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S1. DETAILS ON CONTRAST TRANSFORMATION

In this section, we provide the explicit form of the contrast transformation matrix T which corresponds to the

additive log-ratio and centered log-ratio transformations. As in the main text, we let U = (uij) represent the

observed relative abundances, and Z = (log uij) represent their log-transformed values. Then the linear model can

be expressed as

y = ZTθ + ε = Xθ + ε,

where X = ZT and θ = (θ1, . . . , θp−1). In other words, the parameter space degenerates to p − 1 dimensions after

the contrast transformation T is performed on Z.

For the additive log-ratio (ALR) transformation, the transformation matrix T is given as

T =

[
I(p−1)×(p−1)

−1′p−1

]
p×(p−1)

,

where I(p−1)×(p−1) is a (p− 1)× (p− 1) identity matrix and 1′p−1 is a p− 1 dimensional row vector of 1s, then the

transformed version of Z will be Xn×(p−1) = {log(uij/uip)}, where i = 1, . . . , n. The position of the row −1′p−1 in
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matrix T determines which variable will be the reference. Here the last variable up is chosen as the reference, as

−1′p−1 is the last row of T .

For the centered log-ratio (CLR) transformation, the transformation matrix T is given as

T =

[
D(p−1)×(p−1)

− 1
p × 1′p−1

]
p×(p−1)

,

where D(p−1)×(p−1) is a (p− 1)× (p− 1) square matrix with diagonal elements 1− 1
p and off-diagonal elements − 1

p .

Then the transformed version of Z will be Xn×(p−1) = (xij), where

xij = log(uij)−
1

p

p∑
k=1

log(uik), i = 1, 2, · · · , n; j = 1, 2, · · · , p− 1.

For each sample i, the transformation of each variable j has the same reference 1
p

∑p
k=1 log(uik), which means that

the CLR transformed results do not require the specification of a reference, and are generally more stable than ALR

transformed ones.

S2. MOTIVATION FOR AND PROPERTIES OF OF THE Z-PRIOR

Tγ is a (p+1)×p matrix with rank p. Although Tγβγ consists of p+1 random variables, its distribution degenerates

to p dimensions. Therefore, we can assume Tγβγ | . . . ∼ N (0, σ2τ2Ipγ ). If we multiply Tγβγ by T ′γ on the left, then

we obtain T ′γTγβγ | . . . ∼ N (0, σ2τ2T ′γTγ). As T ′γTγ is a square matrix and invertible, if we then multiply T ′γTγβγ

by (T ′γTγ)−1 on the left, then we obtain βγ | . . . ∼ N (0, σ2τ2(T ′γTγ)−1).

If we multiply βγ by Tγ on the left, then we have Tγβγ | . . . ∼ N (0, σ2τ2Tγ(T ′γTγ)−1T ′γ). If we do the spectral

decomposition of Tγ(T ′γTγ)−1T ′γ = UDU−1, the last eigenvalue in D will be zero and all the other eigenvalues

will be one (assuming the eigenvalues are ordered in decreasing order). This rank deficiency of the covariance ma-

trix is equivalent to the singular distribution of the random variable Tγβγ in (p + 1) dimensions, because Tγβγ is

distributed on p-dimensional space. The singular Gaussian distribution has a non-singular distribution form in a

lower-dimensional space. In fact, if we keep the positive eigenvalues and the corresponding eigenvectors, then we

obtain the positive definite matrix U−(p+1)D−(p+1)U
−1
−(p+1), where D−(p+1) represents the exclusion of the last eigen-

value 0. U−(p+1) represents the exclusion of the (p+ 1)-th row and the (p+ 1)-th column of U . Then we obtain that

U−(p+1)D−(p+1)U
−1
−(p+1) = Ipγ . Therefore, we showed the consistency of our definition of the distribution of Tγβγ .

We now comment on the fact that the g-prior, which has a similar form to our proposed z-prior, does not satisfy the

zero constraint, motivating the development of our novel prior. Specifically, a regular g-prior with τ2σ2(XT
γXγ)−1

structure cannot guarantee the zero-constrained property. We ran a simple simulation to illustrate this point, adopting

the same set-up as described in the main manuscript when n = 50 and p = 30. We then calculated the sum of all the

elements in the squared matrix of log transformed design matrix (XT
γXγ)−1. We repeated this calculation 100 times.

We obtained the mean as 0.18 and the standard deviation as 0.07, implying that
∑

γ βγ violates the zero-constrained

property.
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S3. PROPERTIES OF THE MATRIX (T ′γTγ)
−1

In this section, we discuss the properties of the matrix (T ′γTγ)−1, which appears in the variance of the z-prior. We

assume the z-prior of βγ is given as

βγ |Mγ , σ
2, τ2 ∼ N

(
0, σ2τ2(T ′γTγ)−1

)
,

where the proposed generalized transformation Tγ is defined as

Tγ =

[
Ipγ

c ∗ 1′pγ

]
(pγ+1)×pγ

.

Given the generalized transformation matrix Tγ , the inverse of the matrix T ′γTγ has the explicit form (T ′γTγ)−1 =

Ipγ − c2

1+c2pγ
1′pγ1pγ . Thus, the sum of the linear coefficients

∑
i∈γ βi follows a normal distribution with mean 0 and

variance
pγ

1+c2pγ
σ2τ2. When c becomes large, the variance approaches 0, which implies that more shrinkage is imposed

on
∑
i∈γ βi. We can even let c be +∞; then the term (T ′γTγ)−1 converges to Ipγ − 1

pγ
1′pγ1pγ and var(

∑
i∈γ βi) = 0.

The matrix Ipγ − 1
pγ

1′pγ1pγ is an idempotent matrix, and is singular with one zero eigenvalue and all the other

eigenvalues equal to one. In this singular case of the multivariate normal distribution, one of the values is constrained

by the others. For more details of the singular normal distribution, please refer to [1] and [2].

We now discuss the form of (T ′γTγ)−1 when T represents a contrast transformation. The sum of the linear coef-

ficients does not need to satisfy the zero-constrained property. For the additive log-ratio (ALR) transformation, the

transformation matrix Tγ is given as

Tγ =

[
I(pγ−1)×(pγ−1)

−1′pγ−1

]
pγ×(pγ−1)

.

The inverse of matrix T ′γTγ has the explicit form (T ′γTγ)−1 = Ipγ − 1
pγ

1′pγ1pγ . The sum of the linear coefficients∑
i∈γ βi follows a normal distribution with mean 0 and variance

pγ−1
pγ

σ2τ2. For the centered log-ratio (CLR) trans-

formation, the transformation matrix Tγ is given as

Tγ =

[
D(pγ−1)×(pγ−1)

− 1
pγ
× 1′pγ−1

]
pγ×(pγ−1)

,

where D(pγ−1)×(pγ−1) is a (pγ − 1)× (pγ − 1) square matrix with diagonal elements 1− 1
pγ

and off-diagonal elements

− 1
pγ

. The inverse of matrix T ′γTγ is then equal to Ipγ + 1′pγ1pγ . The sum of the linear coefficients
∑
i∈γ βi follows a

normal distribution with mean 0 and variance pγ(pγ − 1)σ2τ2.

We now include a brief comment on how these transformations respect the geometry of the compositional data

setting. Euclidean space, the standard in classical geometry, is an inner product space on the real numbers, and so

allows common operations such as addition and multiplication, along with notions such as distance and orthogonality

that rely on the standard inner product. However, Euclidean space is not a proper geometry for compositional data,

which must satisfy a fixed sum constraint. In this setting, Aitchison geometry, which defines a space on the simplex,

is appropriate [3]. The contrast transformations are defined under Aitchison geometry and satisfy linearity in that

space. Analogously, in the probability space, we can define the geometry of the zero-constrained Gaussian random

variables. The z-prior is the probability measure defined under this geometry.
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S4. DERIVATION DETAILS OF POSTERIOR INFERENCE

Assume that the likelihood function of the observation Y given modelMγ follows a multivariate normal distribution

p(Y |Mγ ,βγ , σ
2) = (2π)−

n
2 (σ2)−

n
2 exp−

(Y−Xγβγ)T (Y−Xγβγ)
2σ2 . (S.1)

The prior density of βγ is given as

π(βγ |Mγ , σ
2, τ2) = (2π)−

pγ
2 (σ2τ2)−

pγ
2

∣∣(T ′γTγ)
∣∣1/2 exp−

βTγ (T ′γTγ )βγ

2σ2τ2 . (S.2)

The prior density of σ2 is given as

π(σ2|ν, ω) =
(νω2 )ν/2

Γ(ν/2)
(σ2)−ν/2−1 exp−

(νω)/2

σ2 . (S.3)

Then the joint conditional distribution of Y and βγ is

p(Y ,βγ |Mγ , σ
2, τ2)

=p(Y |βγ , σ
2)π(βγ |σ2, τ2)

=(2π)−n/2(σ2)−n/2(2π)−pγ/2(σ2)−pγ/2(τ2)−pγ/2
∣∣(T ′γTγ)

∣∣1/2
× exp

{
− 1

2σ2

[
βTγ

(
XT

γXγ +
1

τ2
(T ′γTγ)

)
βγ − βTγXT

γ Y − Y TXγβγ + Y TY

]}
=(2π)−n/2(σ2)−n/2(2π)−pγ/2(σ2)−pγ/2(τ2)−pγ/2

∣∣(T ′γTγ)
∣∣1/2

× exp

{
− 1

2σ2

[(
βγ −A−1γ XT

γ Y
)T
Aγ

(
βγ −A−1γ XT

γ Y
)

+ Y TY − Y TXγA
−1
γ XT

γ Y
]}

=(2π)−n/2(σ2)−n/2(τ2)−pγ/2 |Aγ |−1/2
∣∣(T ′γTγ)

∣∣1/2 exp

{
− 1

2σ2

[
Y TY − Y TXγA

−1
γ XT

γ Y
]}

× (2π)−pγ/2(σ2)−pγ/2 |Aγ |1/2 exp

{
− 1

2σ2

(
βγ − β̂γ

)T
Aγ

(
βγ − β̂γ

)}
,

where β̂γ = A−1γ XT
γ Y and Aγ = XT

γXγ + 1
τ2 (T ′γTγ). As we can observe, βγ is inside a normal density function, so

we can integrate it out. We have

p(Y |Mγ , σ
2, τ2)

=(2π)−n/2(σ2)−n/2(τ2)−pγ/2 |Aγ |−1/2
∣∣(T ′γTγ)

∣∣1/2 exp

{
− 1

2σ2

[
Y TY − Y TXγA

−1
γ XT

γ Y
]}

.

Then the joint conditional distribution of Y and σ2 is

p(Y , σ2|Mγ , τ
2, ν, ω)

=p(Y |Mγ , σ
2, τ2)π(σ2|ν, ω)

=(2π)−n/2(τ2)−pγ/2 |Aγ |−1/2
∣∣(T ′γTγ)

∣∣1/2
×

(νω2 )ν/2

Γ(ν/2)
(σ2)−

n+ν
2 −1 exp

{
− 1

σ2

1

2

[
Y TY − Y TXγA

−1
γ XT

γ Y + νω
]}

.

As we can observe, σ2 is inside an Inverse-Gamma function, so we can integrate it out. We have the marginal posterior

of Y is given as

p(Y |Mγ , τ
2, ν, ω)

=(2π)−n/2(τ2)−pγ/2 |Aγ |−1/2
∣∣(T ′γTγ)

∣∣1/2 (
νω

2
)ν/2

Γ(n+ν2 )

Γ(ν2 )

{
1

2

[
Y TY − Y TXγA

−1
γ XT

γ Y + νω
]}−n+ν

2

.
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In special case, when ν = ω = 0, we have

p(Y |Mγ , τ
2, ν, ω) = (π)−n/2Γ(

n

2
)(τ2)−pγ/2 |Aγ |−1/2

∣∣(T ′γTγ)
∣∣1/2 [Y TY − Y TXγA

−1
γ XT

γ Y
]−n2 .

From the marginal likelihood of model of Y given model Mγ , the Bayes factor is

F (γ′|γ) = (τ2)−(
p
γ′−pγ

2 )
|Aγ |1/2

∣∣(T ′γ′Tγ′)
∣∣1/2

|Aγ′ |1/2
∣∣(T ′γTγ)

∣∣1/2
(
Y TY − Y TXγA

−1
γ XT

γ Y + νω

Y TY − Y TXγ′A
−1
γ′ X

T
γ′Y + νω

)n+ν
2

, (S.4)

where Aγ′ = XT
γ′Xγ′ + 1

τ2 (T ′γ′Tγ′). γ
′ and γ only differ by one index position, therefore pγ′ − pγ will be 1 or −1.

Next, we calculate the posterior of βγ . The joint conditional distribution of Y , βγ , σ2 is

p(Y ,βγ , σ
2|Mγ , τ

2, ν, ω)

=p(Y ,βγ |Mγ , σ
2, τ2)π(σ2|ν, ω)

=(2π)−n/2(2π)−pγ/2(τ2)−pγ/2
(νω2 )ν/2

Γ(ν/2)
(σ2)−

n+pγ+ν

2 −1 ∣∣(T ′γTγ)
∣∣1/2

exp

{
− 1

2σ2

[(
βγ − β̂γ

)T
Aγ

(
βγ − β̂γ

)
+ Y TY − Y TXγA

−1
γ XT

γ Y + νω

]}
.

As we can observe, σ2 is inside an Inverse-Gamma density function, so we can integrate it out. We have

p(Y ,βγ |Mγ , τ
2, ν, ω)

=(2π)−n/2(2π)−pγ/2(τ2)−pγ/2
(νω2 )ν/2

Γ(ν/2)
Γ(
n+ pγ + ν

2
)
∣∣(T ′γTγ)

∣∣1/2
{

1

2

[(
βγ − β̂γ

)T
Aγ

(
βγ − β̂γ

)
+ Y TY − Y TXγA

−1
γ XT

γ Y + νω

]}−n+pγ+ν

2

=π−n/2(τ2)−pγ/2(νω)ν/2
Γ(n+ν2 )

Γ(ν/2)
|Aγ |−1/2

∣∣(T ′γTγ)
∣∣1/2 (Cγ + νω)−

n+ν
2

Γ(
n+ν+pγ

2 )|Cγ+νωn+ν A−1γ |−1/2

Γ(n+ν2 )(n+ ν)pγ/2πpγ/2

[
1 +

1

n+ ν

(
βγ − β̂γ

)T [
(n+ ν)(Cγ + νω)−1Aγ

] (
βγ − β̂γ

)]−n+ν+pγ
2

,

where Cγ = Y TY − Y TXγA
−1
γ XT

γ Y . Obviously, βγ follows a multivariate t-distribution, given as

p(βγ |Y ,Mγ , τ
2, ν, ω)

=p(Y ,βγ |Mγ , τ
2, ν, ω)/p(Y |Mγ , τ

2, ν, ω)

=
Γ(

n+ν+pγ
2 )|Cγ+νωn+ν A−1γ |−1/2

Γ(n+ν2 )(n+ ν)pγ/2πpγ/2

[
1 +

1

n+ ν

(
βγ − β̂γ

)T [
(n+ ν)(Cγ + νω)−1Aγ

] (
βγ − β̂γ

)]−n+ν+pγ
2

,

with mean β̂γ = A−1γ XT
γ Y and covariance 1

n+ν−2 (Cγ + νω)A−1γ . The mean squared error of prediction is defined as

MSE = 1
n−pγ (Y −XγA

−1
γ XT

γ Y )T (Y −XγA
−1
γ XT

γ Y ), when pγ < n.

Lastly, the posterior of σ2 follows an Inverse-Gamma distribution given as

p(σ2|Y ,Mγ , τ
2, ν, ω) = p(Y , σ2|Mγ , τ

2, ν, ω)/p(Y |Mγ , τ
2, ν, ω)

=

[
1
2 (Cγ + νω)

]n+ν
2

Γ(n+ν2 )
(σ2)−

n+ν
2 −1 exp

(
(Cγ+νω)/2

σ2

)
.

with the shape parameter n+ν
2 and the scale parameter 1

2 (Cγ + νω). The mean is given by
(Cγ+νω)
n+ν .
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S5. JUSTIFICATION OF INVERSE-GAMMA PRIOR ON σ2

In this section, we justify why posterior inference for our model is robust to small values of ν and ω using both the-

ory and sensitivity analysis. For our theoretical discussion, let us recall the the hierarchical model in Gelman (2006) [4].

Model 1:

yij ∼ N (µ+ ξηj , σ
2
y) Hierarchy I

ηj ∼ N (0, σ2
η) Hierarchy II

σ2
η ∼ InverseGamma(α, β) Hierarchy III

Then we know the likelihood for ξ has the form of a normal distribution (yij−µ)/ηj ∼ N (ξ, σ2/ηj). Next we examine

the impact of small values of α and β on the likelihood of ξ. If α and β are close to zero (Hierarchy III), then σ2
η

will have a high concentration around zero. Then ηj will be close to zero (Hierarchy II). The likelihood for ξ will

be unstable, as ηj is in the denominator. This is intuitively the main reason why small values of Inverse Gamma

parameters are not recommended in this hierarchical model.

Although our model is hierarchical as well, the prior on σ2 plays a different role in governing the other layers

compared with the prior in Gelman’s paper. We write our proposed model as follows:

Model 2:

p(Y |Mγ ,βγ , σ
2) = (2π)−

n
2 (σ2)−

n
2 exp−

(Y−Xγβγ)T (Y−Xγβγ)
2σ2

π(βγ |Mγ , σ
2, τ2) = (2π)−

pγ
2 (σ2τ2)−

pγ
2

∣∣(T ′γTγ)
∣∣1/2 exp−

βTγ (T ′γTγ )βγ

2σ2τ2

π(σ2|ν, ω) =
(νω2 )ν/2

Γ(ν/2)
(σ2)−ν/2−1 exp−

(νω)/2

σ2

Here, the observed data can directly contribute information regarding inference on σ2, because σ2 is included

in the likelihood function, while in Gelman’s paper the likelihood function does not contain σ2
η. Moreover, the

hyperparameters α and β are not analytically tractable in Model 1, but we can express the explicit form of the

posterior of σ2 in our model (see Section 3 above). Just like a regular Gaussian regression model with an Inverse-

Gamma prior imposed on the variance term, the posterior of σ2 in our model follows an Inverse-Gamma distribution:

p(σ2|Y ,Mγ , τ
2, ν, ω) = p(Y , σ2|Mγ , τ

2, ν, ω)/p(Y |Mγ , τ
2, ν, ω)

=

[
1
2 (Cγ + νω)

]n+ν
2

Γ(n+ν2 )
(σ2)−

n+ν
2 −1 exp

(
(Cγ+νω)/2

σ2

)
,

with shape parameter n+ν
2 and scale parameter 1

2 (Cγ + νω). The mean is given by
(Cγ+νω)
n+ν . Note that Cγ =

Y TY −Y TXγA
−1
γ XT

γ Y and Aγ = XT
γXγ + 1

τ2 (T ′γTγ). Small values of ν and ω do not have a strong impact on the

posterior, as the shape parameter is dominated by n/2 and the scale parameter is dominated by Cγ/2. Additionally,

the posterior is a proper density even when ν = ω = 0.

Cγ is actually the sum of squared estimate of errors, which measures the fitness of the selected variables. Cγ is

decided by the posterior of the selection index γ. The conditional posterior distribution of γ given the data can be

decomposed by Bayes formula as

P (γi = 1|γ(−i),y) =
P (γi = 1|γ(−i))

P (γi = 1|γ(−i)) + F (γ′|γ)−1 × P (γi = 0|γ(−i))
,
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and the Bayes factor is

F (γ′|γ) = (τ2)−(
p
γ′−pγ

2 )
|Aγ |1/2

∣∣(T ′γ′Tγ′)
∣∣1/2

|Aγ′ |1/2
∣∣(T ′γTγ)

∣∣1/2
(
Y TY − Y TXγA

−1
γ XT

γ Y + νω

Y TY − Y TXγ′A
−1
γ′ X

T
γ′Y + νω

)n+ν
2

.

The Bayes factor depends on ν and ω, but, in the same way, small values of ν and ω do not have a strong impact on

the Bayes factor. Therefore, in summary, small values of ν and ω in the prior do not impact the robustness of the

posterior of σ2.

To complement the analytical discussion above, we performed a simulation-based sensitivity analysis to confirm the

behavior of our model for changing parameter values. We use the same simulated data with dependent covariates as

described in section 4.2 in the main manuscript, where 24 of the 1000 variables are set to be non-zero, and the true

σ2 is set as 0.0138. We let ν = ω, and vary their values from 0 to 3 with a step size of 0.03. Then we run the model

and plot the results of variable selection and posterior estimates of σ2. As shown in Figure S1, the model selects 24

variables and the MSE
(
i.e.,

Cγ
n

)
is 0.0148, which means the selection results are correct and robust to the change of

prior parameters. The posterior mean of σ2 increases because ν and ω are getting bigger. But ν = ω = 0 give the

best estimate of the true σ2 value. Therefore, the posterior of σ2 is robust to small values of ν and ω.

S6. SENSITIVITY TO SHRINKAGE PARAMETER

As microbial abundances vary across different OTUs and different experiments, we standardize the design matrix

X in the regression model to ensure a consistent scale. We also scale each column of the transformation Tγ by the

standard deviation of each column of X. We use these standardized data to perform sensitivity analysis, posterior

inference, and variable selection. Although this standardization is not required to apply the model, it makes the

parameter choice easier to calibrate and compare across settings.

As the shrinkage parameter a affects the model sparsity, we provide an illustration of the number of selected

variables as a function of a in Figure S2. For the independent covariate structure, when a is between −14 and −8,

the number of selected variables is nonzero and stable. Similarly, for the dependent covariate structure, when a is

between −13 and −9, the number of selected variables is nonzero and stable. Therefore, we set a around -12 (in the

middle of the stable range where around 24 variables are selected) to run the proposed method in all the simulation

scenarios. This parameter choice reflects a preference for sparsity, which, in the absence of further information, allows

for the selection of an interpretable and parsimonious model.

We now take a closer look at the effect of varying a within the stable range of −14 to −8, considering additional

performance measures available in the context of simulated data including mean squared error, true positive rates,

and false positive rates. The results from this analysis are provided in Figure S3 and Figure S4. Although we did not

select a based on TPR or FPR, to avoid optimistic bias in our results, this analysis shows that the posterior estimates

are robust to variation in a within a reasonable range. For example, in Figure S3, when a = −10 , 24 covariates are

selected, the mean squared error is 0.9782, TPR is 1, and FPR is 0. In Figure S4, when a = −10.5, 24 covariates are

selected, the mean squared error is 0.9782, TPR is 1, and FPR is 0.

In simulating the data with dependence (Section 4 of the main manuscript), we constructed a scheme with five

sets among the p = 1000 variables designed to have varying levels of signal and dependence structures. To recap, the

true variables are j = {160 + 20l}12l=1 and {560 + 20l}12l=1, the false variables are j = {44 + l}16l=1, {444 + l}16l=1 and

{944+l}16l=1, and all other covariates are uncorrelated noise variables. For the results provided in the main manuscript,

the structural prior parameter Q is set to have nonzero entries for relations among the true variables and, to avoid
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FIG. S1: Sensitivity analysis of the Inverse-Gamma prior on σ2. We use the same simulated data with dependent

covariates as described in section 4.2 in the main manuscript, where 24 of the 1000 variables are set to be non-zero,

and the true σ2 is set as 0.0148.

giving an advantage to the Bayesian methods, also for relations among the false variables. Here, we also consider a

more challenging scenario, where we additionally specify the regions j = {340 + 10l}11l=1 to be nonzero in Q. This

setup allows, for instance, variables 390 and 400 to be linked.

As shown in Figure S5, in the setting of Q used in Section 4 of the main manuscript, when we set a = −10, the

model is able to select all of the 24 true covariates correctly, and the MCMC converges well. In the more challenging

setting of Q, when we set a = −10.5, the model is able to select all of the 24 true covariates correctly, and the MCMC

converges well. Therefore, even though dependence between true variables and their false neighbours has been added

to the specification of Q, the results are reasonable for values of a within the stable range identified above.

As shown in Figure S6, when a is greater than −10, the number of selected variables starts to be greater than 0.

MSE is at a reasonable amount when a ia around −9. After integrative considerations, we set a around -9 to run for

all Bayesian ALR, CLR, and generalized methods in real data analysis.
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(a) Bayesian generalized method for independent covariate (b) Bayesian generalized method for dependent covariate

(c) Bayesian ALR method for independent covariate (d) Bayesian ALR method for dependent covariate

(e) Bayesian CLR method for independent covariate (f) Bayesian CLR method for dependent covariate

FIG. S2: Trace plot of sensitivity analysis of shrinkage parameter a for simulations when

n = 100, p = 1000,SNR = 1.

S7. ADDITIONAL SIMULATION RESULTS

We run simulations on independent and dependent covariate structures. In Figure S7, we provide the selection and

convergence results of three scenarios, from easy to difficult. When n = 50, p = 30, and SNR = 1, the MSE sequences

started to converge at around 100 iterations, and all 6 true non-zero variables were correctly selected. When n = 100,

p = 1000, and SNR = 1, the MSE sequences started to converge at around 4000 iterations, and all 24 true non-zero

variables were correctly selected. When n = 100, p = 1000, and SNR = 0.1, the MSE sequences did not converge very



10

(a) Number of selected variables changes with shrinkage parameter a. (b) Mean squared error (MSE) changes with shrinkage parameter a.

(c) True positive rates change with shrinkage parameter a. (d) False positive rates change with shrinkage parameter a.

FIG. S3: The plot of sensitivity analysis of shrinkage parameter a for simulations when n = 100, p = 1000,SNR = 1.

24 of the 1000 variables are set to be non-zero.

well, and only 14 out of 24 truly non-zero variables were correctly selected.

Table S1 and S2 show the simulation results for independent data structure with different sample size n and number

of covariates p. The conclusion is the same with the independent data structure when n = 100, p = 1000 in the main

manuscript.

As shown in Figure S8, we did histograms of phylogeny-induced correlations conducted by two types of correlation

structures. The left panel shows the Euclidean correlation. The right panel shows the Exponential correlation when

ρ = 1.05. They have same the 88% quantile 0.5 and similar shapes with mode around 0.2. Therefore, the Euclidean

correlation structure can be considered as a special case of the exponential correlation structure, because larger ρ

(smaller Cij) groups OTUs into clusters at a lower phylogenetic depth (a cluster is defined as a group of highly

correlated OTUs). We included these options in our codes, and in this paper we used the Euclidean correlation

structure to complete the analysis.
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(a) Number of selected variables changes with shrinkage parameter a. (b) Mean squared error (MSE) changes with shrinkage parameter a.

(c) True positive rates change with shrinkage parameter a. (d) False positive rates change with shrinkage parameter a.

FIG. S4: The plot of sensitivity analysis of shrinkage parameter a for simulations when n = 100, p = 1000,SNR = 1.

24 of the 1000 variables are set to be non-zero. Q is set to be one for false variables j = {340 + 10l}11l=1.
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(a) Selection results under the regular prior settings of dependence structure Q

on five groups of locations.

(b) MSE convergence under regular prior settings of dependence structure Q on

five groups of locations..

(c) Selection results when allowing Q to be one for false variables

j = {340 + 10l}11l=1 besides the five groups of locations.

(d) MSE convergence when allowing Q to be one for false variables

j = {340 + 10l}11l=1 besides the five groups of locations.

FIG. S5: Variable selection and model convergence of proposed Bayesian generalized method in different scenarios.

In the left panels, the x-axis denotes the variables, and y-axis denotes the frequency of each variable being selected.

The shaded green rectangles describes the structural prior Q put on the true signal region. The shaded purple

rectangles describe the structural prior Q put on the false signal region. The red cubes on the bottom indicate the

variables with true non-zero coefficients. The sticks with a star head indicate that the variable is selected with

selection frequency more than 0.5. In the right panels, the x-axis denotes the number of iterations, and the y-axis

denotes the mean squared estimation error. The sample size n is 100, and the number of covariates p is 1000. The

SNR is 1.
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(a) Number of selected variables for Bayesian generalized method (b) Mean squared error for Bayesian generalized method

(c) Number of selected variables for Bayesian ALR method (d) Mean squared error for Bayesian ALR method

(e) Number of selected variables for Bayesian CLR method (f) Mean squared error for Bayesian CLR method

FIG. S6: Trace plot of sensitivity analysis of shrinkage parameter a for the real application.
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(a) Selection results when n = 50, p = 30, SNR = 1 for an independent covariate

structure

(b) MSE convergence when n = 50, p = 30, SNR = 1 for an independent covariate

structure

(c) Selection results when n = 100, p = 1000, SNR = 1 for a dependent covariate

structure

(d) MSE convergence when n = 100, p = 1000, SNR = 1 for a dependent

covariate structure

(e) Selection results when n = 100, p = 1000, SNR = 0.1 for a dependent

covariate structure

(f) MSE convergence when n = 100, p = 1000, SNR = 0.1 for a dependent

covariate structure

FIG. S7: Variable selection and model convergence of proposed Bayesian generalized method in different scenarios.

In the left panels, the x-axis denotes the variables, and y-axis denotes the frequency of each variable being selected.

The shaded green rectangles describes the structural prior Q put on the true signal region. The shaded purple

rectangles indicate the structural prior Q put on the false signal region. The red cubes on the bottom indicate the

variables with true non-zero coefficients. The sticks with a star head indicate that the variable is selected with

selection frequency more than 0.5. In the right panels, the x-axis denotes the number of iterations, and the y-axis

denotes the mean squared estimation error.
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TABLE S1: Independent data structure with sample size n = 50 and number of covariates p = 30

SNR Method PE L1 loss L2 loss Linf loss FP FN

10 lasso ref 0.0025 (0.0002) 0.1469 (0.0047) 0.0040 (0.0003) 0.0357 (0.0013) 2.3200 (0.1476) 0 (0)

lasso std 0.0022 (0.0002) 0.1266 (0.0037) 0.0032 (0.0002) 0.0331 (0.0010) 1.4600 (0.1424) 0 (0)

lasso comp 0.0021 (0.0002) 0.1205 (0.0035) 0.0028 (0.0002) 0.0306 (0.0009) 1.6000 (0.1456) 0 (0)

group lasso 0.0015 (0.0001) 0.1138 (0.0047) 0.0014 (0.0001) 0.0205 (0.0006) 9.5500 (0.4808) 0 (0)

Bayesian ALR 0.0359 (0.0022) 0.1284 (0) 0.0676 (0) 0.0588 (0) 0 (0) 0 (0)

Bayesian CLR 0.0129 (0.0009) 0.0841 (0) 0.0300 (0) 0.0200 (0) 0 (0) 0 (0)

Bayesian general 0.0123 (0.0008) 0.0609 (0) 0.0270 (0) 0.0183 (0) 0 (0) 0 (0)

5 lasso ref 0.0065 (0.0005) 0.2121 (0.0068) 0.0072 (0.0004) 0.0492 (0.0015) 4.0400 (0.2146) 0 (0)

lasso std 0.0065 (0.0004) 0.1956 (0.0060) 0.0068 (0.0004) 0.0489 (0.0015) 3.0000 (0.1917) 0 (0)

lasso comp 0.0062 (0.0004) 0.1873 (0.0059) 0.0062 (0.0004) 0.0460 (0.0014) 3.0000 (0.1917) 0 (0)

group lasso 0.0060 (0.0004) 0.2267 (0.0091) 0.0058 (0.0003) 0.0412 (0.0011) 9.4400 (0.4753) 0 (0)

Bayesian ALR 0.0658 (0.0042) 0.1382 (0) 0.0589 (0) 0.0419 (0) 0 (0) 0 (0)

Bayesian CLR 0.0472 (0.0030) 0.1185 (0) 0.0440 (0) 0.0339 (0) 0 (0) 0 (0)

Bayesian general 0.0455 (0.0031) 0.0816 (0) 0.0393 (0) 0.0297 (0) 0 (0) 0 (0)

1 lasso ref 0.1520 (0.0110) 1.0258 (0.0336) 0.1486 (0.0096) 0.2181 (0.0067) 5.3500 (0.2993) 0.01 (0.01)

lasso std 0.1588 (0.0110) 0.9858 (0.0301) 0.1546 (0.0097) 0.2277 (0.0074) 3.9900 (0.2787) 0.01 (0.01)

lasso comp 0.1495 (0.0108) 0.9335 (0.0292) 0.1347 (0.0076) 0.2100 (0.0064) 4.1300 (0.2932) 0 (0)

group lasso 0.1510 (0.0110) 1.1264 (0.0450) 0.1428 (0.0077) 0.2057 (0.0056) 9.3500 (0.4696) 0 (0)

Bayesian ALR 1.0658 (0.0739) 0.4112 (0) 0.1911 (0) 0.1274 (0) 0 (0) 0 (0)

Bayesian CLR 1.2030 (0.0744) 0.3933 (0) 0.1645 (0) 0.1448 (0) 0 (0) 0 (0)

Bayesian general 1.1415 (0.0751) 0.2801 (0) 0.1447 (0) 0.1207 (0) 0 (0) 0 (0)
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FIG. S8: Histograms of phylogeny-induced correlations conducted by two types of correlation structures.
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TABLE S2: Independent data structure with sample size n = 100 and number of covariates p = 200

SNR Method PE L1 loss L2 loss Linf loss FP FN

10 lasso ref 0.0019 (0.0001) 0.1205 (0.0025) 0.0024 (0.0001) 0.0266 (0.0006) 2.9500 (0.1904) 0 (0)

lasso std 0.0018 (0.0001) 0.1104 (0.0022) 0.0022 (0.0001) 0.0264 (0.0006) 1.3200 (0.1294) 0 (0)

lasso comp 0.0018 (0.0001) 0.1049 (0.0020) 0.0020 (0.0001) 0.0244 (0.0005) 1.5800 (0.1545) 0 (0)

group lasso 0.0191 (0.0010) 0.5043 (0.0083) 0.0467 (0.0017) 0.1131 (0.0025) 0.1000 (0.0389) 0 (0)

Bayesian ALR 0.0592 (0.0443) 0.0505 (0.0116) 0.0434 (0.0076) 0.1630 (0.0987) 0.02 (0.0141) 0.03 (0.03)

Bayesian CLR 0.0087 (0.0004) 0.0056 (0) 0.0027 (0) 0.0021 (0) 0 (0) 0 (0)

Bayesian general 0.0098 (0.0014) 0.0057 (0) 0.0029 (0) 0.0023 (0) 0 (0) 0 (0)

5 lasso ref 0.0067 (0.0003) 0.2141 (0.0049) 0.0072 (0.0003) 0.0465 (0.0011) 3.9000 (0.2209) 0 (0)

lasso std 0.0065 (0.0003) 0.1958 (0.0044) 0.0068 (0.0003) 0.0466 (0.0011) 2.2700 (0.1948) 0 (0)

lasso comp 0.0063 (0.0003) 0.1878 (0.0041) 0.0061 (0.0003) 0.0436 (0.0010) 2.3100 (0.1947) 0 (0)

group lasso 0.0226 (0.0011) 0.5074 (0.0085) 0.0476 (0.0017) 0.1157(0.0026) 0.2200 (0.0596) 0 (0)

Bayesian ALR 0.0402 (0.0019) 0.0782 (0) 0.0426 (0) 0.0391 (0) 0 (0) 0 (0)

Bayesian CLR 0.0344 (0.0013) 0.0103 (0) 0.0050 (0) 0.0039 (0) 0 (0) 0 (0)

Bayesian general 0.0333 (0.0014) 0.0108 (0) 0.0053 (0) 0.0040 (0) 0.01 (0.01) 0 (0)

1 lasso ref 0.1682 (0.0084) 1.0664 (0.0246) 0.1789 (0.0079) 0.2316 (0.0056) 3.9600 (0.2183) 0 (0)

lasso std 0.1630 (0.0077) 0.9823 (0.0223) 0.1714 (0.0077) 0.2334 (0.0056) 2.2800 (0.2099) 0 (0))

lasso comp 0.1570 (0.0071) 0.9385 (0.0208) 0.1518 (0.0065) 0.2170 (0.0052) 2.4400 (0.2081) 0 (0)

group lasso 0.1410 (0.0062) 0.9868 (0.0261) 0.1096 (0.0045) 0.1894 (0.0041) 13.4800 (0.5584) 0 (0)

Bayesian ALR 0.8698 (0.0428) 0.1815 (0.0032) 0.0873 (0.0016) 0.0679 (0.0012) 0.09 (0.0288) 0 (0)

Bayesian CLR 0.8851 (0.0379) 0.1063 (0.0037) 0.0459 (0.0013) 0.0279 (0.0014) 0.01 (0.01) 0 (0)

Bayesian general 0.8504 (0.0369) 0.1049 (0.0019) 0.0459 (0.0010) 0.0278 (0.0010) 0.02 (0.0141) 0 (0)


