrease, as shown in Fig.1c and Supplementary Fig.1.

Supplementary Note 2: power absorbed in the GPDs

Supplementary Fig.2 shows a subset of the transmitted power ($P_{\rm trans}$) and photovoltage ($V_{\rm PTE}$) data of Fig.5a,b of the main text. Supplementary Fig.2a provides an estimation of the power absorbed in our GPD, extracted via the simplified expression $P_{\rm abs} = P_{\rm in} - P_{\rm trans}$ [2]. The subset is restricted to three traces from the linear regime ($P_{\rm in} < 0.1 \text{mW}$) and plotted in linear scale, both chosen to allow a direct visual comparison between Supplementary Fig.2a and b. Supplementary Fig.2 shows the consistent proportionality between $P_{\rm abs}$ and $V_{\rm PTE}$ in our GPDs. The proportionality factor is given by the internal responsivity, defined as $R_{\rm int} = V_{\rm PTE}/P_{\rm abs}[3]$.

Supplementary References

- W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser & Photonics Reviews 6, 47 (2012).
- [2] D. G. Rabus, Integrated ring resonators (Springer, Berlin, 2007).
- [3] F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Nat. Nanotechnol. 9, 780 (2014).