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Supplementary Information

Table S1. Metadata of data sources and generated resources in this study, relative to
Figure 1.

Table S2. Severity-associated cell distribution in multiple compartments of COVID-19

patients, relative to Figure 2.

Table S3. Gene modules and DEGs of neutrophil and macrophage sub-clusters, relative
to Figure 3.

Table S4. Gene modules and pro-thrombosis genes in platelets of COVID-19 patients,
relative to Figure 4.

Table S5. Developing plasmablast signatures and autoimmunity-associated signatures
of COVID-19 B cells, relative to Figure 5.

Table S6. Enrichment scores of COVID-19 Functional Map, relative to Figure 6.

Table S7. Dynamic changes of abundances and signatures across immune-mediated
diseases, relative to Figure 7.
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Figure S1. Cell distribution and abundance in the integrated COVID-19 PBMC
data, relative to Figure 2. (A) Distributions of COVID-19 conditions (Left) and data
sources (Right) for the integrated PBMC data are shown on the same UMAP of Figure

2A. (B) Bar plot depicts distributions of disease conditions in 5 individual PBMC single-

cell datasets. Percentages of 3 disease conditions in each dataset is shown on y axis.

(C) The integrated bar plot shows percentages of 3 disease conditions in each cell type

per dataset. Dataset abbreviations and cell types were concatenated to show disease

distributions of specific cell types in the selected datasets. These labels are colored by

their cell type designations and ordered by the ascending percentages of COVID-19

conditions.
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Figure S2. Dynamic changes of cell type abundances in five COVID-19 PBMC
datasets, relative to Figure 2. Relative abundances and differences of major cell types
in each single cell dataset are shown and compared to controls per each disease
condition, per each single-cell dataset. Box plots of all cell types in PBMC are shown
except for the 5 highlighted cell types shown in Figure 2B. Statistical methods are the
same with Figure 2B.
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Figure S3. Cell distributions and dynamic changes in the integrated COVID-19
BAL data, relative to Figure 2. (A-C) Distributions of disease conditions (A), data
sources (B) and samples (C) are shown on the same UMAP of Figure 2C. (D) Box plots
depict dynamic changes of cell types across COVID-19 conditions in BAL that are not
covered in Figure 2D. Statistical methods are the same with Figure 2B.
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Figure S4. Cell type abundance changes in COVID-19 lung parenchyma dataset,
relative to Figure 2. Box plots depict percentages of cell types in control samples and
severe COVID-19 samples. We used cell type clusters identified in the original
publication but modified cell naming of macrophage subtypes to distinguish monocyte
derived macrophage subtypes present in BAL fluid samples. Statistical methods are the
same with Figure 2B.
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Figure S5. Sub-cluster-specific genes of neutrophils of COVID-19 patients,

relative to Figure 3. (A) Distribution of disease conditions (Left) and data sources
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(Right) for the integrated neutrophil data on the same UMAP of Figure 3A. (B) UMAPs
of neutrophil sub-cluster-associated genes from Figure 3C. Normalized expression
values for each gene were used. (C) Normalized expression values of neutrophil-
associated genes and other important immune signatures are shown for 5 neutrophil
sub-clusters. Lowly expressed genes (genes with maximal average expression level
across all neutrophil sub-clusters less than 0.5 after Log2CPM normalization) were
removed from the gene pool of cytokines, chemokines, ISGs, interleukins, interferons,
corresponding receptors and MHC-II. (D) The volcano plot depicts differentially
expressed genes between circulating mature neutrophils (Neu0,1) and extravasated
neutrophils (Neu3) (Left); as well as DEGs between pro-neutrophils (Neu4) and pre-
neutrophils (Neu2) (Right). Statistical methods are the same with Figure 5C.
Representative enriched biological processes (Gene Ontology) are shown in the
bottom.
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Figure S6. Macrophage-related signatures in the integrated BAL data, relative to
Figure 3. (A) Normalized expression values of myeloid-cell-associated genes and other
important immune signatures are shown for 9 macrophage sub-clusters. Lowly
expressed genes (genes with maximal average expression level across all macrophage
sub-clusters less than 0.5 after Log2CPM normalization) were removed from the gene
pool of MHC-II, cytokines, chemokines, ISGs, interleukins, interferons and their
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receptors. (B) Volcano plots were drawn for DEGs of MOAM3,4 versus MoAM1,2,5
(Left) and TRAM 1,2 versus TRAM3 (Middle) and TRAM3 versus MoAM1,2,5 (Right).
Statistical methods are the same with Figure 5C. (C) Normalized expression values
were shown on the same UMAP of Figure 3B for important genes including macrophage

signatures, ISGs, interferons, receptors and MHC-II.
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Figure S7. A uniquely-activated monocyte-derived cell type (MoAMS5) exhibits a
broad signature of cytokines, chemokines, and interleukins including IL6, relative
to Figure 3. (A) Normalized expression values of IL6 on the same reference UMAP of
integrated BAL data as Figure 3B. (B) Scale expression levels of IL6 for each
macrophage sub-cluster on the violin plot. (C) Heatmap of expression levels of pan-
MoAM signatures and MoAM5-specifc signatures in all myeloid cells in both PBMC and
BAL. (D) Network of functional and phenotypic associated pan-MoAM signatures and
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MoAMS5-specific signatures from (C). Associations were retrieved from ToppGene
enrichment results. IL6 is highlighted in the network. As a caveat, the MoAMS subtype
represented a small fraction among the BAL MoAM subtypes and the majority of these

cells were observed in a single severely-affected individual.
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Figure S8. Cell type and cell subtype-specific divisions of cytokine, chemokine,
and interleukin signaling pathways in BAL of severe COVID-19 patients, relative
to Figure 3. (A) Heatmap of expression patterns of ligands and receptors in cytokine,
chemokine, interleukin, CSF and TNFSF signaling pathways across cell types of BAL in
severe patients. Average normalized expression values were shown and lowly
expressed ligands or receptors (maximal normalized expression value for a row in the
heatmap < 0.5) were removed. To reduce bias, MOAMS5 was removed because cells in
the cluster were mainly from one patient. Cell types that have less than 5% cells from

severe patients were removed, including TRAM1 and TRAMZ2. Neutrophils are
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highlighted in the heatmap. (B) Interaction network of BAL cells in severe patients using
CellChat. CCL, CXCL and IL1 signaling pathways were shown. The width of edges
represents the strength of interactions and the size of nodes represents the abundance

of cell types.
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Figure S9. Characteristics of sub-clusters of classical monocytes in the
integrated COVID-19 PBMC data, relative to Figure 3. (A) UMAPs of 4 sub-clusters
(Left) and COVID-19 conditions (Right) of classical monocytes are shown. Grey dots
are other myeloid cells in the UMAP of integrated PBMC myeloid data. (B) UMAPs of

normalized expression values of specific signatures for classical monocyte sub-clusters.
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(C) Normalized expression values of monocyte-associated genes and other important
immune signatures are shown for 4 classical monocyte sub-clusters. (D) Gene modules
of classical monocyte sub-clusters, as well as other myeloid cell types in the integrated
PBMC myeloid data. Representative genes in each module are shown on the left.
ToppGene enrichment results for classical monocyte sub-clusters are shown on the
right. Columns are clustered using hierarchical clustering. (E) Similarity matrix of
myeloid cell types using genes in (D). Pearson correlation was used to evaluate
similarity. (F) Dot plot of MHC-II, ISGs, interleukin genes and cell cycle genes for each

myeloid cell type. Scale values were used.
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Figure S10. Features of conventional dendritic cell sub-clusters and polarized
signaling genes, relative to Figure 3. (A) UMAPs of 13 sub-clusters (Left) and
sources (Right) of conventional dendritic cells after data integration. (B) Normalized
expression values of sub-cluster-specific genes on the UMAP. (C) Normalized

expression values of cDC-associated genes and other important immune signatures are
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shown for 13 ¢cDC sub-clusters. (D) Gene modules of cDC sub-clusters with 200 most
significantly upregulated genes in each module. Representative genes are shown on
the left. Gene enrichment results of some modules from ToppGene are shown on the
right. (E) Similarity matrix of sub-clusters using genes in (D). Pearson correlation was
used for similarity scores and hierarchical clustering was applied for rows and columns.
(F) The heatmap shows the clustering of signaling genes, including cytokines,
chemokines, interleukins and their receptors. Red boxes highlight severe patients
associated sub-clusters and their upregulated genes. Green boxes highlight mild
patients-associated sub-clusters and their upregulated genes.
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Figure S11. Landscape of myeloid cells in the integrated PBMC and BAL data, relative to Figure 3.

Figure S11. Landscape of myeloid cells in the integrated PBMC and BAL data,
relative to Figure 3. (A-B) UMAPs of myeloid cells in integrated PBMC (A) and BAL (B)
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data. Cell types which were further clustered are highlighted in different colors. (C) The
heatmap shows associations between subclusters of myeloid cells and myeloid-cell-
associated pathways, such as antigen presenting, T cell activation, phagocytosis etc.
Gene enrichment scores, defined as -log1o(adjusted p value), were calculated as the
strength of associations. Pie charts showed the proportions of COVID-19 conditions in
each sub-cluster.
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Figure S12. Gene expression signatures of cell types and subtypes activated by

COVID-19 are extensively associated with coagulation, hemostasis, and

thrombosis-associated pathways, functions, and knockout phenotypes, relative

to Figure 4. (A) Functional association heatmap of gene signatures from COVID-19 cell

types demonstrates differential enrichment for pathways associated with coagulation,

vascular permeability, complement, extravasation, platelet activation and aggregation,

response to wounding, as shown. Gene modules of cell types and sub-clusters that

participate in these pathways were used to calculate enrichment scores. (B) Network of

upregulated genes in coagulation/thrombosis-associated pathways (A) shows the
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potential gene-gene interactions in immunothrombosis of COVID-19 patients. CellChat
and ToppCell/ToppGene protein-protein ligand receptor and cell adhesion interaction
databases were used to find interaction pairs among upregulated genes. (C) A new
network derived from (B) shows integrin-associated interactions between platelets and

other cells.
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Figure S13. Emergence of platelet subtypes implicating functionally significant
alternative roles in hemostasis, coagulation, wound response, and neutrophil
recruitment and activation, relative to Figure 4. (A) The heatmap shows ToppCell
gene modules of 6 platelet sub-clusters in COVID-19 PBMC. Each gene module
contains 200 most significant genes for each sub-cluster and important genes are
shown on the left. Gene enrichment analysis was conducted using ToppGene and top
enrichment results from biological processes (Gene Ontology) are shown on the right.
(B) Dot plot of integrin and other platelet-associated genes. Scale values are shown on
the figure. (C) Heatmap of associations between subclusters of platelets and platelet-
associated pathways (Gene Ontology). Gene enrichment scores, defined as -
logio(adjusted p value), were calculated and shown.
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Figure S14. Consistent emergence of a series of early and maturing B cells and
plasmablasts in BAL fluid and PBMC across multiple datasets, relative to Figure
5. (A-B) UMAPs of B cells (A) and plasmablasts (B) from multiple datasets. (C-D)
UMAP of normalized expression values of immunoglobulin genes (C) and ISGs (D) for
B cells. (E-F) UMAP of normalized expression values of immunoglobulin genes (E) and
sub-cluster associated genes, such as cell cycle genes and B cell markers (F) for
plasmablasts. (G) Gene modules of B cell sub-clusters and plasmablast subtypes with
200 most significant genes in each module. Hierarchical clustering was applied for
columns. (H) Three representative enriched biological processes (Gene Ontology) are
shown for these two subtypes using DEGs of plasmablasts in Figure 5C.

70


https://doi.org/10.1101/2021.06.07.447287
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447287; this version posted June 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A mehorye medatd ity
B R -
% F% ﬁ Cell type Category = any
™ 1 .gc%p 0 Antibody Production ot sreser ““"""‘"‘ J—
o B Plasma cell Antigen Presenting g patasy
2 5% 8] g;limr?:pmducnm s !
Q8 088 C%" s”,e‘ pe intereron production t e
v—-m§N Z‘EQQ bgg Eir"“‘gmi“° Fechonge b crerisron Goras eiodng pétens wlledsrchaty o .
H R Brans B ol acivaton .
Clusters S EEEEECEEECE Dev Plasmablast Outachv B ol et
u 00 0 0 0 (0 0 0 D 0 D Plasmablast Catormn cagsatea N6 AT-dapandent varacroten i |
Cell subtype [ INEN_—_—— -
Cell type I Gene Enrichment Term Category .

protein ext from end sticul
proteln folding In endoplasmic relicuium
‘ondoplasmic reliculum fumen
|l oncophasmic reticulum membrane
i complox

mic reticulum
1C1 182,780, Down 1t MCF7
‘Cortcomerona; Downs 11,800, MCF7

T 3 &
LT atrcalsef towearce. ‘ N AR T HOACS - FomA
i coll Gycle process ;NG G stz P
o e S e B e
| response lerferon \ s} TRy o
ypo Tinloforon signalig palfay \ | v NoR3 - TESC Rex oz sen
Type Tinforferon produclion rcrossad an cucons e : / A o
o jpo T inferleron production o 2 ™| a0
fuclion sTap1
| 2 ey el
——— O o8 ASY
2
Syvemc g

8 cotAcote B con, ot s v o
B caons e o v ol ey
*ictvate_B_cots W . sheed o e cets in icn
B-cet axpanmon wih NEKB 803 T <ol gy e 5 I
Tosponse o Inferferon-gamma © co reces sgnating st
B e - e
n sing and presentalion BUNK inteeactions. NF-tacos 8 SgRing patway

K rractors moreytcr s s betwmen 8 Lyrenos and
wocess
L] Ifammason nouced tomaton df fak asscoated yTEno. Oyaine-cymE R vasncten
Gene Enrichment Score (-log,Padj) ke of CXCRS and CCRY in follcuer Th ool postionn Wanamemexane receptor oM 108e knate adR
od4 - Coopuating mechanams of CXCRS ang CCRY i devicpment
Antgun epenisent resce o ROw-aBIOCed YEhGd |
C " : -
Kidney / Urine - Lupus Nephritis Joint synovial tissues - Rheumatoid Arthritis
riv [T oa E FJ; L‘ = == Cell class
Cell class - — Cell class =] — e ol
Cell class [l Fibroblasts
[ Bcells [[] Monocytes
[l Dividing cells W T cells
[M Epithelial cells
[l Monocytes
[ Tcells B ligand
igands
Type cell subclass
(M ligands b MTecepioe
[l receptors A S ___ Type Gene

TNFRSF14
| — ]
row min oW max

Figure S15. Gene Enrichment analysis of B cell subtypes and autoimmune-
associated signatures, relative to Figure 5. (A) Heatmap shows gene enrichment
scores of B-cell-associated pathways for each B cell sub-cluster and plasmablast
subtype. (B) Pathway and function association network of upregulated genes in B cells
of BAL in mild COVID-19 patients. (C-D) Heatmaps show normalized expression levels
of autoimmune-associated ligands and receptors (Figure 5E) in lupus nephritis (C) and
rheumatoid arthritis (D).
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Figure S16. Distinct subtypes of T cells and NK cells in COVID-19 BAL data. (A-C)
UMAPs of subtypes (A), COVID-19 conditions (B) and data sources (C) of T cells and
NK cells in the integrated BAL data. (D-E) UMAPs of normalized expression values of
exhausted T cell markers (D) and ISGs (E).
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Figure S17. Various T cell and NK cell subtypes in the integrated PBMC data. (A-
B) UMAPs of T cell and NK cell subtypes (A) and COVID-19 conditions (B) after
integration of T cells in 5 PBMC single-cell datasets. (C) Dot plot shows T cell and NK
cell subtype associated genes for each subtype per disease condition. Labels of cell
types of healthy donors, mild patients and severe patients are colored by blue, yellow

and red. Scaled expression values are shown using a color scheme.
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Figure S18. Various cell types in immune-mediated diseases, relative to Figure 7.
(A, C, E) Distributions of cell types identified in influenza (A), sepsis (C) and multiple
sclerosis (E) patients were shown on UMAPs. (B, D, F) Distributions of disease

conditions in influenza (B), sepsis (D) and multiple sclerosis (F) patients were shown on
UMAPs.
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