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Supporting Information Text12

Table S1 below summarizes the mathematical definitions and notation used throughout the paper.13

Table S1. Mathematical Variables

Symbol Interpretation

x system state

F(x) driving force

D scale factor representing the magnitude of the fluctuations

G diffusion matrix

P (x, t) probability of system state x at time t

J(x, t) probability flux

Jss probability flux of steady state

U(x) population potential landscape

φ0 intrinsic potential landscape

V intrinsic flux velocity

L(x) Lagrangian

F intrinsic free energy

Z partition function

Remark14

The Fokker-Planck equation for the evolution of the probability density and the corresponding Langevin equation for the15

evolution of the stochastic trajectories are usually mathematically equivalent in terms of the statistics(1–3). However, in16

practice, the diffusion equation cannot always be used to deal with dimensions more than four due to memory issues, while the17

Langevin trajectory method can more easily explore higher dimensions. This is due to the fact that stochastic Langevin method18

only samples the higher probability states, thus saving computational times when exploring the state space. We use both of19

these methods according to their convenience and computational cost. For example, the steady state probability density result20

can be readily obtained from the Fokker-Planck equation in low dimensions, while the distribution of kinetic times and the21

variances of the frequencies for the Savanna state (resp. Forest state) can be directly calculated from the Langevin trajectories.22

1. Ecological behavior as a function of the sapling birth rate β. The dominant population path is the path of transition from23

one stable state to the other with the largest probability and can thus be used to understand Savanna to Forest or Forest to24

Savanna transitions in the SL model. The dominant population path probability can in turn be quantified by the population25

action Apo(x), as shown in Figure S1A. ApoF S denotes the action of the dominant population path from Forest to Savanna and26

ApoSF denotes the action of the dominant population path from Savanna to Forest. Higher action denotes lower dominant27

population path probability since the dominant population path probability is proportional to exp[−A(x)]. As expected,28

we observe that ApoF S increases and ApoSF decreases with increasing β. Figure S1D shows the logarithm of the dominant29

population path probability from Forest to Savanna divided by that of the dominant population path from Savanna to Forest30

decreases as β becomes bigger. Thus Savanna becomes less stable while Forest becomes more stable as β increase. Thus, it31

becomes harder to switch from Forest to Savanna, while it becomes easier to switch from Savanna to Forest. We also show that32

the action of the dominant population path versus µ, θ1 in Figure S1.33

Figure S2 shows the intrinsic potential landscape φ0 for increasing β overlaid with the intrinsic flux velocity (purple arrows)34

and the negative gradient of the intrinsic potential landscape −∇φ0 (white arrows), as well as the intrinsic paths (thick35

red/white lines). Once more, as expected, we observe a shift from Savanna to Forest dominance as β increases. The dominant36

intrinsic path from Savanna to Forest, and the dominant intrinsic path from Forest to Savanna are distinct. The irreversibility37

of the dominant intrinsic paths is due to the presence of the nonequilibrium rotational flux and the two intrinsic dominant38

intrinsic paths both pass through the saddle point (the black dot) which shows that the dominant intrinsic paths must pass39

through the saddle point under zero fluctuations. In the zero fluctuation limit, the force can be decomposed into a gradient40

term and a curl term: F = −G · ∇φ0 + V. Hence the two components of the driving force for the ecological system are the41

negative gradient of the intrinsic potential landscape −∇φ0 (white arrows) and the intrinsic steady-state flux velocity V (purple42

arrows). The intrinsic flux (purple arrows) and the negative gradient of the intrinsic potential landscape (−∇φ0)(white arrows)43

are perpendicular to each other because V · ∇φ0 = 0. As β increases, the intrinsic potential landscape varies from Grassland to44

Savanna, and then Forest emerges and becomes more stable than Savanna until Savanna eventually vanishes.45

The intrinsic path weights are the probabilities of each route for state switching in the zero fluctuation limit and thus46

quantify the likelihood of different transition routes. Similarly, the dominant intrinsic path weight is the probability of the47

dominant switching path and thus quantifies the dominant transition routes. The dominant intrinsic path probability can48

in turn be quantified by the intrinsic action Ain(x)( shown in Figure S3A). AinF S is the intrinsic action of the dominant49

intrinsic path from Forest to Savanna and AinSF is the intrinsic action of the dominant intrinsic path from Savanna to Forest.50

Figure S3D shows that the logarithm of the dominant intrinsic path probability from Forest to Savanna divided by that of the51

dominant intrinsic path from Savanna to Forest decreases as β increases. Thus the dominant intrinsic path probability from52
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Fig. S1. A: The population action ApoF S of the probability of the dominant population path from Forest to Savanna and the population action ApoSF of the probability of

the dominant population path from Savanna to Forest versus β. D: The probability of the dominant population path from Forest to Savanna divided by that of the dominant

population path from Savanna to Forest versus β. B: The population action ApoF S and ApoSF versus µ. E: The probability of the dominant population path from Forest

to Savanna divided by that of the dominant population path from Savanna to Forest versus µ. C: The population action ApoF S and ApoSF versus θ1. F: The probability

of the dominant population path from Forest to Savanna divided by that of the dominant population path from Savanna to Forest versus θ1.

Fig. S2. The non-equilibrium intrinsic potential landscape φ0 for increasing β. The white lines are the dominant intrinsic paths from the Savanna to Forest, while red lines

are the dominant intrinsic paths from the Forest to Savanna. Purple arrows are the projection of the flux velocity and white arrows are the projection of the negative gradient

of the intrinsic potential landscape −∇φ0.

Forest to Savanna decreases (or the dominant intrinsic path from Savanna to Forest increases) as β becomes larger. We also53

show that the intrinsic action of the dominant intrinsic path for µ, θ1 in Figure S3.54

Figure S4 shows the population barrier heights versus parameter A: β, B:µ, C: θ1, D:ν, E:ω0, F:ω1. Figure S5 shows the55

intrinsic barrier heights versus parameter A: β, B:µ, C: θ1, D:ν, E:ω0, F:ω1. Figure S6 shows the logarithm of MFPT versus A:56

β, B:µ, C: θ1. The logarithm of MFPT versus barrier heights for D: β, E:µ, F: θ1.57

2. Ecological behavior as a function of the Savanna Sapling Mortality Rate µ.58

2.1. Landscape, flux and dominant paths between different states versus Savanna Sapling Mortality Rate µ.59

2.1.a. Non-equilibrium population-potential landscape and the flux in finite fluctuation. µ represents savanna sapling mortality rate.60

Figure S7A shows the deterministic phase diagram mapping the fraction of Grass cover versus µ. When the savanna sapling61

mortality rate is small the only one stable state is Forest, but as µ is increased, Forest loses stability to Savanna. For µ between62

about 0.14 and 0.37, bistability emerges. Beyond 0.37, the dynamics are dominated by Savanna. For µ larger than 0.37 but63

less than 0.65, the Grassland [1, 0] state is always stable on the G-axis and unstable on the T-axis; For µ beyond 0.65, the64

Grassland state becomes stable. The corresponding stochastic phase diagram with respect to µ (D = 0.0001), in which stable65

states correspond to local minima of the population-potential landscape, is shown in Figure 9B in the main text. Remarkably,66

the Grassland states becomes quasi-stable for much lower values of µ in the stochastic phase diagram, indicating a fragility of67

the Forest ecological system which is purely induced by the stochastic fluctuations.68

We now describe the concept and computation of the ”stochastic phase diagram”. When a deterministic nonlinear system69

has multiple steady states, stochastic forcing can lead to the system to switch between the various attractors. The steady-state70

probability density of the stochastic system can show multiple peaks and the topological shape of the steady-state probability71
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Fig. S3. A: The intrinsic action AinF S of the probability of the intrinsic dominant intrinsic path from Forest state to Savanna state and the intrinsic action AinSF of the

probability of the intrinsic dominant intrinsic path from Savanna state to Forest state versus β. D:The probability of the dominant intrinsic path from Forest state to Savanna

state divided that of the dominant intrinsic path from Savanna state to Forest state versus β. B: The intrinsic action AinF S and AinSF versus µ. E:The probability of the

dominant intrinsic path from Forest state to Savanna state divided that of the dominant intrinsic path from Savanna state to Forest state versus µ. C: The intrinsic action

AinF S and AinSF versus θ1. F:The probability of the dominant intrinsic path from Forest state to Savanna state divided that of the dominant intrinsic path from Savanna

state to Forest state versus θ1.

Fig. S4. The population barrier heights versus parameter A: β, B:µ, C: θ1, D:ν, E:ω0, F:ω1

density can change as parameters vary. This may lead to the emergence of the so-called stochastic P bifurcation (4). Since our72

model has a two dimensional state space the analytical expression for the phase diagram is often not available. Nevertheless,73

the stochastic phase diagram can be obtained numerically through the behavior of the population barrier height ∆UG under74

the finite fluctuations (we chose D = 0.0001), where ∆UG represents the barrier height from Grassland state basin to the75

Savanna state basin. We find that the population barrier height ∆UG approaches zero as µ decreases to nearly µ = 0.3. This76

indicates that the Grassland state vanishes as µ decreases to nearly µ = 0.3 under the finite fluctuations of D = 0.0001 shown77

in Figure 9 in the main text.78

Figure S8 shows the population-potential landscapes for increasing µ and Figure S9 shows the fluxes on the population-79

potential landscapes (white arrows). Only stable state, Forest, is present when µ is sufficiently small. As sapling mortality80

rate µ increases, the ecological transitions from Forest dominant to Savanna dominant, as shown in Figure S7A. As mortality81

further increases, the Forest state is no longer stable and the remaining two stable states coexist: the coexistence of the82

Savanna and the Grassland states. Eventually, at very high mortality rates, trees can no longer survive and the ecological83

system is left with a unique stable attractor: Grassland ([1, 0]). In Figure S9, we can see that both the negative gradient of the84

population-potential landscapes and the non-zero flux are the driving forces for the dynamics of the forest-savanna ecological85

system. When the system has both the Savanna and the Forest stable states, the fluxes originating from the vegetative growth86

factors tend to enhance communications between the two stable states.87
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Fig. S5. The intrinsic barrier heights versus parameter A: β, B:µ, C: θ1, D:ν, E:ω0, F:ω1.

Fig. S6. The logarithm of MFPT versus A: β, B:µ, C: θ1. The logarithm of MFPT versus barrier heights for D: β, E:µ, F: θ1.

Figure S9 also shows the dominant population paths on the population landscape U for different values of µ. The dominant88

population path probability can be quantified by the population action Apo(x) shown in Figure S1B. Figure S1E shows the89

logarithm of the dominant population path probability from the Forest state to the Savanna state divided by that of the90

dominant population path from the Savanna state to the Forest state.91

2.1.c. Intrinsic potential landscape and flux velocity in the zero-fluctuation limit. Figure S10 shows the intrinsic potential landscape φ092

versus µ. The intrinsic potential landscape changes from Forest dominant to Savanna and Forest coexistence, and then to93

Savanna dominant as µ increases.94

Figure S11 shows the two-dimensional non-equilibrium intrinsic potential landscape φ0 under the zero fluctuation limit95

for increasing µ. We concentrate on the parameter range of the coexistence of the two stable states in these two-dimensional96

landscape figures since the complete phase changes of the intrinsic potential landscapes in the whole parameter range have97

already been shown in the three-dimensional figure.98

Figure S11 also shows the dominant intrinsic paths on the intrinsic potential landscape φ0 with different µ. The red lines99

represent the dominant intrinsic paths from the Forest state to the Savanna state. The white lines represent the dominant100

intrinsic paths from the Savanna state to the Forest state. The purple arrows represent the steady-state probability intrinsic101

fluxes which guide the dominant intrinsic paths apart from the steepest descent path from the intrinsic potential landscape.102

Therefore, the dominant intrinsic path from the Savanna state to the Forest state and the dominant intrinsic path from the103

Forest state to the Savanna state are distinct; this is referred to as irreversibility of the dominant intrinsic paths and is due to104

the presence of the nonequilibrium rotational intrinsic flux. The two dominant intrinsic paths both pass through the saddle105
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Fig. S7. A: The phase diagram versus parameter µ. B: The population entropy production rate versus parameter µ. C: The population average flux versus parameter µ.

Fig. S8. The two-dimensional population-potential landscapes versus parameter µ.

point (the black dot) on the figures.106

The dominant intrinsic path probability can be quantified by the intrinsic action Ain(x), which is shown in Figure S3B.107

Figure S3E shows the logarithm of the dominant intrinsic path probability from the Forest state to the Savanna state divided108

by that of the dominant intrinsic path from the Savanna state to the Forest state increases as µ becomes larger.109

2.2.Barrier height and kinetic rates of switching. Figures S4B and S5B show the barrier heights of the population-potential landscape110

and the intrinsic barrier heights of the intrinsic potential landscape versus µ. Here, ∆UG is the population barrier height111

from the Grassland state to the saddle point s2 between the Grassland state and the Savanna state. ∆USs2
is the population112

barrier height from the Savanna state to the saddle point s2. We show the logarithm of MFPT versus µ in Figure S6B and we113
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Fig. S9. The dominant population paths and fluxes on the population-potential landscape U with different µ, at β = 0.38, ν = 0.1, ω0 = 0.9, ω1 = 0.2, θ1 = 0.4, s1 =

0.01, D = 0.0005. The white lines represent the dominant population paths from the Savanna state to Forest state. The red lines represent the dominant population paths

from the Forest state to Savanna state. The white arrows represent the steady-state probability fluxes.

observe that the population-potential landscape topography (quantified by the barrier height) and the logarithm of MFPT114

have positive correlation (Figure S6E). Thus, the barrier heights ∆UF and ∆US , and the corresponding MFPTs lnτF S and115

lnτSF are correlated as τ ∼ exp(∆U).116

2.3. Bifurcation diagrams, nonequilibrium flux and nonequilibrium thermodynamic cost.117

2.3.a. Finite fluctuations. Figure S7B shows the population entropy production rate versus µ and Figure S7C shows the population118

average flux versus µ. Both population EP R and population Fluxav decrease initially and then increase as µ increases, and119

both undergo significant changes in their slopes in the bifurcation zone between the two transitions shown in Figure S7B and120

Figure S7C. This shows that the significant changes of average flux and entropy production may be a signal of bifurcation.121

Therefore we can use the population average flux and population entropy production rate to quantify the global stability and122

bifurcations of the ecological system. We found that the Forest state has more EP R and Fluxav, implying that the trees need123

more vegetative growth factors, and require more nutrition and energy than grass from the environment. On the other hand,124

the Savanna state needs less vegetative growth factors, and requires less nutrition and energy than trees from the environment.125

The savanna-forest model we studied is a phenomenological model. The entropy production and dissipation cost in this126

study are both obtained based on the model given. The entropy production and dissipation cost are thus calculated according127

to the driving force and the associated dynamics of this model. They represent the global thermodynamic cost for the whole128

system. It turns out that this global cost is directly related to the flux (approximately integral of the square of the flux129

modulated by the diffusion coefficient over state space). This is the link between the nonequilibrium thermodynamics and the130

nonequilibrium dynamics.131

If one wants to know the specifics and details of the entropy and energy partition among trees/grass, further explorations132

are needed with a more detailed microscopic model by identifying the source of the cost in growing trees explicitly. Extending133

our analysis in this direction would be an interesting topic for future study. However, a more detailed microscopic model134

should lead to the same conclusion as the phenomenological model we used here, at least in terms of the global dynamics and135

thermodynamics at the macroscopic level.136

2.3.b. The zero fluctuation limit. Figure S12A shows two phase transition points for this set of parameters and Figure S12B shows137

the intrinsic entropy production rate versus µ. Figure S12C shows the intrinsic average flux versus µ, while Figure S12C shows138

that the intrinsic Fluxav and entropy production rate have similar shapes. Both the intrinsic averaged flux and intrinsic entropy139

production rate have significant changes along with the bifurcation shown in Figure S12A. The slope of the non-equilibrium140
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Fig. S10. The three-dimensional intrinsic potential landscape φ0 for increasing µ. The projection of the flux velocity (purple arrows)and the gradient of the intrinsic potential

landscape −∇φ0 (black arrows)on the intrinsic potential landscape φ0 for increasing µ.

Fig. S11. The projection of the flux velocity (purple arrows)and the gradient of the intrinsic potential landscape −∇φ0 (white arrows)on the intrinsic potential landscape φ0 for

increasing µ. The dominant intrinsic paths on the intrinsic potential landscape φ0 with different µ. The white lines represent the dominant intrinsic paths from the Savanna

state to Forest state. The red lines represent the dominant intrinsic paths from the Forest state to Savanna state.

intrinsic free energy changes significantly between the two saddle-node bifurcations, although the non-equilibrium intrinsic141

free energy is continuous. Figure S12B, Figure S12C and Figure S12D show that significant slope changes in intrinsic entropy142

production rate, intrinsic average flux and intrinsic free energy (analogous to the equilibrium case) may provide signals of143

bifurcation. We can see that the non-equilibrium intrinsic free energy may also be useful to quantify the global phases of the144

system and the bifurcations. Therefore, we may use this non-equilibrium intrinsic free energy function as well as the intrinsic145

average flux and intrinsic entropy production rate to explore the global stability and bifurcations of the non-equilibrium146

ecological dynamics.147

3. Ecological behavior as a function of the grass cover basic value θ1.148

3.1.Landscape, flux and dominant paths.149

3.1.a. Population-potential landscape and flux with finite fluctuation. θ1 represents grass cover basic value, i.e. the threshold onset150

value for the fire rate sigmoid ω. Figure S13A shows the phase diagram versus θ1, Figure S13B shows the population151

entropy production rate versus θ1, and Figure S13C shows the average flux versus θ1. Figure S14 shows the two-dimensional152
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Fig. S12. A: The phase diagram versus µ. B: The intrinsic entropy production rate versus µ. C: The intrinsic average flux versus µ. D: Intrinsic free energy versus µ.

population-potential landscapes under finite fluctuations varying with the increase of θ1. Figure S15 shows the steady-state153

probability fluxes under the increase of θ1, which are shown as the white arrows. Figure S15 also shows the dominant population154

paths on the population landscape U for different values of θ1 with the population action Apo(x) shown in Figure S1C.

Fig. S13. A: The phase diagram versus θ1. B: The population entropy production rate versus θ1. C: The population average flux versus θ1.

155
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Fig. S14. The two-dimensional population-potential landscapes versus θ1.

Fig. S15. The dominant population paths and fluxes on the population-potential landscape U with different θ1, at β = 0.38, ν = 0.1, ω0 = 0.9, ω1 = 0.2, µ = 0.2, s1 =

0.01, D = 0.0005. The white lines represent the dominant population paths from the Savanna state to Forest state. The red lines represent the dominant population paths

from the Forest state to Savanna state. The white arrows represent the steady-state probability fluxes.

3.1.b. Non-equilibrium intrinsic potential landscape and flux velocity in the zero-fluctuation limit. Figure S16 shows the intrinsic potential156

landscape φ0 and Figure S17 shows the non-equilibrium intrinsic potential landscape φ0 in the zero fluctuation limit, both for157

increasing values of θ1. Figure S17 also shows the dominant intrinsic paths on the intrinsic potential landscape φ0 for different158
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values of θ1. The red lines are the dominant intrinsic paths from the Forest state to Savanna state, while the white lines are159

the dominant intrinsic paths from the Savanna state to Forest state. Finally, the purple arrows represent the steady-state160

probability intrinsic fluxes which guide the dominant intrinsic paths. The intrinsic action Ain(x) is shown in Figure S3C and161

Figure S3F shows the logarithm of the dominant intrinsic path probability from the Forest state to the Savanna state divided162

by that of the dominant intrinsic path from the Savanna state to the Forest state.163

Fig. S16. The three-dimensional intrinsic potential landscape φ0 for increasing θ1. The projection of the flux velocity (purple arrows)and the gradient of the intrinsic potential

landscape −∇φ0 (black arrows)on the intrinsic potential landscape φ0.

Fig. S17. The projection of the flux velocity (purple arrows)and the gradient of the intrinsic potential landscape −∇φ0 (white arrows)on the intrinsic potential landscape φ0 for

increasing θ1. The dominant intrinsic paths on the intrinsic potential landscape φ0 with different θ1. The white lines represent the dominant intrinsic paths from the Savanna

state to Forest state. The red lines represent the dominant intrinsic paths from the Forest state to Savanna state.

3.2.Barrier height and kinetic rates of switching. Figure S4C and Figure S5C show the barrier heights of the population-potential164

landscape and the intrinsic barrier heights of the intrinsic potential landscape versus θ1 respectively. The logarithm of MFPT165

versus θ1 are shown in Figure S6C and we see that the population-potential landscape topography, quantified by the barrier166

height, and the corresponding logarithm of MFPT have positive correlation, as shown in Figure S6F. Thus, the barrier height167

∆UF , ∆US and the corresponding MFPT lnτF S and lnτSF have the correlations as τ ∼ exp(∆U).168

3.3. Bifurcation diagrams, nonequilibrium flux and nonequilibrium thermodynamic cost.169
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Fig. S18. A: The phase diagram versus θ1. B: The intrinsic entropy production rate versus θ1. C: The intrinsic average flux versus θ1. D: Intrinsic free energy versus θ1.

3.3.a. Finite fluctuations. Figure S13B shows the population entropy production rate versus θ1, while Figure S13C shows the170

population average flux versus θ1. Both population EPR and population Fluxav increase as θ1 increases. We can also see that171

both the two lines have a relative sharp changes in slopes in accordance with the bifurcation zone shown in Figure S13A. We172

found that the Forest state has more population EP R, population Fluxav and the non-equilibrium intrinsic free energy than173

those of Savanna state.174

3.3.b. The zero fluctuation limit. There are two phase transition points for this set of parameters shown in Figure S18A. Figure175

S18B shows the intrinsic entropy production rate versus θ1. Figure S18C shows that the intrinsic average flux. The intrinsic176

intrinsic Fluxav and intrinsic EPR are shown in Figure S18C.177

4. Ecological behavior as a function of the savanna tree mortality rate ν.178

4.1.Landscape, flux and dominant paths between different states.179

4.1.a. Population-potential landscape and flux with finite fluctuation. Figure S19A shows the phase diagram, Figure S19B shows the180

population EPR, Figure S19C shows the average flux versus and Figure S20 shows the population-potential landscapes under181

finite fluctuations. Figure S21 shows the fluxes on the population-potential landscapes with respect to the increase of ν, which182

are shown as white arrows. Figure S21 also shows the dominant population paths on the population landscape U for different183

values of ν. The population action Apo(x) is shown in Figure S22A and Figure S22D shows the logarithm of the dominant184

population path probability from the Forest state to the Savanna state divided by that of the dominant population path from185

the Savanna state to the Forest state.186

4.1.b. Intrinsic potential landscape and flux velocity in the zero-fluctuation limit. Figure S23 shows the intrinsic potential landscape φ0187

for increasing ν, while Figure S24 shows the intrinsic potential landscape φ0 in 2D under zero fluctuation limit. Figure S24 also188

shows the dominant intrinsic paths on the intrinsic potential landscape with the same coloring conventions as in the figures189

above. The intrinsic action Ain(x) is shown in Figure S25A and Figure S25D shows the logarithm of the dominant intrinsic190

path probability from the Forest state to the Savanna state divided by that of the dominant intrinsic path from the Savanna191

state to the Forest state.192

4.2.Barrier height and kinetic rates of switching. Figure S4D and Figure S5D show the barrier heights of the population-potential193

landscape the intrinsic barrier heights of the intrinsic potential landscape versus ν respectively. Figure S26 shows the logarithm194

of MFPT versus A:ν, B:ω0, C:ω1 and the logarithm of MFPT versus barrier heights for D: ν, E:ω0, F: ω1. We show the195

logarithm of MFPT versus ν in Figure S26A.196

4.3. Bifurcation diagrams, nonequilibrium flux and nonequilibrium thermodynamic cost.197
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Fig. S19. A: The phase diagram versus ν. B: The population entropy production rate versus ν. C: The population average flux versus ν.

4.3.a. Finite fluctuations. Figure S19B shows the population EPR versus ν, while Figure S19C shows the average flux versus ν.198

The population EP R and population Fluxav increase initially then decrease as ν increases. We can see that both the two lines199

have a relative significant changes in slopes in accordance with the bifurcation zone shown in Figure S19A. We found that the200

Forest state has more population EP R, population Fluxav and the non-equilibrium intrinsic free energy than those of Savanna.201

4.3.b. The zero fluctuation limit. There are two phase transition points for this set of parameters, as shown in Figure S27A. Figure202

S27B shows the intrinsic entropy production rate versus ν. Figure S27C shows the intrinsic average flux versus ν and Figure203

S27D shows the intrinsic free energy versus ν.204

5. Ecological behavior as a function of the sapling-to-adult recruitment rate basic value ω0.205

5.1. Landscape, flux and dominant paths between different states.206

5.1.a. Population-potential landscape and flux with finite fluctuations. Figure S28A shows the phase diagram versus ω0. Figure S28B207

shows the population entropy production rate versus ω0. Figure S28C shows the average flux versus ω0 and Figure S29 shows208

the two-dimensional population-potential landscapes under finite fluctuations with respect to the increase of ω0. Figure S30209

shows the steady-state probability fluxes on the population-potential landscapes with respect to the increase of ω0, which are210

shown as white arrows.211

Figure S30 also shows the dominant population paths on the population landscape U for different values of ω0. The212

population action Apo(x) is shown in Figure S22B and Figure S22E shows the logarithm of the dominant population path213

probability from the Forest state to the Savanna state divided by that of the dominant population path from the Savanna state214

to the Forest state.215

5.1.b. Non-equilibrium intrinsic potential landscape and the flux velocity in zero-fluctuation limit. Figure S31 shows the three-dimensional216

intrinsic potential landscape φ0 for increasing ω0. Figure S32 shows the two-dimensional non-equilibrium intrinsic potential217

landscape φ0 under zero fluctuations and Figure S32 shows the dominant intrinsic paths on the intrinsic potential landscape φ0218

for different values of ω0. The intrinsic action Ain(x) is shown in Figure S25B and Figure S25E shows the logarithm of the219

dominant intrinsic path probability from the Forest state to the Savanna state divided by that of the dominant intrinsic path220

from the Savanna state to the Forest state.221

5.2.Barrier height and kinetic rates of switching. Figure S4E and Figure S5E show the barrier heights of the population-potential222

landscape and the intrinsic barrier heights of the intrinsic potential landscape versus ω0 respectively. We show the logarithm of223

MFPT versus ω0 in Figure S26B. We can see the population-potential landscape topography quantified by the barrier height224

and the corresponding logarithm of MFPT have positive correlation shown in Figure S26E. Thus, the barrier height ∆UF ,225

∆US and the corresponding MFPT lnτF S , lnτSF have the correlation of τ ∼ exp(∆U).226
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Fig. S20. The two-dimensional population-potential landscapes versus ν.

5.3. Bifurcation diagrams, nonequilibrium flux and nonequilibrium thermodynamic cost.227

5.3.a. Finite fluctuations. Figure S28B shows the population entropy production rate versus ω0. Figure S28C shows the average228

flux versus ω0. We can see both population EP R and population Fluxav increase as ω0 increases. We can see both the two lines229

have a relative significant changes in slopes near (between) the two saddle-node bifurcations shown in Figure S28A. The Forest230

state has more population EPR, population Fluxav and the non-equilibrium intrinsic free energy than those of Savanna state.231

5.3.b. The zero fluctuation limit. There are two phase transition points for this set of parameters which is shown in Figure S33A.232

Figure S33B shows the intrinsic entropy production rate versus ω0 and Figure S33C shows the intrinsic average flux versus ω0.233

6. Ecological behavior as a function of the savanna sapling-to-adult recruitment rate of sigmoid basic value ω1.234

6.1.Landscape, flux and dominant paths between different states.235

6.1.a. Population-potential landscape and flux with finite fluctuations. ω1 is the savanna sapling-to-adult recruitment rate minimum in236

the function ω. Figure S34A shows the phase diagram, Figure S34B shows the population entropy production rate, and Figure237

S34C shows the average flux versus ω1. Figure S35 and Figure S36 show the two-dimensional population-potential landscapes238

under finite fluctuations and the fluxes on the population landscapes respectively.239

6.1.b. Intrinsic potential landscape and flux velocity in the zero-fluctuation limit. Figure S37 shows the three-dimensional intrinsic240

potential landscape φ0 with increasing ω1, while Figure S38 shows the two-dimensional non-equilibrium intrinsic potential241

landscape φ0 for increasing ω1 along with the dominant intrinsic paths. The intrinsic action Ain(x) is shown in Figure S25C242

and Figure S25F shows the logarithm of the dominant intrinsic path probability from the Forest state to the Savanna state243

divided by that of the dominant intrinsic path from the Savanna state to the Forest state.244

6.2.Barrier height and kinetic rates of switching. Figure S4F and Figure S5F show the barrier heights of the population-potential245

landscape under finite fluctuations and the intrinsic barrier heights of the intrinsic potential landscape versus ω1 respectively. s1246

is the saddle point between Forest state and Savanna state. s2 is the saddle point between Grassland state and Savanna state.247

s3 is the saddle point between Grassland state and Forest state with small ω1. Thus, ∆UF = Us1 − UF or ∆UF = Us3 − UF ,248
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Fig. S21. The dominant population paths and fluxes on the population-potential landscape U with different ν, at β = 0.38, θ1 = 0.4, ω0 = 0.9, ω1 = 0.2, µ = 0.2, s1 =

0.01, D = 0.0005. The white lines represent the dominant population paths from the Savanna state to Forest state. The red lines represent the dominant population paths

from the Forest state to Savanna state. The white arrows represent the steady-state probability fluxes.

Fig. S22. A: The population action ApoF S of the probability of the dominant population path from Forest state to Savanna state and the action ApoSF of the probability

of the dominant population path from Savanna state to Forest state versus ν. D:The probability of the dominant population path from Forest state to Savanna state

divided that of the dominant population path from Savanna state to Forest state versus ν with β = 0.38, ω0 = 0.9, ω1 = 0.2, θ1 = 0.4, ss1 = 0.01, µ = 0.2. B:

The population action ApoF S and ApoSF versus ω0. E:The probability of the dominant population path from Forest state to Savanna state divided that of the dominant

population path from Savanna state to Forest state versus ω0 with β = 0.38, ν = 0.1, µ = 0.2, ω1 = 0.2, θ1 = 0.4, ss1 = 0.01. C: The population action ApoF S

and ApoSF versus ω1. F:The probability of the dominant population path from Forest state to Savanna state divided that of the dominant population path from Savanna

state to Forest state versus ω1 with β = 0.38, ν = 0.1, ω0 = 0.9, θ1 = 0.4, ss1 = 0.01, µ = 0.2.

∆US = Us1 − US , ∆USs2
= Us2 − US , ∆UG = Us2 − UG and ∆UGs3

= Us3 − UG. We show the logarithm of MFPT versus249

ω1 in Figure S26C. We can see that the population-potential landscape topography quantified by the barrier height and the250
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Fig. S23. The three-dimensional intrinsic potential landscape φ0 for increasing ν. The projection of the flux velocity (purple arrows)and the gradient of the intrinsic potential

landscape −∇φ0 (black arrows)on the intrinsic potential landscape φ0 for increasing ν.

Fig. S24. The projection of the flux velocity (purple arrows)and the gradient of the intrinsic potential landscape −∇φ0 (white arrows)on the intrinsic potential landscape φ0 for

increasing ν. The dominant intrinsic paths on the intrinsic potential landscape φ0 with different ν. The white lines represent the dominant intrinsic paths from the Savanna

state to Forest state. The red lines represent the dominant intrinsic paths from the Forest state to Savanna state.

corresponding logarithm of MFPT have positive correlation shown in Figure S26F. Thus, the barrier height ∆UF , ∆US and251

the corresponding MFPT lnτF S , lnτSF have the correlation of τ ∼ exp(∆U).252

6.3. Bifurcation diagrams, nonequilibrium flux and nonequilibrium thermodynamic cost.253

6.3.a. Finite fluctuations. Figure S34B and S34C show the population EPR and the population average flux versus ω1, while the254

corresponding bifurcations diagram is shown in Figure S34A.255

6.3.b. The zero fluctuation limit. There are two phase transition points for this set of parameters, as shown in Figure S39A. Figure256

S39B and S39C show the intrinsic EPR and the intrinsic average flux versus ω1. Figure S39D shows the intrinsic free energy257

versus ω1.258

6.4. The average change of the forward and backward in time cross-correlation function, the variances grass and trees, and the logarithms of259

the variances of the first passage time. Figure S40 shows the average change of the forward and backward in time cross correlation260

function ∆CC as a function of different parameter A:µ, B: θ1, C:ν, D:ω0, E:ω1. Figure S41 shows the variances Grass σS and261
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Fig. S25. A: The intrinsic action AinF S of the probability of the dominant intrinsic path from Forest state to Savanna state and the intrinsic action AinSF of the probability

of the dominant intrinsic path from Savanna state to Forest state versus ν. D:The probability of the dominant intrinsic path from Forest state to Savanna state divided that

of the dominant intrinsic path from Savanna state to Forest state versus ν with β = 0.38, ω0 = 0.9, ω1 = 0.2, θ1 = 0.4, ss1 = 0.01, µ = 0.2. B: The intrinsic action

AinF S and AinSF versus ω0. E:The probability of the intrinsic dominant intrinsic path from Forest state to Savanna state divided that of the dominant intrinsic path from

Savanna state to Forest state versus ω0 with β = 0.38, ν = 0.1, µ = 0.2, ω1 = 0.2, θ1 = 0.4, ss1 = 0.01. C: The intrinsic action AinF S and AinSF versus ω1.

F:The probability of the dominant intrinsic path from Forest state to Savanna state divided that of the dominant intrinsic path from Savanna state to Forest state versus ω1

with β = 0.38, ν = 0.1, ω0 = 0.9, θ1 = 0.4, ss1 = 0.01, µ = 0.2.

Fig. S26. The logarithm of MFPT versus A:ν, B:ω0, C:ω1. The logarithm of MFPT versus barrier heights for D: ν, E:ω0, F: ω1.

the variances Tree σF versus A:µ, B: θ1, C:ν, D:ω0, E:ω1. Figure S42 shows the logarithms of the variances of the first passage262

time from Savanna to Forest log(σSF ) and the first passage time from Forest to Savanna log(σF S), and the logarithms of the263

sum of them log(σSF + σF S) with A:µ, B: θ1, C:ν, D:ω0, E:ω1.264

7. The intrinsic potential landscape φ0 and the Hamilton-Jacobi equation for a specific diffusion matrix. We obtain the intrinsic265

potential landscape φ0 by the fitting method described in the main text due to the constraint of a triangle state space. In266

order to find the intrinsic Lyapunov function φ0(D) numerically, we choose the diffusion matrix D = DG with the form267

Gij = xi(δij − xj). This diffusion coefficient matrix originates from evolutionary population dynamics (5, 6). The diffusion268

coefficient matrix is thus given by:269

G =

(

x1(1 − x1) −x1x2 −x1x3

−x2x1 x2(1 − x2) −x2x3

−x3x1 −x3x2 x3(1 − x3)

)

[1]270

Li Xu, Denis Patterson, Ann Carla Staver, Simon Asher Levin* and Jin Wang* 17 of 32



Fig. S27. A: The phase diagram versus ν. B: The intrinsic entropy production rate versus ν. C: The intrinsic average flux versus ν. D: Intrinsic free energy versus ν.

Fig. S28. A: The phase diagram versus ω0. B: The population entropy production rate versus ω0. C: The population average flux versus ω0.

Since the three variables satisfy the normalization condition G + S + T = 1 (x1 + x2 + x3 = 1), the dimensionality of the271

forest-savanna ecological system will reduce from a three-dimensional system with the fraction of grass coverage (G = x1),272

savanna saplings (S = x3) and trees (T = x2) to a an effective two-dimensional system. The corresponding state space has the273

shape of an isosceles triangle. Unfortunately, it is very difficult to solve a Hamilton-Jacobi equation in a isosceles triangle274
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Fig. S29. The two-dimensional population-potential landscapes versus ω0.

Fig. S30. The dominant population paths and fluxes on the population-potential landscape U with different ω0, at β = 0.38, θ1 = 0.4, ν = 0.1, ω1 = 0.2, µ = 0.2, s1 =

0.01, D = 0.0005. The white lines represent the dominant population paths from the Savanna state to Forest state. The red lines represent the dominant population paths

from the Forest state to Savanna state. The white arrows represent the steady-state probability fluxes.

and we can only numerical solve Hamilton-Jacobi equation in regular shapes, such as squares and rectangles with a diagonal275

diffusion matrix (6–8). Our particular choice of diffusion coefficient matrix enables us to perform the coordinate transformation276

from a special diffusion matrix in an isosceles triangle into a diagonal matrix in a square (8).277
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Fig. S31. The three-dimensional intrinsic potential landscape φ0 for increasing ω0. The projection of the flux velocity (purple arrows)and the gradient of the intrinsic potential

landscape −∇φ0 (black arrows)on the intrinsic potential landscape φ0 for increasing ω0.

Fig. S32. The projection of the flux velocity (purple arrows)and the gradient of the intrinsic potential landscape −∇φ0 (white arrows)on the intrinsic potential landscape φ0 for

increasing ω0. The dominant intrinsic paths on the intrinsic potential landscape φ0 with different ω0. The white lines represent the dominant intrinsic paths from the Savanna

state to Forest state. The red lines represent the dominant intrinsic paths from the Forest state to Savanna state.

The transformation of the original coordinate system in term of the probability of G, S, T is to obtain a Hamilton-Jacobi278

equation with diagonal matrix. We set u1 = x1, u2 = x2/(1 − x1). Therefore, new coordinate variables are satisfied with279

0 ≤ u1, u2 ≤ 1. We show the original coordinate in Figure S43A while the new coordinate in Figure S43B. The different colored280

lines in Figure S43A transform to the lines in Figure S43B (8). The grid points in Figure S43A transform to as the dot lines in281

Figure S43B. Thus, the inverse transformation is x1 = u1, x2 = u2(1 − u1). And the nondiagonal elements of the new diffusion282

matrix are equal to zero (Du
ij = 0, i 6= j). This transformation of the variables can lead to a new Hamilton-Jacobi equation283

with the same form as the original one, but in diagonal form. Due to the form of the diffusion matrix, there are no mixed284

second-order derivatives(8). Thus, the Hamilton-Jacobi equation with the given diffusion matrix in the isosceles triangle is285

transformed to the diagonal diffusion matrix in a square and we can solve for the intrinsic potential via the new Hamilton-Jacobi286

equation. Using the inverse transformation, we can obtain the intrinsic potential of the original Hamilton-Jacobi equation (8).287

We use a numerical level set method with the Mitchell’s level-set toolbox to solve the Hamilton-Jacobi equation for intrinsic288

potential φ0(9).289

Figure S44 shows the dominant intrinsic paths on the intrinsic landscape φ0 with different β. The red lines are the dominant290

intrinsic paths from the Forest state to Savanna state and the white lines are the dominant intrinsic paths from the Savanna291

state to Forest state.292
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Fig. S33. A: The phase diagram versus ω0. B: The intrinsic entropy production rate versus ω0. C: The intrinsic average flux versus ω0. D: Intrinsic free energy versus ω0.
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Fig. S34. A: The phase diagram versus ω1. B: The population entropy production rate versus ω1. C: The population average flux versus ω1.
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Fig. S35. The two-dimensional population-potential landscapes versus ω1.
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Fig. S36. The dominant population paths and fluxes on the population-potential landscape U with different ω1, at β = 0.38, θ1 = 0.4, ν = 0.1, ω0 = 0.9, µ = 0.2, s1 =

0.01, D = 0.0005. The white lines represent the dominant population paths from the Savanna state to Forest state. The red lines represent the dominant population paths

from the Forest state to Savanna state. The white arrows are the steady-state probability fluxes.
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Fig. S37. The three-dimensional intrinsic potential landscape φ0 for increasing ω1. The projection of the flux velocity (purple arrows)and the gradient of the intrinsic potential

landscape −∇φ0 (black arrows)on the intrinsic potential landscape φ0.
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Fig. S38. The projection of the flux velocity (purple arrows)and the gradient of the intrinsic potential landscape −∇φ0 (white arrows)on the intrinsic potential landscape φ0 for

increasing ω1. The dominant intrinsic paths on the intrinsic potential landscape φ0 with different ω1. The white lines represent the dominant intrinsic paths from the Savanna

state to Forest state. The red lines represent the dominant intrinsic paths from the Forest state to Savanna state.
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Fig. S39. A: The phase diagram versus ω1. B: The intrinsic entropy production rate versus ω1. C: The intrinsic average flux versus ω1. D: Intrinsic free energy versus ω1.
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Fig. S40. The average change of the forward and backward in time cross correlation function ∆CC as a function of different parameters. A:µ, B: θ1, C:ν, D:ω0, E:ω1.
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Fig. S41. The variances Grass σS and the variances Tree σF versus A:µ, B: θ1, C:ν, D:ω0, E:ω1.
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Fig. S42. The logarithms of the variances of the first passage time from Savanna to Forest log(σSF ) and the first passage time from Forest to Savanna log(σF S), and

the logarithms of the sum of them log(σSF + σF S) with A:µ, B: θ1, C:ν, D:ω0, E:ω1.
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Fig. S43. Schematic representation of the transformation of the coordinates from x1 − x2 plane to u1 − u2 plane(8).
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Fig. S44. The dominant intrinsic paths on the intrinsic potential landscape φ0 with different β from Hamilton-Jacobi equation with a chosen diffusion matrix. The white lines

represent the dominant intrinsic paths from the Savanna state to Forest state. The red lines represent the dominant intrinsic paths from the Forest state to Savanna state.

White arrows represents the projection of the flux velocity and purple arrows represents the negative gradient of the intrinsic landscape −∇φ0.

32 of 32 Li Xu, Denis Patterson, Ann Carla Staver, Simon Asher Levin* and Jin Wang*


