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Sumary of dataset

First, just a couple summary. We have 64 estimates from 39 studies. These come from 25 different species.

Here’s a list of the common names of the animals:

## [1] "Agile.frog.tadpole" "Baboon" "Brown.bear" "Chipmunk"
## [5] "Cunner" "Damselfish" "Dog" "Elephant"
## [9] "Fallow.deer" "Guppy" "Hermit.Crab" "Mice"
## [13] "Mosquitofish" "Namibian.rock.agama" "Periwinkle" "Pied.flycatcher"
## [17] "Red-winged.Blackbird" "Sea.anemone" "Shore.crab" "Slater"
## [21] "Sparrow" "Stickleback" "Wester.fence.lizard" "Yellow-footed.marmots"
## [25] "Zebrafish"

Guppies are the best represented species with 16 estimates from 7 studies, and four independent lab groups. Next are the hermit crabs, all of which
are from Mark Briffa’s lab, with 9 estimates from 6 studies.

Here is a list of citations:

## [1] "Adolph and Pickering 2008 JExpBiol" "Allan et al 2020 SciAdv"
## [3] "Biro and Adriaenssens 2013 AmNat" "Biro et al 2010 ProcB"
## [5] "Biro et al 2016 EcolEvol" "Bridger et al 2015 ProcB"
## [7] "Briffa 2013 BiolLett" "Briffa et al 2013 AnimBehav"
## [9] "Careau et al 2015 JExpBiol" "Cornwell et al 2018 JAnimEcol"
## [11] "Cornwell et al 2020 AnimBehav" "Eisenmann et al 2009 EurJApplPhysiol"
## [13] "Furtbauer et al 2015 FunctEcol" "Furthauer 2015 RSOS"
## [15] "Goold and Newberry 2016 RSOS" "Herczeg et al 2019 JEvolBiol"
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## [17] "Hertel et al 2020 JAnimEcol" "Hertel et al 2020 MovEcol"
## [19] "Highcock and Carter 2014 PLoSOne" "Horvath et al 2019 SciTotEnv"
## [21] "Jennings et al 2013 AnimBehav" "Jolles et al 2019 AnimBehav"
## [23] "Kurvers et al 2018 SciRep" "Martin et al 2018 JEvolBiol"
## [25] "Mitchell and Biro 2017 ProcB" "Mitchell et al 2016 RSOS"
## [27] "Mitchell et al 2020 EcoEvoRxiv" "Mitchell et al 2020b EcoEvoRxiv"
## [29] "Montiglio et al 2015 BehavEcolSociobiol" "Nanninga et al 2020 JHazMatLett"
## [31] "Norin and Gamberl 2016 FunctEcol" "O’Dea et al 2020 EcoEvoRxiv"
## [33] "Osborn and Briffa 2017 AnimBehav" "Prentice et al 2020 JEvolBiol"
## [35] "Stamps et al 2012 AnimBehav" "Urszan et al 2018 JAnimEcol"
## [37] "Velasque and Briffa 2016 Behaviour" "Westneat et al 2013 BehavEvol"
## [39] "Westneat et al 2017 BehavEvolSociobiol"
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The best estimates (points) of CVP show a little bit of a positive skew, as does the credible distrbiution on these estimates – as shown by the
asymmetry of the 95% credible intervals. Log-transforming the best estimates does appear to improve normality. This also makes the the estimates
in later models positive definite (i.e. CVP > 0 ). However, log-transforming the credible distributions leads to a strong negative-skew, far worse than
the existing positive-skew.

Funnel plot

To start, here are plots of the best estimates (log-transformed on the x-axis) against the sample size (log(Nobservations)) and against the precision as
as given by:

τi = 1
σCVi
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As we can see, when plotted against the sample sizes, estimates seem fairly randomly distpersed, indicating we do not have a big confirmation bias
or file-drawer effect. The plots against τ show larger estimates have lower precision, which is due to scaling and the lower bound of 0 truncating the
estimate variance. This effect is observable in the simulations for Table 3 of Cleasby et al. (2014).
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Overall CVP

The first model simply calculates a weighted mean of all datasets. The models have two random intercepts. The first is just the observation number,
which keeps an estimate as a level of replication. Some studies have multiple estimates due to having measured multiple traits, there are 9 studies
that do this (Allan et al 2020 SciAdv, Careau et al 2015 JExpBiol, Furtbauer et al 2015 FunctEcol, Hertel et al 2020 JAnimEcol, Kurvers et al 2018
SciRep, Mitchell et al 2020 EcoEvoRxiv, Norin and Gamberl 2016 FunctEcol, Prentice et al 2020 JEvolBiol, Velasque and Briffa 2016 Behaviour,
Westneat et al 2017 BehavEvolSociobiol). One other study reported variance in rIIV for four other traits (O’Dea et al 2020 EcoEvoRxiv), though
due to large ceiling effects which truncate variance, these estimates were discarded. Others have multiple subpopulations or treatments within the
study (Briffa et al 2013 AnimBehav, Eisenmann et al 2009 EurJApplPhysiol, Herczeg et al 2019 JEvolBiol, Mitchell et al 2020 EcoEvoRxiv, Urszan
et al 2018 JAnimEcol).

Due to the skew among estimates, and because CVP must be greater than 0, I have modelled CVP on the log-scale. However, as the credible
distribution on each estimate is closer to symmetry without transforming, I have retained the error variance around each estimate on the observed
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scale. This means that for the simple first model calculating a weighted mean, a link-function is moved to the right-hand side of the equation. This
is done through the non-linear commands in brms.

Where a model of transformed data would be
log(CVi) = β0 + obsi + Studyj + εi

obsi = Norm(0, σ)

Studyj = Norm(0, σ)

εi = Norm(0, σ)

where εi refers to the estimated precision in the estimate, i.e. se(SD.CVp). This is shown by the bold line around the point above.

When returned to the observed scale, these variances become log-normal. Instead, the models below move the log-scaling to the righthand side, and
omits the error variances (i.e. εi) from the link-function. This retain the precision estimates from the original scale. This can instead be written as:

CVi = exp(β0 + obsi + Studyj) + εi

Thus obsi and Studyj are log-normal, with the mean given by the fixed effects, while εk = Norm(0, σ).

ds$obs <- 1:length(ds$CVp)

mod1 <- bf(CVp|se(SD.CVp) ~ exp(y),
y ~ 1 + (1|obs) + (1|Study), nl = T)

prior1 <- c(set_prior(’normal(0,5)’, class = ’b’, nlpar = ’y’),
set_prior(’cauchy(0,5)’, class = ’sd’, nlpar = ’y’))

fit1 <- brm(mod1, data = ds, family = gaussian(), prior = prior1,
warmup = 500, iter = 5000, chains = 4, cores = 4,
control = list(adapt_delta = 0.97), seed = 42, file = ’model_runs/fit1’)

print(summary(fit1), digits = 3)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: CVp | se(SD.CVp) ~ exp(y)
## y ~ 1 + (1 | obs) + (1 | Study)
## Data: ds (Number of observations: 64)
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## Samples: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
## total post-warmup samples = 18000
##
## Group-Level Effects:
## ~obs (Number of levels: 64)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept) 0.369 0.085 0.235 0.563 1.001 3432 4437
##
## ~Study (Number of levels: 39)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept) 0.455 0.118 0.191 0.676 1.001 3551 2377
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## y_Intercept -1.368 0.099 -1.563 -1.172 1.001 12603 11886
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.000 0.000 0.000 0.000 1.000 18000 18000
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

This estimate can be returned to the observed scale:

summary(coda::as.mcmc(exp(as.matrix(fit1, pars = "b")[,1])))

##
## Iterations = 1:18000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 18000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
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## 0.2559319 0.0254970 0.0001900 0.0002257
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## 0.2094 0.2384 0.2548 0.2718 0.3099

Physiology vs. behaviour

Here is the analysis splitting physiological and behaviour traits. Physiology is quite broadly defined here, with 2 endocrine studies (2 estimates), two
metabolism studies (5 estimates), a haemolymph study (1 estimate) and also includes a performance study (1 estimate of sprint speed, Adolph and
Pickering 2008 JExpBiol). I have also separated the variances in estimates by this grouping factor. Furtbauer et al 2015 FunctEcol record behaviour
and CORT, while Velasque and Briffa 2016 Behaviour record behaviour and metabolism - so Study does not have separate variances.

mod2 <- bf(CVp|se(SD.CVp) ~ exp(y),
y ~ 0 + Trait.Type + (1|Study) + (1|gr(obs, by = Trait.Type)), nl = T)

prior2 <- c(set_prior(’normal(0,5)’, class = ’b’, nlpar = ’y’),
set_prior(’cauchy(0,5)’, class = ’sd’, nlpar = ’y’))

fit2 <- brm(mod2, data = ds, family = gaussian(), prior = prior2,
warmup = 500, iter = 5000, chains = 4, cores = 4,
control = list(adapt_delta = 0.97), seed = 42, file = ’model_runs/fit2’)

print(summary(fit2), digits = 3)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: CVp | se(SD.CVp) ~ exp(y)
## y ~ 0 + Trait.Type + (1 | Study) + (1 | gr(obs, by = Trait.Type))
## Data: ds (Number of observations: 64)
## Samples: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
## total post-warmup samples = 18000
##
## Group-Level Effects:
## ~obs (Number of levels: 64)
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## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept:Trait.TypeBehaviour) 0.347 0.081 0.218 0.537 1.001 3619 3935
## sd(y_Intercept:Trait.TypePhysiology) 0.668 0.378 0.110 1.586 1.001 5055 6111
##
## ~Study (Number of levels: 39)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept) 0.458 0.115 0.201 0.675 1.001 3566 2265
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## y_Trait.TypeBehaviour -1.301 0.103 -1.506 -1.098 1.000 11812 11566
## y_Trait.TypePhysiology -1.833 0.342 -2.607 -1.245 1.000 13648 9594
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.000 0.000 0.000 0.000 1.000 18000 18000
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

b <- exp(as.matrix(fit2, pars = "b"))[,1:2]
summary(coda::as.mcmc(b))

##
## Iterations = 1:18000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 18000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## b_y_Trait.TypeBehaviour 0.2736 0.02831 0.0002110 0.000266
## b_y_Trait.TypePhysiology 0.1689 0.05507 0.0004105 0.000452
##
## 2. Quantiles for each variable:
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##
## 2.5% 25% 50% 75% 97.5%
## b_y_Trait.TypeBehaviour 0.22173 0.2542 0.2720 0.2913 0.3334
## b_y_Trait.TypePhysiology 0.07374 0.1325 0.1647 0.1999 0.2880

fit2b <- brm(mod2, data = subset(ds, Measure != ’Haemolymph.Density’),
ds, family = gaussian(), prior = prior2,
warmup = 500, iter = 5000, chains = 4, cores = 4,
control = list(adapt_delta = 0.97), seed = 42, file = ’model_runs/fit2b’)

b2 <- exp(as.matrix(fit2b, pars = "b"))[,1:2]

This means on average the physiological traits have a lower CVP than the behavioural traits, though this is insignificant: -0.105 [-0.215, 0.022]. The
haemolymph density study has a high CVP , which is driving the lack of a difference. If we remove this observation, the difference is then significant:
-0.127 [-0.220, -0.027].

We see in the next section that metabolism is lower, and the two hormone studies also have low CVP .

Separated by trait

The following analysis breaks down traits into more detail. For ‘activity’ and ‘boldness’ we have a good number of estimates, disproportionately
guppies for activity, and hermit crabs for boldness. Numerous studies end up getting pooled into “miscellaneous” as we just have one or two examples
of that trait. For example, we only have 1 of haemolymph desity, aggression, parental provisioning, exploration and a few more. I have split these
“miscelaneous” traits by whether they’re physiological or behavioural.

I have kept the separate variances among estimates by splitting physiology and behaviour.

ds$Trait <- as.character(ds$Trait)
ds$Trait[ds$Trait == ’Hormone’] <- ’Miscellaneous’
ds$Trait <- as.character(factor(ds$Trait):ds$Trait.Type)

mod3 <- bf(CVp|se(SD.CVp) ~ exp(y),
y ~ 0 + Trait + (1|Study) + (1|gr(obs, by = Trait.Type)), nl = T)

prior3 <- c(set_prior(’normal(0,5)’, class = ’b’, nlpar = ’y’),
set_prior(’cauchy(0,5)’, class = ’sd’, nlpar = ’y’))

fit3 <- brm(mod3, data = ds, family = gaussian(), prior = prior3,
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warmup = 500, iter = 5000, chains = 4, cores = 4,
control = list(adapt_delta = 0.98), seed = 42, file = ’model_runs/fit3’)

print(summary(fit3), digits = 3)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: CVp | se(SD.CVp) ~ exp(y)
## y ~ 0 + Trait + (1 | Study) + (1 | gr(obs, by = Trait.Type))
## Data: ds (Number of observations: 64)
## Samples: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
## total post-warmup samples = 18000
##
## Group-Level Effects:
## ~obs (Number of levels: 64)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept:Trait.TypeBehaviour) 0.309 0.082 0.176 0.497 1.001 3463 4178
## sd(y_Intercept:Trait.TypePhysiology) 0.816 0.451 0.173 1.920 1.000 5884 6668
##
## ~Study (Number of levels: 39)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept) 0.424 0.109 0.183 0.634 1.001 3472 2907
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## y_TraitActivity:Behaviour -1.270 0.135 -1.535 -1.008 1.001 10180 11747
## y_TraitBoldness:Behaviour -1.123 0.145 -1.413 -0.834 1.000 10241 12552
## y_TraitMetabolism:Physiology -1.926 0.496 -3.061 -1.090 1.000 9681 8532
## y_TraitMiscellaneous:Behaviour -1.674 0.160 -1.993 -1.362 1.000 9259 11020
## y_TraitMiscellaneous:Physiology -1.741 0.571 -2.966 -0.695 1.000 10960 9386
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.000 0.000 0.000 0.000 1.000 18000 18000
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
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## scale reduction factor on split chains (at convergence, Rhat = 1).

b <- exp(as.matrix(fit3, pars = "b"))[,1:5]
summary(coda::as.mcmc(b))

##
## Iterations = 1:18000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 18000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## b_y_TraitActivity:Behaviour 0.2834 0.03826 0.0002852 0.0003775
## b_y_TraitBoldness:Behaviour 0.3287 0.04810 0.0003585 0.0004620
## b_y_TraitMetabolism:Physiology 0.1630 0.08207 0.0006117 0.0008343
## b_y_TraitMiscellaneous:Behaviour 0.1898 0.03046 0.0002270 0.0003131
## b_y_TraitMiscellaneous:Physiology 0.2051 0.13887 0.0010351 0.0013892
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## b_y_TraitActivity:Behaviour 0.21550 0.2568 0.2811 0.3075 0.3649
## b_y_TraitBoldness:Behaviour 0.24346 0.2955 0.3252 0.3581 0.4344
## b_y_TraitMetabolism:Physiology 0.04683 0.1119 0.1524 0.2005 0.3364
## b_y_TraitMiscellaneous:Behaviour 0.13633 0.1688 0.1875 0.2085 0.2562
## b_y_TraitMiscellaneous:Physiology 0.05150 0.1281 0.1812 0.2473 0.4993
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Field vs. laboratory

Finally, the comparison of lab and field studies. A number of people have posited that individuals may differ in rIIV due to the lack of control of
the environment. The argument being that individuals commonly vary in contextual plasticity, and this could give rise to heterogeneous residual
variance, or some individuals might be assayed under more variable conditions. The analysis here statistically controls for the differences among trait
types, and retains the variance differences.

As you can see, the opposite is actually true, which we posit in the main text is due to the lack of control swamping out intrinsic individual differences
in residual variance, i.e. differences in variability get lost when extra noise is added. This result does require a pinch of salt – the estimates in the
field tend to commonly be “miscellaneous” traits, boldness in the field is flight initiation distance rather than latency to emerge, activity in the field is
over much larger spatial scales than laboratory assays in an open field. There are therefore likely confounds which affect this result in unknown ways.
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mod4 <- bf(CVp|se(SD.CVp) ~ exp(y),
y ~ Trait + Field + (1|Study) +

(1|gr(obs, by = Trait.Type)), nl = T)

prior4 <- c(set_prior(’normal(0,5)’, class = ’b’, nlpar = ’y’),
set_prior(’cauchy(0,5)’, class = ’sd’, nlpar = ’y’))

fit4 <- brm(mod4, data = ds, family = gaussian(), prior = prior4,
warmup = 500, iter = 5000, chains = 4, cores = 4,
control = list(adapt_delta = 0.97), seed = 42, file = ’model_runs/fit4’)

print(summary(fit4), digits = 3)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: CVp | se(SD.CVp) ~ exp(y)
## y ~ Trait + Field + (1 | Study) + (1 | gr(obs, by = Trait.Type))
## Data: ds (Number of observations: 64)
## Samples: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
## total post-warmup samples = 18000
##
## Group-Level Effects:
## ~obs (Number of levels: 64)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept:Trait.TypeBehaviour) 0.328 0.080 0.189 0.497 1.003 2328 6755
## sd(y_Intercept:Trait.TypePhysiology) 0.732 0.364 0.204 1.584 1.000 4772 5182
##
## ~Study (Number of levels: 39)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept) 0.306 0.127 0.034 0.532 1.005 1456 2453
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## y_Intercept -1.164 0.126 -1.414 -0.915 1.000 8963 12051
## y_TraitBoldness 0.135 0.171 -0.200 0.472 1.000 10201 11873
## y_TraitMetabolism -0.720 0.450 -1.720 0.071 1.001 9920 10139
## y_TraitMiscellaneous -0.295 0.163 -0.611 0.034 1.000 9210 10408
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## y_FieldY -0.574 0.200 -0.962 -0.168 1.000 11396 12762
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.000 0.000 0.000 0.000 1.000 18000 18000
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Publication bias

While at the beginning of this document I plotted out effect sizes vs. sample sizes and estimate precision, another way we may evaluate the potential
reporting biases is to compare the studies which had (n = 39) and had not (n = 25) considered individual differences in residual variance. If these
patterns were frequently identified through initial data exploration and visualisation, or simply not reported where the results came out to be null,
then this would be evident when comparing the reported CVP estimates of those which did not consider individual variation in rIIV.

mod1b <- bf(CVp|se(SD.CVp) ~ exp(y),
y ~ Predictability.Considered + (1|Study) +

(1|obs), nl = T)

mod4b <- bf(CVp|se(SD.CVp) ~ exp(y),
y ~ Trait + Field + Predictability.Considered + (1|Study) +

(1|gr(obs, by = Trait.Type)), nl = T)

prior1b <- c(set_prior(’normal(0,5)’, class = ’b’, nlpar = ’y’),
set_prior(’cauchy(0,5)’, class = ’sd’, nlpar = ’y’))

fit1b <- brm(mod1b, data = ds, family = gaussian(), prior = prior1b,
warmup = 500, iter = 5000, chains = 4, cores = 4,
control = list(adapt_delta = 0.97), seed = 42, file = ’model_runs/fit1b’)

print(summary(fit1b), digits = 3)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: CVp | se(SD.CVp) ~ exp(y)
## y ~ Predictability.Considered + (1 | Study) + (1 | obs)
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## Data: ds (Number of observations: 64)
## Samples: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
## total post-warmup samples = 18000
##
## Group-Level Effects:
## ~obs (Number of levels: 64)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept) 0.368 0.083 0.236 0.557 1.001 3798 4610
##
## ~Study (Number of levels: 39)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept) 0.457 0.117 0.199 0.678 1.001 3680 3051
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## y_Intercept -1.497 0.164 -1.819 -1.172 1.000 11881 12223
## y_Predictability.ConsideredY 0.202 0.203 -0.197 0.602 1.000 11466 12218
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.000 0.000 0.000 0.000 1.000 18000 18000
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

fit4b <- brm(mod4, data = ds, family = gaussian(), prior = prior1b, #same priors as 1b
warmup = 500, iter = 5000, chains = 4, cores = 4,
control = list(adapt_delta = 0.97), seed = 42, file = ’model_runs/fit4b’)

print(summary(fit4b), digits = 3)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: CVp | se(SD.CVp) ~ exp(y)
## y ~ Trait + Predictability.Considered + (1 | Study) + (1 | gr(obs, by = Trait.Type))
## Data: ds (Number of observations: 64)
## Samples: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
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## total post-warmup samples = 18000
##
## Group-Level Effects:
## ~obs (Number of levels: 64)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept:Trait.TypeBehaviour) 0.302 0.081 0.171 0.486 1.000 3584 4311
## sd(y_Intercept:Trait.TypePhysiology) 0.799 0.433 0.169 1.883 1.000 5866 6475
##
## ~Study (Number of levels: 39)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(y_Intercept) 0.420 0.109 0.183 0.629 1.001 3319 2739
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## y_Intercept -1.412 0.183 -1.781 -1.054 1.000 10353 11567
## y_TraitBoldness 0.122 0.192 -0.256 0.499 1.000 11669 13471
## y_TraitHormone -1.786 1.922 -7.369 0.369 1.000 6112 5183
## y_TraitMetabolism -0.600 0.499 -1.709 0.287 1.000 11171 11788
## y_TraitMiscellaneous -0.417 0.171 -0.761 -0.089 1.000 9020 11412
## y_Predictability.ConsideredY 0.234 0.201 -0.163 0.627 1.000 11378 12546
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.000 0.000 0.000 0.000 1.000 18000 18000
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Correlation with the mean

Next are the analyses of the generality of an association between the mean expression of a trait and rIIV. Only boldness and activity rates have a
sufficient number of studies to be informative, and the “miscellaneous” traits are too variable in their significance to be informative.

First, I am going to transform the correlation coefficients to Fisher’s Z-correlation; z = 1
2 ∗ ln( 1+ρ

1−ρ ). This is done for the upper and lower bound of the
credible distribution, then I re-calculate the best estimate as halfway between those two values. The 95%CRI correspond to 1.96 standard deviations
from the mean, so precision is calculated as σ = ρupper−ρlower

3.92 .

The inverse of the Fisher’s Z-correlation transform is then given as ρ = exp(2z−1)
exp(2z+1) for the posterior.
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Z.corr <- function(r) {.5 * log((1+r)/(1-r))}
inv.Z <- function(z) {(exp(2*z)-1) / (exp(2*z)+1)}

ds$LZ <- Z.corr(ds$LowCorr)
ds$UZ <- Z.corr(ds$UpCorr)
ds$mu.Z <- (ds$UZ + ds$LZ) / 2
ds$SD.Z <- (ds$UZ - ds$LZ) / 3.92

Boldness

All of the boldness measures here have bolder animals having lower values, except for Jolles et al. 2018, i.e. animals with longer latency to emerge or
flight initiation distances are considered “shyer”. I have multiplied the correlations by -1 to make positive correlations equate to bolder animals being
more variable. We have 20 observations of boldness, though one study did not have an estimate for the correlation coefficient and the raw data was
not available.

BOLD <- subset(ds, Trait == ’Boldness’)
BOLD$mu.Z[BOLD$Study != ’Jolles_et_al-2019-AnimBehav’] <-

BOLD$mu.Z[BOLD$Study != ’Jolles_et_al-2019-AnimBehav’] * -1

mod6 <- bf(mu.Z|se(SD.Z) ~ 1 + (1|obs))

prior6 <- c(set_prior(’normal(0,5)’, class = ’Intercept’),
set_prior(’cauchy(0,5)’, class = ’sd’))

fit6 <- brm(mod6, data = BOLD, family = gaussian(), prior = prior6,
warmup = 500, iter = 5000, chains = 4, cores = 4,
control = list(adapt_delta = 0.97), seed = 42, file = ’model_runs/fit6’)

r <- inv.Z(as.matrix(fit6, pars = "b")[,1])

print(summary(fit6), digits = 3)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: mu.Z | se(SD.Z) ~ 1 + (1 | obs)
## Data: BOLD (Number of observations: 19)
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## Samples: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
## total post-warmup samples = 18000
##
## Group-Level Effects:
## ~obs (Number of levels: 19)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.474 0.120 0.278 0.749 1.000 4318 7850
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.244 0.129 -0.007 0.506 1.001 4054 6019
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.000 0.000 0.000 0.000 1.000 18000 18000
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Returned from Z-scale to correlation coefficients, r = 0.236 [-0.007, 0.467]. There’s lots of heterogeneity within these studies as seen by the variance
in obs. Even within the hermit crab data, which makes up 9 estimates, correlation values range from -0.773 to 0.626.

Activity

For activity, we have 20 estimates, ranging from r = -0.719 to 0.480.

ACT <- subset(ds, Trait == ’Activity’)

mod7 <- bf(mu.Z|se(SD.Z) ~ 1 + (1|obs))

prior7 <- c(set_prior(’normal(0,5)’, class = ’Intercept’),
set_prior(’cauchy(0,5)’, class = ’sd’))

fit7 <- brm(mod7, data = ACT, family = gaussian(), prior = prior7,
warmup = 500, iter = 5000, chains = 4, cores = 4,
control = list(adapt_delta = 0.97), seed = 42, file = ’model_runs/fit7’)
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r <- inv.Z(as.matrix(fit7, pars = "b")[,1])

print(summary(fit7), digits = 3)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: mu.Z | se(SD.Z) ~ 1 + (1 | obs)
## Data: ACT (Number of observations: 20)
## Samples: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
## total post-warmup samples = 18000
##
## Group-Level Effects:
## ~obs (Number of levels: 20)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.383 0.095 0.231 0.602 1.000 4636 7586
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -0.152 0.101 -0.357 0.046 1.001 4183 6282
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.000 0.000 0.000 0.000 1.000 18000 18000
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

This gives a best estimate r of -0.149 [-0.342, 0.046]. So there’s no indication that there’s a meaningful correlation on average.

IIVcorr <- subset(ds, is.na(ds$r_IIV) == F)

Correlation of rIIV among-traits

In the analyses of the raw data, where multiple traits were available for the same set of individuals, we ran models as multivariate. This therefore
assessed the among-individual correlation in rIIV – thus assessing assess whether individuals are generally (un/)predictable across multiple traits.
Where traits are functionally linked in the analyses (for instance Allan et al. 2020 provide data on visual orientation distance and flight initiation
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distance), correlations at the among-individual level of means and residual variances will be very high. Therefore correlations in predictability are
likely to be driven simply by this correlation. Residual correlations themselves were not assessable for all pairs of traits, and are problematic to
estimate as they assume a constant correlation coefficient while the variances are changing. Instead we extracted among-individual correlations in
mean behaviour from all such data. The direction of the correlation in means is irrelevant for the proposed functional link, so here we use the logit(r2)
as an estimate of the extent to the correlation in means. Correlations in rIIV are predicted to be positive, so we again use the Z-correlation. Data
is limited here with just 19 estimates from 8 studies. For many studies, there was little power to assess this correlation and the estimates therefore
carry very little weight in the model. We have fit this model as a multivariate model to assess 1) the mean correlation of rIIV between different traits
and 2) whether the extent of a correlation in means predicts the correlation in rIIV.

IIVcorr <- subset(ds, is.na(ds$r_IIV) == F)

IIVcorr$Lr <- Z.corr(IIVcorr$Low_r_IIV)
IIVcorr$Ur <- Z.corr(IIVcorr$Up_r_IIV)
IIVcorr$mu.r <- (IIVcorr$Ur + IIVcorr$Lr) / 2
IIVcorr$SD.r <- (IIVcorr$Ur - IIVcorr$Lr) / 3.92

logit <- function(p) {log(p - (1-p))}
IIVcorr$Lr2 <- Z.corr(IIVcorr$Low_r2_ints)
IIVcorr$Ur2 <- Z.corr(IIVcorr$Up_r2_ints)
IIVcorr$mu.synd <- (IIVcorr$Ur2 + IIVcorr$Lr2) / 2
IIVcorr$SD.synd <- (IIVcorr$Ur2 - IIVcorr$Lr2) / 3.92

mod8 <- bf(mu.r|se(SD.r) ~ 1 + (1|2|obs)) +
bf(mu.synd|se(SD.synd) ~ 1 + (1|2|obs)) +
set_rescor(F)

prior8 <- c(set_prior(’normal(0,5)’, class = ’Intercept’, resp = c(’mur’, ’musynd’)),
set_prior(’cauchy(0,5)’, class = ’sd’, resp = c(’mur’, ’musynd’)),
set_prior(’lkj(1)’, class = ’cor’))

fit8 <- brm(mod8, data = IIVcorr, family = gaussian(), prior = prior8,
warmup = 500, iter = 5000, chains = 4, cores = 4,
control = list(adapt_delta = 0.98), seed = 42, file = ’model_runs/fit8’)

r <- inv.Z(as.matrix(fit8, pars = "b")[,1])

print(summary(fit8), digits = 3)
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## Family: MV(gaussian, gaussian)
## Links: mu = identity; sigma = identity
## mu = identity; sigma = identity
## Formula: mu.r | se(SD.r) ~ 1 + (1 | 2 | obs)
## mu.synd | se(SD.synd) ~ 1 + (1 | 2 | obs)
## Data: IIVcorr (Number of observations: 19)
## Samples: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
## total post-warmup samples = 18000
##
## Group-Level Effects:
## ~obs (Number of levels: 19)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(mur_Intercept) 0.257 0.082 0.116 0.440 1.000 8649 9193
## sd(musynd_Intercept) 0.303 0.089 0.155 0.506 1.000 4650 7256
## cor(mur_Intercept,musynd_Intercept) 0.567 0.258 -0.042 0.935 1.000 3982 6659
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## mur_Intercept 0.140 0.081 -0.020 0.301 1.001 8372 11219
## musynd_Intercept 0.255 0.078 0.108 0.419 1.001 8174 10720
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_mur 0.000 0.000 0.000 0.000 1.000 18000 18000
## sigma_musynd 0.000 0.000 0.000 0.000 1.000 18000 18000
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Overall there is a positive but negligible correlation of rIIV across traits, which when returned from the Z-scale gives a best estimate r of 0.138
[-0.020, 0.292]. Again, this effect needs a large pinch of salt that there are few studies which are highly heterogenous in nature and a few particularly
powerful studies likely drive the effect/absence of effect. There’s also an indication that when the correlation between the means of traits is strong,
this correlates with a positive correlation between rIIV between those same traits. This effect was insignificant, though the effect is very likely to
be real. Had we have been able to examine the residual correlation instead of the among-individual correlation, these correlations would be largely
mathematically linked.
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Simulation of CV [P ]

Here, I will present the code which created the simulations that went into Figure 2. Firstly, I have created a simple simulation with all individual
means fixed to 0. I have restandardised the estimates throughout so that they are centred on 0 and the variances among BLUPs are re-standardised
to be what they are meant to be – i.e. they’re not perturbed from these values by random chance. The individuals in the simulation are then ranked
based on the on the observed data, not the values that they are simulated from. This means that even for the null scenario, there appears to be some
fanning of variance from left to right.

simulate <- function(CVp, nID = 30, nrep = 20, seed = 42){
set.seed(seed)
ID <- rnorm(nID,0,1)
ID <- (ID - mean(ID))/sd(ID)

ID1 <- ID*sqrt(log(CVp^2 + 1))
ds1 <- data.frame( id = sort(rep(c(1:nID),nrep)), sd = sort(rep(exp(ID1),nrep)),

rep = (rep(c(1:nrep),nID)))
ds1$y <- rnorm(nID*nrep, 0, ds1$sd)

df <- aggregate(data = ds1, y ~ id, FUN = mean)
df$sd.id <- aggregate(data = ds1, y ~ id, FUN = sd)$y
names(df)[2] <- "mean"
df$rank <- rank(df$sd.id)
ds1 <- merge(x = ds1, y = df, by = "id")#, suffixes = c("",""))
ds1$y <- ds1$y - ds1$mean
ds1$y <- (ds1$y - mean(ds1$y))/sd(ds1$y)
ds1

}

Plot code

This initial plot is the one which appears in the main text, with 30 individuals simulated with 20 observations for each individual.

plot_CVp <- function(CVp, nID = 30, nrep = 20, seed = 42, label, x=TRUE, y=TRUE){
ds1 <- simulate(CVp = CVp, nrep = nrep)
plot(ds1$y ~ ds1$rank, ylab = ’’, xlab = ’’, axes=F, ylim = c(-5.5,5.5), xlim = c(0,30))
axis(1, at=c(0,10,20,30), labels=x)
axis(2, at=c(-4,-2,0,2,4), labels=y)
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mtext(label, side=3, line = -1.5, at=1, adj=0, cex = 1.2)
box(bty=’l’)
}

# commented out commands to export plot
# tiff("Figure 2 - CVp Sim2.tiff", height = 4, width = 6, units = "in", res = 800)
par(mfrow=c(2,2), mar=c(0, 0, 1, 0.5) + 0.2, oma=c(3,3,0,0)+0.2)
plot_CVp(CVp = 0 , label = expression(’a) CV’[P]*’ = 0’), x=F)
plot_CVp(CVp = 0.25, label = expression(’b) CV’[P]*’ = 0.25’), x=F, y = F)
plot_CVp(CVp = 0.5 , label = expression(’c) CV’[P]*’ = 0.5’))
plot_CVp(CVp = 0.75, label = expression(’d) CV’[P]*’ = 0.75’), y=F)
mtext("Residual Deviance", side=2, line=2, cex = 1.2, outer=T)
mtext("Ranked rIIV", side=1, line=2, cex = 1.2, outer=T)
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Small sample size

Finally, as stated in the main text, the illusion of among-individual variation can be seen when sample sizes are small. While the models do a good
job parsing this sampling noise out (if distributional assumptions are met), this does mean that we should be careful in how we may perceive effects
when exploring and visualising data. Here is the equivalent plot to above, with the exception that I have instead taken to lower threshold of datasets
we considered – 5 observations per individual. Sampling more individuals will of course help the model’s power, but will not help in this visualising
exercise.

par(mfrow=c(2,2), mar=c(0, 0, 1, 0.5) + 0.2, oma=c(3,3,0,0)+0.2)
plot_CVp(CVp = 0 , label = expression(’a) CV’[P]*’ = 0’), x=F, nrep = 5)
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plot_CVp(CVp = 0.25, label = expression(’b) CV’[P]*’ = 0.25’), x=F, y = F, nrep = 5)
plot_CVp(CVp = 0.5 , label = expression(’c) CV’[P]*’ = 0.5’), nrep = 5)
plot_CVp(CVp = 0.75, label = expression(’d) CV’[P]*’ = 0.75’), y=F, nrep = 5)
mtext("Residual Deviance", side=2, line=2, cex = 1.2, outer=T)
mtext("Ranked rIIV", side=1, line=2, cex = 1.2, outer=T)
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