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Figure S1. Association between benign kidney cell type composition and anatomic location. A) Density plot shows the distribution of mitochondrial reads 
among renal tubular epithelial cell types (left) and tumor epithelia/microenvironment cell types (right). B) t-SNE plot (left) shows benign tissue cell type clusters 
presented in Figure 1A colored by sample (left), and the waterfall plot again colored by sample (right) shows the mitochondrial threshold employed for benign tissue 
data filtering. C) t-SNE plot (left) shows tumor tissue cell type clusters presented in Figure S2A colored by sample (left), and the waterfall plot colored by sample 
(right) shows the mitochondrial threshold employed for tumor tissue data filtering. D) Stacked bar plots depict the proportion of the different cell clusters as identified 
by single cell sequencing analysis in each benign cortex (red) or medulla (blue) sample as indicated in the annotation box below the stacked bar plot. For example, 
PT cell clusters were predominantly derived from benign cortex samples (SS_2014C, SS_2017, and SS_2022). E) t-SNE plots showing expression of known proximal 
tubule S1, S2, and S3 marker genes among the PT-A subclusters identified by Slingshot trajectory analysis. 
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Figure S2. Clear cell (ccRCC) and chromophobe renal cell carcinoma (chRCC) tumor cell atlases. A) Stacked bar plots depict the proportion of different cell 
clusters as identified by single cell sequencing analysis in the various ccRCC samples. B) t-SNE plot (left panel) shows 13 different cell clusters identified from a 
total of 20,509 cells from seven different ccRCC samples. Number of cells in each cluster and their percentage is listed. Bubble plot (right panel) shows the expression 
of top cell type-specific markers, where the diameter and color of the bubbles are proportional to the percentage of cells that express a given marker and the 
expression level, respectively. C) Likewise, six cell clusters from 2,576 cells from one chRCC single cell sequencing (t-SNE plot: left panel). Bubble plot shows 
expression of top cell type-specific markers (right panel). D) EPO and EPOR gene expression in benign kidney and ccRCC tissue cell types.  
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Figure S3. Association between copy-number variation (CNV) and gene expression. Top panels: CNV assessed from 
whole-exome capture sequencing data analysis in ccRCC (SS_2005, SS_2007, and SS_2022) and chRCC (SS_2016) 
samples. In the copy-number log ratio plot: blue - copy loss, red - copy gain, black - diploid, green - copy neutral loss of 
heterozygosity. Bottom panels: Heat maps show relative expression of every cell in each sample along the genome. The 
average expression of benign cell clusters within the same sample was used as reference. Genes were ordered according 
to chromosomal location. 
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Figure S4. Differential gene expression analysis. A) Table provides the number and fraction of significantly up- or downregulated genes in various differential 
expression analyses. ccRCC tumor epithelial cells vs. benign kidney proximal tubule cell clusters including 1) PT-A, 2) PT-B, and 3) PT-C; 4) Bulk ccRCC vs. bulk 
normal adjacent tissues (NAT); 5) chRCC tumor epithelial cells vs. intercalated cells (IC-A); 6) chRCC bulk tumor versus bulk NAT comparison. B) Scatter plot shows 
differentially expressed genes (DEGs) identified in chRCC versus IC-A scRNA-seq data analysis. C) Hallmark pathway enrichment analysis of DEGs identified from 
panel B. D) Gene set enrichment analysis (GSEA) plots for nuclear and mitochondrial oxidative phosphorylation (OxPhos) genes. E) Gene expression pattern of 
nuclear OxPhos genes in ccRCC vs PT-A, ccRCC vs PT-B, and ccRCC vs NAT (bulk). 
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Figure S5. Ligand receptor analysis in the tumor epithelia and the microenvironment. A) Cognate ligand receptor 
expression analysis in the tumor epithelia and the microenvironment identified from scRNA-seq. B) Dual RNA in situ 
hybridization (RNA-ISH) validation - Left panel: ccRCC tumor epithelia marker CA9 (red) / EDN1 (cyan) in ccRCC tissues; 
Middle panel:  EDNRB (red) / EDN1 (cyan) in ccRCC tissues; Right panel: EDNRB (red) / EDN1 (cyan) in chRCC tissues.
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Figure S6. Macrophages in the tumor microenvironment. A) Enrichment of myeloid lineage signatures- LM22 (left) and 
Azizi et al. (1) (right) in the seven major myeloid populations identified in this study. B) Heatmap shows the known M1/M2 
marker gene expression in the macrophage-A and macrophage-B populations. 
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Figure S7. Endothelial cell types in ccRCC. A) Hallmark pathways enriched in comparison of endothelial cells between 
“Normal Endo cluster 16” (AVR-1) and “ccRCC tumor endothelial cluster 2 (AVR-1)”.  B) RNA-ISH dual staining of indicated 
markers with respective colors employed. A representative stain on benign adjacent tissue (left), ccRCC (middle), and 
chRCC tumors (right) is shown. Pan-endothelial marker PECAM1 (red probe) and various endothelial cell type-specific 
maker genes, including HSPG2, PLVAP, SOST, ACKR1 and VWF (blue probes), are shown. 
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Figure S8. Schematic representation of the genomic aberrations in the two molecular subtypes of CpG island 
methylator phenotype (CIMP) RCC tumors (CIMP-1 and CIMP-2) identified in the current study. Left panel: Cell of 
origin as presented in Figure 2C for CIMP tumors. Right panel: The schematic summarizes the recurrent genomic 
aberrations found in CIMP-1 and CIMP-2 tumors. Genes such as NF2 and FAT1 were frequently mutated in CIMP-1 
compared to CIMP-2. Rows in the following order represent 1) TCGA sample identification numbers; 2) CIMP annotation 
from the single cell RNA sequencing in this study (blue: CIMP-1; brown: CIMP-2); 3) TCGA RCC cohort abbreviation, KIRC- 
clear cell RCC, KIRP- papillary RCC; 4) CIMP annotation from Chen et al. (2); 5) CIMP annotation by Linehan et al. (3) 
(brown- CIMP; white- non-CIMP); 6) Revised  RCC histology by Ricketts et al. (4) (green (lite): papillary RCC (pRCC) type-
2; N/A: pRCC not-analyzed; green: unclassified pRCC; green (dark)- pRCC type-1; grey- ccRCC not-analyzed); 7) total 
number of SNVs for each case available from GDC portal; 8-14) aberrations in FH, NF2, FAT1, SETD2, BAP1, PBRM1, 
and CDKN2A/B genes (orange- truncating mutations, green- missense mutations, pink- splice site mutations, blue- 
homozygous deletion / deep deletion, #- biallelic loss, &- likely biallelic loss, ND- not determined); 15) tumor ploidy estimates; 
16) wgii score as a measure of genome stability/ copy-number burden; 17) FH mRNA expression levels; ME- median FH 
mRNA expression across 1028 samples in the TCGA RCC cohort. 
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Figure S9. Expression pattern of endogenous retroviruses (ERVs) in kidney benign (PT-A and PT-B) and tumor 
epithelial cell types. Heatmap shows expression pattern of 41 ERVs detected in the benign kidney and ccRCC scRNA-
seq data. Log CPM values for each ERV are plotted (red-high to white-low) for the three different cell types- PT-A (blue), 
PT-B (green), and ccRCC tumor epithelia (red). 
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SUPPLEMENTARY METHODS 

Key Resources Table 
REAGENT or RESOURCE SOURCE IDENTIFIER 

 
Antibodies 

CD31 (JC70) Mouse 
Monoclonal Antibody 

Ventana Medical Systems / 
Roche Diagnostics 760-4378 

 
Biological Samples 

Tumor/normal tissues from 
renal cancer patients University of Michigan See Dataset S1 

 
Chemicals and Other Reagents 

Collagenase Type II Thermo Scientific 17101-015 

DNAse Sigma-Aldrich 10104159001 

Cell Strainers 40 μm Flowmi BAH136800040 

Cell Strainers 70 μm Flowmi BAH136800070 

 
Critical Commercial Assays 

Chromium Single Cell 3’ 
Library & Gel Bead Kit v2 10X Genomics 120267 

Chromium Single Cell A Chip 
Kit 10X Genomics 1000009 

Chromium Multiplex Kit 10X Genomics 120262 

SPRIselect Beckman Coulter B23318 

All Prep DNA/RNA/miRNA 
Universal Kit 

Qiagen 80224 

KAPA Hyper Prep Kit for 
Illumina 

Kapa Biosystems KK8504 

SureSelect XT Human All 
Exon V4 library 

Agilent Technologies 5190–4632 

SureSelectXT Reagent kit Agilent Technologies G9611B 
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RNA 6000 Nano kit Agilent Technologies 5067–1511 

DNA 1000 kit Agilent Technologies 5067–1504 

QIAGEN Multiplex PCR Kit Qiagen 206143 

 

ISH Probes Cat. no. (ACD) Start/End position 

ITGB8 506871 72-1015 

PDZK1IP1 573511-C2 4-763 

ALPK2 416181 6057 - 6989 

CREB5 477351 4558 - 5572 

CA9 559341-C2 326 - 1528 

CALB1 422161 250-1589 

FOXI1 476351-C2 1057 - 1973 

PECAM1 455931-C2 220 - 1269 

PLVAP 437461 647-2039 

HSPG2 573501 141-1139 

SOST 452941 2-1269 

 
Deposited Data 

Database Accession Number Data type 

GEO GSE159115 Single cell gene expression 
count matrix 

 
Software and Algorithms 

Cell Ranger v2.1 10X Genomics https://www.10xgenomics.co
m/ 
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R v3.5 The Comprehensive R 
Archive Network https://cran.r-project.org/ 

Scrublet GitHub https://github.com/AllonKleinL
ab/scrublet 

Scran Bioconductor 
https://bioconductor.org/pack
ages/release/bioc/html/scran.

html 

DBSCAN GitHub https://github.com/mhahsler/d
bscan 

PhenoGraph GitHub https://github.com/JinmiaoCh
enLab/Rphenograph 

Limma Bioconductor 
http://bioconductor.org/packa
ges/release/bioc/html/limma.

html 

Slingshot GitHub https://github.com/kstreet13/s
lingshot 

randomForest R Project 
https://cran.r-

project.org/web/packages/ran
domForest/index.html 

EPIC GitHub https://github.com/GfellerLab/
EPIC 

UMAP GitHub https://github.com/jlmelville/u
wot 

tSNE GitHub https://github.com/jkrijthe/Rts
ne 

ComplexHeatmap Bioconductor 
https://www.bioconductor.org/
packages/release/bioc/html/C

omplexHeatmap.html 

survminer GitHub https://github.com/kassambar
a/survminer 

fgsea Bioconductor 
https://bioconductor.org/pack
ages/release/bioc/html/fgsea.

html 
 
RNA in situ hybridization (RNA-ISH) 
Dual color RNA-ISH was performed on 4-micron formalin-fixed paraffin-embedded (FFPE) tissue 
sections using the RNAscope 2.5 duplex detection kit (Advanced Cell Diagnostics). A full list of 
target probe pairs is summarized in the Key Resources Table above. Sample RNA quality was 
evaluated using positive control probe pairs against the human PPIB gene in channel 1 (green) 
and POLR2A gene in channel 2 (red). Assay background was monitored by negative control 
probes against the bacterial DapB gene in both channels. After deparaffinization and target 
retrieval, tissue sections were permeabilized using protease and hybridized with a mixture of two 
target probes for 2 hours at 40°C, followed by a series of signal amplifications. Chromogenic 
detection for channel 1 and channel 2 utilized HRP-based Green and AP-based Fast Red 
chromogens respectively, followed by counterstaining with 50% Gill’s Hematoxylin I (Fisher 
Scientific). Stained slides were examined under 100x and 200x magnification for RNA-ISH signals 
in tumor cells and adjacent benign kidneys. 
 
Immunohistochemistry (IHC) 
IHC studies for immune profiling were performed on 4-μm-thick FFPE sections. Slides were 
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stained on the Ventana Medical Systems automatic staining platform for endothelial cell CD31 
expression assessment using an anti-human mouse monoclonal CD31 antibody (clone JC70, for 
32 min; CC1 antigen retrieval for 30 minutes, catalog number 760–4378, Ventana Medical 
Systems). In all experimental runs, appropriate positive and negative control samples were also 
included. Finally, antigen detection was performed using both UltraView and Optiview DAB IHC 
Detection Kit (Ventana Medical Systems) with diaminobenzidine as the chromogen to detect 
antigen expression. Tissue sections were counterstained with Mayer's hematoxylin. The stained 
slides were reviewed by two pathologists (R. Mannan and R. Mehra) for membranous 
immunoexpression. Five CD31 high power field (HPF) areas showing the most vascularized areas 
(“hot spots”) were analyzed for endothelial expression, and blood vessels were counted 
manually.  
 
Whole-exome sequencing data analysis 
The sequence files from whole-exome libraries were processed through an in-house certified 
mutation and copy-number calling pipeline to carry out the analysis from matched 
tumor/normal pairs as described previously (5). The sequencing files were aligned to the GRCh37 
reference genome built using Novoalign, and bam files were sorted and indexed as described in 
(5, 6). SNV analysis was performed using freebayes software (version 1.0.1), and for indel 
analysis, pindel (version 0.2.5b9) was used. The mutations were called as somatic if they were 
present with at least six variant reads and 5% allelic fraction in the tumor sample, and present at 
no more than 2% allelic fraction in the normal sample with at least 20X coverage; additionally, the 
ratio of variant allelic fractions between tumor and normal samples was required to be at least six 
in order to avoid sequencing and alignment artifacts at low allelic fractions. Germline variants 
were called using ten variant reads and 20% allelic fraction as minimum thresholds and were 
classified as rare if they had less than 1% observed population frequency in both the 1000 
Genomes and ExAC databases. Exome data was analyzed for copy-number aberrations and loss 
of heterozygosity by jointly segmenting B-allele frequencies and log2-transformed tumor/normal 
coverage ratios across targeted regions using the DNAcopy (version 1.48.0) implementation of 
the Circular Binary Segmentation algorithm previously described (5).  
 
To perform copy-number analysis of TCGA CIMP RCC tumors (Figure S8), we downloaded the 
available aligned BAM files for these samples, removed duplicate reads, and ran the germline 
somatic caller DNAscope (7). Files were also utilized to run CNVEX for copy-number analysis, 
estimate tumor ploidy, and to calculate Weighted Genomic Instability Index (wGII). Briefly, copy-
number analysis was performed for each patient using DNA whole-exome sequencing data of the 
tumor and matched normal. Germline DNA variants were assessed by Sentieon Genomics Tools-
DNAscope. We then input these data into a copy-number analysis tool called CNVEX (8). We 
next used CNVEX, a genomic tool leveraging aligned read files (BAMs) and germline variant calls 
(VCF), to calculate GC-adjusted log2 coverage ratios and B-allele frequencies (BAF) to perform 
accurate genome segmentation. After segmentation, CNVEX performs an optimization step to 
identify the tumor ploidy, tumor purity, and tumor absolute minor and major allele copy-number 
profile. Finally, using the inferred copy-number profiles, CNVEX annotates the segments as 
“copy-number gain”, “copy-number loss”, or “loss of heterozygosity (LOH)”. To estimate the 
chromosomal instability of each sample, we used a modified version of Genome Instability Index 
(GII) (9). We calculated GII scores as the portion of autosome that has an absolute copy-number 
unequal to the weighted median absolute copy-number across the autosomal chromosomes. To 
account for the variation in chromosome size and avoid the overrepresentation of larger 
chromosomes in the CIN estimation, we used a modified version of GII called weighted Genome 
Instability Index (wGII) (10). To generate wGII, we first calculated the GII for each autosomal 
chromosome, then took the mean of all the GII scores for all 22 chromosomes.  
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Single cell 3’mRNA sequencing data analysis 
Read alignment and quantification were conducted with Cell Ranger (2.1.1) and the pre-built 
reference genome (GRCh38).  Cells with high mitochondrial content (25% for tumor libraries and 
80% for normal libraries) and low number of genes detected (<300) were considered as low 
quality cells and discarded. Potential doublets identified by scrublet (11) were also removed from 
further analyses. Low expressed genes (detected in less than five cells) and a list of uninformative 
genes were removed including mitochondrial, ribosomal, and sex genes before the total number 
of UMI was standardized to 5,000 per cell and log-transformed [log2(X+1)]. When different 
samples were pooled, highly variable genes (HVGs) were identified and batch correction with 
fastMNN (12) was applied based on HVGs to remove batch effect before clustering. Cells were 
projected into a 2-D map with t-distributed stochastic neighbor embedding (t-SNE) (13) and UMAP 
(14) for visualization, and DBSCAN (15) was applied on t-SNE dimensions to assign cells into 
clusters. For pooled libraries of normal kidney tissues, clusters with obvious substructures were 
further divided into smaller clusters by running DBSCAN on those clusters separately. Markers of 
each cell cluster were identified with findMarkers function from scran (16). Batch-corrected data 
was only used for dimension reduction; marker identification was conducted using log-
transformed UMI and with sample as block factor. Known markers for different renal cell types 
(Dataset S2) were used to annotate identified cell clusters. Gene set enrichment analysis (GSEA) 
was based on a gene list ranked by logFC and conducted with R package fgsea (17). Trajectory 
inference tool slingshot (18) was applied to cell populations from proximal tubule (PT-A, PT-B and 
PT-C) and from collecting duct (IC, PC, and IC-PC) separately following dimension reduction with 
diffusion map (19). Differential analysis between cell populations in tumor tissues and benign 
adjacent were based on summed UMI counts of all cells of the same cluster from the same patient 
(pseudo-bulk) (20) and implemented with limma package (21) following voom transformation (22), 
which is a well-established procedure for differential expression analysis of bulk RNA-seq. To 
analyze myeloid populations separately, all cells annotated as the myeloid lineage from both 
normal and tumor cell atlases were pooled, and batch correction was applied with fastMNN before 
dimension reduction with tSNE and clustering with Phenograph (23). Analyses of endothelial cells 
followed the same procedure. 
 
Putative cell of origin (P-CO) for RCCs  
A random forest model was trained with single cell data of normal kidney epithelial cells (only 
HVGs were used; 200 cells were randomly selected for overrepresented clusters like the proximal 
tubule (PT) cluster to minimize bias due to an unbalanced sample size). The model was then 
applied to single cell data of RCC tumor cells (seven ccRCC and one chRCC cases) to predict 
their closest normal cell type (P-CO). We also made use of bulk RNA-seq data from The Cancer 
Genome Atlas (TCGA) and an in-house collection of several rare RCC subtypes to predict P-COs 
of each RCC subtype. Because of the inherent differences in data structure of the two data types 
(single cell and bulk), we first applied rank-based inverse normal transformation (24) on both data 
sets to force them to have the same data distribution. A random forest classifier (25) was then 
applied to transformed single cell data of normal kidney epithelial cells, and transformed bulk data 
of RCCs were used to predict P-COs.    
 
Nivolumab-treated RCC RNA-seq dataset description 
Complete results from this project are being prepared for an independent submission. Only bulk 
RNA-seq data from this project were used in this study for integrative analysis. Bulk RNA-seq 
data were obtained from pretreatment tumor samples of 27 ccRCC patients (stage IV). These 
patients later received tyrosine kinase inhibitors followed by nivolumab treatment (Figure 6B). 
Nivolumab response/disease progression was evaluated and recorded following treatment. 
Patients with progressive and stable diseases were grouped into “no clinical benefit” (NCB) and 
patients with partial/complete response were grouped into “clinical benefit” (CB) category. 
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Differential expression analysis was performed between CB and NCB groups using the limma-
voom procedure (21, 22). An external dataset that included 16 bulk RNA-seq samples from a 
similar cohort of metastatic ccRCC reported by Miao et. al. (26) was analyzed, where we noted 
similar association between immunotherapy response and cell type fraction.  
 
Copy-number variation (CNV) estimation from scRNA-seq 
CNV of tumor cells was estimated following previously published methods (27) with modifications. 
Pooled PT cells and IC-A cells were used as common references for ccRCC and chRCC, 
respectively. To reduce noise from low expression genes, only genes detected in >25% cells were 
kept for this analysis. Expression of tumor cells relative to the average of reference cells was 
calculated and then smoothed with a sliding window of 100 genes within each chromosome arm.  
 
Ligand-receptor analysis of ccRCC 
Ligand-receptor pairs were obtained from a curated database (28). For each gene, the mean 
expression of each cell cluster was calculated and rescaled to the range of 0 to 1 by dividing by 
the maximum mean expression across cell clusters. For each ligand-receptor pair, the interaction 
score between two cell types was defined as the product of mean expression values (scaled) of 
the ligand in one cell type and the receptor in the other cell type. To define the significance of the 
interaction score, we randomly selected 1000 pairs of genes and calculated their interaction 
scores; the 95% percentile of the scores was then used as the cutoff. We identified significant 
ligand-receptor pairs between tumor cells and other coexisting cell types for each tumor sample 
individually; only pairs appearing in at least two samples were retained. In addition, we filtered 
out pairs with low correlation (Pearson correlation coefficient <0.2) in TCGA kidney renal cell 
carcinoma (KIRC) bulk data. The rationale was that tumors with higher numbers of “sender” cells 
may also contain a larger number of “receiver” cells, which would be indicated by good correlation 
of the abundance of transcripts of ligands and receptors (29).  
 
Deconvolution of TCGA bulk RNA-seq 
Bulk RNA-seq data of 505 KIRC tumor samples was obtained from TCGA. Transcripts per million 
(TPM) without log-transformation was used for this task. The framework provided by EPIC (30) 
was used to deconvolute the bulk samples, with a custom deconvolution reference built from our 
pooled ccRCC scRNA-seq data. To build the reference expression profiles, raw unique molecular 
identifier (UMI) counts of each cell type from the same sample were summed and normalized to 
10^6 total UMI; for each cell type, the average of normalized UMI counts across samples was 
used as the reference expression profile of that cell type, and the standard deviation of normalized 
UMI counts across samples was used to represent gene variability of that cell type.  Signature 
genes for each cell type used in the reference were chosen based on markers identified by 
findMarkers (16) and manually inspected for specificity. Cell types included in the reference were 
tumor cells, endothelial cells, macrophages, T cells, CD8 T cells, B cells, mast cells, and plasma 
cells. Pericytes were not included in the reference because pericytes share signatures with both 
endothelial cells and vSMC, which makes it difficult to deconvolute correctly. The final gene list is 
available in Dataset S2. Cases with the highest endothelial fractions (>90% percentiles) were 
selected as endothelial outliers, and cases with highest CD8 T-cell fractions (>90% percentiles) 
were selected as CD8 T-cell outliers for survival analysis using survminer (31).  Survival data 
were downloaded from UCSC Xena browser (32). 
 
Endogenous retrovirus (ERV) expression 
Sequences of 66 known transcribed ERV species were downloaded from GeneBank, and each 
species was treated as one additional chromosome and added to the human genome reference 
provided by CellRanger. In addition, the human genome reference was masked at ERV proviral 
loci based on a curated list to avoid multi-mapping. Multiple sequences of the same species were 
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considered as different exons of the same gene in the gene annotation file so that all reads 
mapped to the same species were counted for that species. The custom CellRanger reference 
was then built using the ERV appended fasta and gtf files with the mkref function. Finally, all 
genes including added ERV species were quantified with the cellranger count function. Cell type-
specific ERV expression was evaluated in a “pseudo-bulk” way, which means for each ERV 
species, UMI counts from all cells of the same cell type were summed and scaled to count per 
million to normalize by library size. In the heatmap of Figure S9, we show normalized UMI counts 
(log Count Per Million) of each ERV species in PT-A/PT-B/tumor cells, respectively, from different 
scRNA-seq sample libraries. 
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